CN111117605B - 一种有机铝纳米晶及其制备方法和应用 - Google Patents

一种有机铝纳米晶及其制备方法和应用 Download PDF

Info

Publication number
CN111117605B
CN111117605B CN201911371321.1A CN201911371321A CN111117605B CN 111117605 B CN111117605 B CN 111117605B CN 201911371321 A CN201911371321 A CN 201911371321A CN 111117605 B CN111117605 B CN 111117605B
Authority
CN
China
Prior art keywords
organic aluminum
nanocrystalline
organic
light
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911371321.1A
Other languages
English (en)
Other versions
CN111117605A (zh
Inventor
陈冰昆
郑红
邹炳锁
王涌天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201911371321.1A priority Critical patent/CN111117605B/zh
Publication of CN111117605A publication Critical patent/CN111117605A/zh
Application granted granted Critical
Publication of CN111117605B publication Critical patent/CN111117605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/12Ketones containing more than one keto group
    • C07C49/14Acetylacetone, i.e. 2,4-pentanedione
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/77Preparation of chelates of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及发光和照明技术领域,具体涉及一种有机铝纳米晶及其制备方法和应用。本发明提供的有机铝纳米晶为乙酰丙酮铝纳米晶,所述乙酰丙酮铝纳米晶的空间群为单斜晶系P21/c,平均粒径为1.4‑5.5nm。本发明还提供了制备方法,包括:(1)将有机铝盐在惰性气氛下150‑200℃加热处理,得到有机铝盐前驱体;(2)将所述有机铝盐前驱体溶于有机溶剂中,然后置于超声粉碎机中超声粉碎,得到有机铝纳米晶。本发明所得到的有机铝纳米晶的发光强度高,稳定性好,由其制备得到的UV型远程白光LED器件,显色指数高达91,为设计新的照明和显示器件结构开辟了道路。

Description

一种有机铝纳米晶及其制备方法和应用
技术领域
本发明涉及发光和照明技术领域,具体涉及一种有机铝纳米晶及其制备方法和应用。
背景技术
荧光转换型白光LED(pc-WLEDs)已经在照明和显示等领域得到广泛应用,其主流技术为蓝光芯片激发荧光粉策略。但是,该器件结构还面临着亟待解决的问题:(i)蓝光芯片工作的温度可达到100-150℃,荧光粉存在热降解;(ii)采用不同颜色荧光粉直接混合策略可以得到高品质的pc-WLEDs器件,但是荧光粉之间存在重吸收;(iii)由蓝光芯片发射的450-500nm的强蓝光会引起视网膜损伤。
针对上述问题,采用紫外激发的远程白光LED不仅能降低荧光粉的热降解和重吸收,还能延缓蓝光芯片导致的蓝光损害。蓝光发光材料是制备UV型远程白光LED的核心材料。近年来,纳米发光材料领域发展迅速,提供了多种发光纳米晶材料,例如:硒化镉、磷化铟、钙钛矿、碳点等纳米材料,然而这些纳米材料的光热稳定性比较差,限制了其在UV型LED中的应用。因此发展新型蓝光纳米晶材料亦是UV型远程白光LED技术领域研究方向之一。
此外,UV型远程白光LED技术通过增大荧光粉和芯片的距离以减小对荧光粉的热损耗的策略,使其需要开发荧光转换薄膜。
发明内容
针对现有的荧光转换型白光LED器件升级需求,本发明的目的之一在于提供一种蓝光有机铝纳米晶,所述有机铝纳米晶为乙酰丙酮铝纳米晶,其平均粒径为1.4-5.5nm,多发射峰,荧光量子产率可达90%以上,发光性能和稳定性能好。
本发明的目的之二在于提供一种蓝光有机铝纳米晶的制备方法,其操作简单,成本低,适合大规模工业化生产应用。
本发明的目的之三在于提供一种蓝光复合薄膜,其由上述有机铝纳米晶或上述制备方法制备得到的有机铝纳米晶与聚合物树脂构成。本发明提供的蓝光复合薄膜利用蓝光有机铝纳米晶与聚合物树脂之间极好的兼容性,制备高质量的蓝光有机铝纳米晶/聚合物复合薄膜。该薄膜具有高的量子产率和极高的透过率,适合用作紫外激发型远程白光LED器件中的蓝光薄膜发光材料。
本发明的目的之四在于提供一种UV型远程白光LED器件,包括紫外芯片和光转化层,所述光转化层通过上述蓝光复合薄膜、红光CuInS2复合薄膜和绿光CuInS2复合薄膜制备得到。
具体来说,本发明提供了如下技术方案。
一种有机铝纳米晶,所述有机铝纳米晶为乙酰丙酮铝纳米晶,所述乙酰丙酮铝纳米晶的空间群为单斜晶系P21/c,平均粒径为1.4-5.5nm。
优选的,上述有机铝纳米晶中,所述乙酰丙酮铝纳米晶的激发波长为350-400nm,发射波长为400-470nm,最大激发波长为375nm。
优选的,上述有机铝纳米晶中,所述乙酰丙酮铝纳米晶的荧光量子产率大于80%,优选为大于90%。
本发明还提供一种有机铝纳米晶的制备方法,其包括以下步骤:
(1)将有机铝盐在惰性气氛下150-200℃加热处理,得到有机铝盐前驱体;
(2)将所述有机铝盐前驱体溶于有机溶剂中,然后置于超声粉碎机中超声粉碎,得到有机铝纳米晶。
优选的,上述制备方法中,步骤(1)中,所述有机铝盐为乙酰丙酮铝。
优选的,上述制备方法中,步骤(1)中,所述加热处理的时间为0.5-2h,优选为1.5-2h。
优选的,上述制备方法中,步骤(2)中,所述有机溶液为甲苯、正己烷、环己烷、对二甲苯或氯仿。
优选的,上述制备方法中,步骤(2)中,所述超声粉碎的功率为75-100W,优选的,所述超声粉碎的时间为4-8h。
本发明还提供一种复合薄膜,由上述的有机铝纳米晶或上述制备方法制备得到的有机铝纳米晶与聚合物树脂构成。
本发明还提供一种白光LED器件,其包括紫外芯片和光转化层,所述光转化层通过上述的复合薄膜、红光CuInS2复合薄膜和绿光CuInS2复合薄膜制备得到
本发明所取得的有益效果:
1、本发明的有机铝纳米晶的荧光量子产率可达90%以上,发光强度高,稳定性好,低毒,含量丰富,制备工艺简单;
2、本发明的有机铝纳米晶与聚合物树脂有极好的兼容性,由其制备的有机铝纳米晶/聚合物复合薄膜的荧光量子产率可达40-60%,透过率可超过80-90%;
3、本发明将制备的蓝光有机铝纳米晶/聚合物复合薄膜与红光CuInS2复合薄膜、绿光CuInS2复合薄膜共同作为三基色光转换层用于制备UV型远程白光LED器件,其显色指数高达91,与传统的蓝光芯片激发荧光粉制备白光LED相比,不仅能够有效避免荧光粉的热降解和重吸收,还能降低蓝光芯片导致的蓝光损害问题。这为设计新的照明和显示器件结构开辟了道路。
附图说明
图1为实施例1-4所制备的蓝光有机铝纳米晶粉末的X射线衍射图。
图2为实施例1-4所制备的蓝光有机铝纳米晶的荧光发射光谱。
图3为实施例5所制备的纳米晶/聚甲基丙烯酸甲酯复合薄膜的在可见光区的透过率光谱图。
图4为实施例5所制备的纳米晶/聚甲基丙烯酸甲酯复合薄膜的荧光发射光谱。
图5为实施例6所制备紫外激发的远程蓝光LED的发光光谱图。
图6为实施例7所制备紫外激发的远程白光LED的器件结构图。
图7为实施例7所制备紫外激发的远程白光LED的色坐标图。
图8为对比例1制备的样品的荧光发射光谱。
图9为对比例1制备的样品的透射电镜和傅里叶衍射斑。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明,但不用来限制本发明的范围。
实施例1
采用如下方法制备得到蓝光有机铝纳米晶:
a)用去离子水清洗石英舟,再置于烘干箱中烘干备用;
b)称取1.625g烘干处理过的乙酰丙酮铝,放入石英舟中;
c)将上述石英舟置于石英管中部后,置于管式炉中。调整石英管的位置,使加热温区和石英舟的位置一致。确定气密性良好后,以30sccm的速率通入30min惰性气体来排尽管内空气。将温度设置为经10min由30℃升至200℃,同时将气流速率改为10sccm,保温0.5h。最后,自然降温至室温,关闭气体,收集固体;
d)取出管式炉中的石英舟,取一定物质的量的固体溶于甲苯中。再放入超声清洗机中,设置超声功率为100W,超声时间为6h;
e)取出超声清洗机中的玻璃试剂瓶,即得到蓝光有机铝纳米晶/甲苯溶液。
f)将上述蓝光有机铝纳米晶/甲苯溶液采用真空干燥箱(60℃,-0.1MPa)烘干2h得到蓝光有机铝纳米晶粉末。
实施例2
采用如下方法制备得到蓝光有机铝纳米晶:
a)用去离子水清洗石英舟,再用置于烘干箱中烘干。
b)称取1.625g烘干处理过的乙酰丙酮铝,放入石英舟中。
c)将上述石英舟置于石英管中部后,置于管式炉中。调整石英管的位置,使加热温区和石英舟的位置一致。确定气密性良好后,以30sccm的速率通入30min惰性气体来排尽管内空气后。将温度设置为经10min由30℃升至200℃,同时将气流速率改为10sccm,保温1h。最后,自然降温至室温,关闭气体,收集固体。
d)取出管式炉中的石英舟,取一定物质的量的固体溶于甲苯中。再放入超声清洗机中,设置超声功率为100W,超声时间为6h。
e)取出超声清洗机中的玻璃试剂瓶,即得到蓝光有机铝纳米晶/甲苯溶液。
f)将上述蓝光有机铝纳米晶/甲苯溶液采用真空干燥箱(60℃,-0.1MPa)烘干2h得到蓝光有机铝纳米晶粉末。
实施例3
采用如下方法制备得到蓝光有机铝纳米晶:
a)用去离子水清洗石英舟,再用置于烘干箱中烘干。
b)称取1.625g烘干处理过的乙酰丙酮铝,放入石英舟中。
c)将上述石英舟置于石英管中部后,置于管式炉中。调整石英管的位置,使加热温区和石英舟的位置一致。确定气密性良好后,以30sccm的速率通入30min惰性气体来排尽管内空气。将温度设置为经10min由30℃升至200℃,同时将气流速率改为10sccm,保温1.5h。最后,自然降温至室温,关闭气体,收集固体。
d)取出管式炉中的石英舟,取一定物质的量的固体溶于甲苯中。再放入超声清洗机中,设置超声功率为100W,超声时间为6h。
e)取出超声清洗机中的玻璃试剂瓶,即得到蓝光有机铝纳米晶/甲苯溶液。
f)将上述蓝光有机铝纳米晶/甲苯溶液采用真空干燥箱(60℃,-0.1MPa)烘干2h得到蓝光有机铝纳米晶粉末。
实施例4
采用如下方法制备得到蓝光有机铝纳米晶:
a)用去离子水清洗石英舟,再用置于烘干箱中烘干。
b)称取1.625g烘干处理过的乙酰丙酮铝,放入石英舟中。
c)将上述石英舟置于石英管中部后,置于管式炉中。调整石英管的位置,使加热温区和石英舟的位置一致。确定气密性良好后,以30sccm的速率通入30min惰性气体来排尽管内空气。将温度设置为经10min由30℃升至200℃,同时将气流速率改为10sccm,保温2h。最后,自然降温至室温,关闭气体,收集固体。
d)取出管式炉中的石英舟,取一定物质的量的固体溶于甲苯中。再放入超声清洗机中,设置超声功率为100W,超声时间为6h。
e)取出超声清洗机中的玻璃试剂瓶,即得到蓝光有机铝纳米晶/甲苯溶液。
f)将上述蓝光有机铝纳米晶/甲苯溶液采用真空干燥箱(60℃,-0.1MPa)烘干2h得到蓝光有机铝纳米晶粉末。
实施例1-4制备的蓝光有机铝纳米晶、原料乙酰丙酮铝和乙酰丙酮铝标准卡片的X射线衍射图(XRD)如图1所示,从图可以看出,在不同加热时间下得到的有机铝纳米晶XRD图谱的峰位和强度与原料乙酰丙酮铝一致,并与标准卡片匹配,证明所得到的有机铝纳米晶物相为单斜晶系P21/c乙酰丙酮铝。
实施例1-4制备的蓝光有机铝纳米晶的荧光发射光谱图如图2所示,从图中可以看出,在不同加热时间下得到的有机铝纳米晶呈多峰荧光特性,其峰值分别位于409nm、435nm和460nm处。
使用滨松绝对荧光量子产率测试系统,采用375nm的激发波长,测定实施例1-4得到的蓝光有机铝纳米晶的荧光量子产率分别为80.5%、81.8%、91.5%、90.7%。
使用DigitalMicrograph软件中的测量功能分别统计实施例1-4制备的蓝光有机铝纳米晶中100个纳米晶的粒径大小,并对数据做统计分析得到实施例1-4有机铝纳米晶的粒径分布分别为3.9±1.6nm、3.6±1.5nm、3.2±1.8nm和3.7±1.2nm。
实施例5
采用如下方法制备得到蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜:
a)称取1g聚甲基丙烯酸甲酯(PMMA),溶于2ml的甲苯溶液中,过夜搅拌至完全溶解且没有气泡,得到聚合物溶液;
b)将0.5ml实施例3制作的蓝光有机铝纳米晶/甲苯溶液置于步骤a)中的聚合物溶液,搅拌2h至蓝光有机铝纳米晶在聚合物溶液中均匀分散;
c)将上述含有蓝光有机铝纳米晶的聚合物溶液滴在干净的玻璃片上,用刮膜器刮平,置于通风厨中自然晾干,即可得到蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜。
实施例5制备的蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜的荧光发射光谱图如图4所示,从图中可以看出,有机铝纳米晶复合薄膜呈多峰荧光特性,其峰值分别位于405nm、434nm和461nm处。且与蓝光有机铝纳米晶溶液的荧光发射峰基本一致,说明纳米晶成功嵌入到聚合物中。
实施例5制备的蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜的透过率光谱图如图3所示,从图中可以看出,复合薄膜的透过率超过88%,在大于420nm的波长范围,透过率超过了90%。
使用滨松绝对荧光量子产率测试系统,采用355nm、375nm和395nm的激发波长,测定实施例5制备的蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜的荧光量子产率分别为40.5%、55.6%、60.3%。
实施例6
采用如下方法制备得到LED器件:
a)取实施例5制备的蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜,按照芯片支架的尺寸裁剪同样大小的蓝光复合薄膜;
b)将上述蓝光复合薄膜置于紫外LED芯片(370nm)支架上,薄膜与芯片支架之间用硅胶粘合,支架两端设有正负极引脚。
对制备得到的LED器件进行检测,测试步骤如下:依次打开高精度快速光谱辐射计电源、精密数显直流稳流稳压电源和LEDspec测试软件,选择常规测量模式,将所述LED器件放在积分球入口处,LED的正负极引脚与精密数显直流稳流稳压电源连接,对LED施加规定的正向电流IF为20mA,光度探测系统测量出光通量。在软件上显示出白光光谱以及CIE1931色品坐标、显色指数、色温、效率参数,导出数据以及光谱进行分析。
软件分析得到CIE色品坐标为(0.1750,0.1162),显色指数为43.0,流明效率为1.26lm/W,证明LED发出的光处于蓝光区域。
图5为实施例6所制备紫外激发的蓝光LED的发光光谱图。
实施例7
采用如下方法制备得到LED器件:
a)取实施例5制备的蓝光有机铝纳米晶/聚甲基丙烯酸甲酯复合薄膜、红光CuInS2复合薄膜和绿光CuInS2复合薄膜,按照芯片支架的尺寸裁剪同样大小的红光、绿光、蓝光复合薄膜;
b)如图6所示,将上述红光、绿光、蓝光复合薄膜置于紫外LED芯片(370nm)支架上,底层为红光薄膜,中间为绿色薄膜,顶层为蓝色薄膜,薄膜之间及薄膜与芯片支架之间用硅胶粘合,支架两端设有正负极引脚。
对制备得到的LED器件进行检测,测试步骤如下:依次打开高精度快速光谱辐射计电源、精密数显直流稳流稳压电源和LEDspec测试软件,选择常规测量模式;将所述LED放在积分球入口处,LED的正负极引脚与精密数显直流稳流稳压电源连接,对LED施加规定的正向电流IF、为20mA,光度探测系统测量出光通量。在软件上显示出白光光谱以及CIE 1931色品坐标、显色指数、色温、效率参数,导出数据以及光谱进行分析,图7为本实施例制备的LED器件的色坐标图。
软件分析得到CIE色品坐标为(0.462,0.396),显色指数为91,色温为2553K,证明LED发出的光处于暖白光区域。
对比例1
对比例1与实施例1的区别仅在于:对比例1步骤c)中温度设置为经10min由30℃升至330℃。
将对比例1步骤c)焙烧收集到的固体溶于甲苯中,溶液呈淡黄色且在紫外灯下呈蓝紫色。
将对比例1步骤f)得到的样品与实施例1制备的蓝光有机铝纳米晶在同样的条件下(激发波长为360nm)测试荧光发射光谱,测试结果如图8所示,可以看出对比例1得到的样品的发光峰位在395nm,而实施例1的发光峰位在409、435、460nm。进一步的,图9为对比例1得到的样品的透射电镜和傅里叶衍射斑,由图可知,该样品为多晶化合物。因此,对比例1无法制备得到乙酰丙酮铝纳米晶。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对其作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种有机铝纳米晶的制备方法,其特征在于,包括以下步骤:
(1)将有机铝盐在惰性气氛下150-200 oC加热处理,得到有机铝盐前驱体;
(2)将所述有机铝盐前驱体溶于有机溶剂中,然后置于超声粉碎机中超声粉碎,得到有机铝纳米晶;
所述有机铝纳米晶为乙酰丙酮铝纳米晶,所述乙酰丙酮铝纳米晶的空间群为单斜晶系P21/c,平均粒径为1.4-5.5nm。
2.根据权利要求1所述的制备方法,其中,步骤(1)中,所述有机铝盐为乙酰丙酮铝。
3.根据权利要求1或2所述的制备方法,其中,步骤(1)中,所述加热处理的时间为0.5-2h。
4.根据权利要求3所述的制备方法,其中,步骤(1)中,所述加热处理的时间为1.5-2h。
5.根据权利要求1或2所述的制备方法,其中,步骤(2)中,所述有机溶液为甲苯、正己烷、环己烷、对二甲苯或氯仿。
6.根据权利要求3所述的制备方法,其中,步骤(2)中,所述有机溶液为甲苯、正己烷、环己烷、对二甲苯或氯仿。
7.根据权利要求1或2所述的制备方法,其中,步骤(2)中,所述超声粉碎的功率为75-100W。
8.根据权利要求7所述的制备方法,其中,步骤(2)中,所述超声粉碎的时间为4-8h。
9.根据权利要求3所述的制备方法,其中,步骤(2)中,所述超声粉碎的功率为75-100W。
10.根据权利要求5所述的制备方法,其中,步骤(2)中,所述超声粉碎的功率为75-100W。
CN201911371321.1A 2019-12-26 2019-12-26 一种有机铝纳米晶及其制备方法和应用 Active CN111117605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371321.1A CN111117605B (zh) 2019-12-26 2019-12-26 一种有机铝纳米晶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371321.1A CN111117605B (zh) 2019-12-26 2019-12-26 一种有机铝纳米晶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111117605A CN111117605A (zh) 2020-05-08
CN111117605B true CN111117605B (zh) 2021-01-05

Family

ID=70503616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371321.1A Active CN111117605B (zh) 2019-12-26 2019-12-26 一种有机铝纳米晶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111117605B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270128A (zh) * 2007-03-23 2008-09-24 清华大学 8-羟基喹啉铝纳米晶的制备方法
CN104497032A (zh) * 2014-11-21 2015-04-08 中国石油大学(华东) 一种纳米尺度铝基金属-有机框架结构材料及其制备方法
CN108531165A (zh) * 2017-03-01 2018-09-14 中国科学院城市环境研究所 超小长余辉纳米颗粒及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270128A (zh) * 2007-03-23 2008-09-24 清华大学 8-羟基喹啉铝纳米晶的制备方法
CN104497032A (zh) * 2014-11-21 2015-04-08 中国石油大学(华东) 一种纳米尺度铝基金属-有机框架结构材料及其制备方法
CN108531165A (zh) * 2017-03-01 2018-09-14 中国科学院城市环境研究所 超小长余辉纳米颗粒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Al-acac配合物的合成、结构及发光性能的研究;牛淑云 等;《辽宁师范大学学报(自然科学版)》;20050331;第28卷;69-72 *
In Situ Studies on Phase Transitions of Tris(acetylacetonato)-Aluminum(III) Al(acac)3;Nicole Pienack 等;《Crystals》;20161128;第6卷;157(1-14) *

Also Published As

Publication number Publication date
CN111117605A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN108046236A (zh) 一种高量子产率红色碳量子点的制备方法和应用
CN106833636B (zh) 可被近紫外和蓝光激发的红色荧光粉、制备方法及应用
Dong et al. Synthesis, characterization and application of red-emitting CuInS2/ZnS quantum dots for warm white light-emitting diodes
CN104529165B (zh) 一种用于ac-led的黄色余辉微晶玻璃及其制备技术
Chen et al. Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting
CN106978176A (zh) 一种黄色荧光粉及制备方法和其在发光器件中的应用
CN109957400B (zh) 一种Mn4+离子激活的氟化物荧光粉的制备方法
CN111117605B (zh) 一种有机铝纳米晶及其制备方法和应用
CN108728082A (zh) 一种蓝光激发的氟锰酸盐红光材料及其制备方法和应用
CN104830332B (zh) 一种白光LED用钛酸盐Zn2TiO4: Eu3+红色荧光粉的制备方法
CN102433119A (zh) 一种白光led用钨钼酸盐红色荧光粉及其制备方法
CN107353900A (zh) 一种铌酸盐荧光粉、其制备方法及发光二极管
CN106753347A (zh) 一种近紫外激发的红色荧光粉及其制备方法
CN107418578A (zh) 一种适于近紫外光激发的红色荧光粉及其制备方法
CN116333739A (zh) 一种免掺杂激活剂的基质发光红色荧光粉及其制备方法
CN105400512A (zh) 一种红色钨酸盐荧光粉及其制备方法和用途
CN113265240B (zh) 高效蓝光发射性Cd基钙钛矿材料及其制备方法和应用
CN109536169A (zh) 一种白光led用单基质硅酸盐白光荧光粉及其制备方法
Xu et al. Novel quantum dots: Water-based CdTeSe/ZnS and YAG hybrid phosphor for white light-emitting diodes
CN107099291A (zh) 一种可被近紫外光激发的红色荧光材料、制备方法及应用
CN106995702A (zh) 一种镓锗酸盐基深红色发光材料及其制备方法
CN106566548B (zh) 一种白光led用绿色荧光粉及其制备方法
CN105524615A (zh) 一种白光led用铌酸盐红色荧光粉及其制备方法
CN106221694B (zh) 一种窄谱带氟化物红光荧光粉及其制备方法
CN1231979C (zh) 含有复合发光材料的白光发光器件及发光材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant