CN111101142A - 一种图形化集成式高效光催化分解水系统的构筑方法 - Google Patents

一种图形化集成式高效光催化分解水系统的构筑方法 Download PDF

Info

Publication number
CN111101142A
CN111101142A CN201811254244.7A CN201811254244A CN111101142A CN 111101142 A CN111101142 A CN 111101142A CN 201811254244 A CN201811254244 A CN 201811254244A CN 111101142 A CN111101142 A CN 111101142A
Authority
CN
China
Prior art keywords
photo
type semiconductor
integrated high
deposition
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811254244.7A
Other languages
English (en)
Other versions
CN111101142B (zh
Inventor
刘岗
甄超
朱洪雷
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201811254244.7A priority Critical patent/CN111101142B/zh
Publication of CN111101142A publication Critical patent/CN111101142A/zh
Application granted granted Critical
Publication of CN111101142B publication Critical patent/CN111101142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于太阳能光催化领域,具体为一种图形化集成式高效光催化分解水系统的构筑方法。以光刻技术为手段在导电基体上进行图形化设计,利用各种成膜方法在光刻显影去除光刻胶的图形区域内沉积n(或p)型半导体作为微区光阳极(或光阴极)。然后去除图形以外未显影的光刻胶,利用电化学方法在相应区域内沉积p(或n)型半导体作为微区光阴极(或光阳极)。n型半导体光阳极受光激发产生的光生空穴扩散至表面将水氧化释放出氧气,p型半导体光阴极受光激发产生的光生电子扩散至表面将水还原释放氢气,而n型半导体中光电子则通过导电基体与p型半导体中光生空穴复合,最终通过Z型转移机制实现水的全分解。

Description

一种图形化集成式高效光催化分解水系统的构筑方法
技术领域
本发明属于太阳能光催化领域,具体为一种图形化集成式高效光催化分解水系统的构筑方法。
背景技术
光电化学水分解制氢电池是太阳能转化和存储的有效途径之一。构筑高效的光电化学水分解全电池是实现水在太阳光照下自发全分解的关键,全电池包括n型半导体光阳极和p型半导体光阴极。其基本原理类似于Z型电荷转移机制,高能量的光生电子和空穴分别迁移至光阴极和光阳极表面,诱导水的分解反应,而低能量的光生电子和空穴直接在外电路复合。在光生电荷输运分离过程中,集流体中收集到的光生电荷可重新回到光电极中发生复合,因此缩短光生电荷在集流体中的输运距离可有效抑制复合实现高效分离,进而获得高效光催化分解水系统。
发明内容
本发明的目的在于提供一种图形化集成式高效光催化分解水系统的构筑方法,利用光刻技术将光阳极和光阴极集成串联在导电集流体上,缩短光生电荷在两电极间的分离输运距离以提高分离效率,以获得高效光催化分解水系统。
本发明的技术方案是:
一种图形化集成式高效光催化分解水系统的构筑方法,以光刻技术为手段在导电基体上进行图形化设计,利用各种成膜方法在光刻显影去除光刻胶的图形区域内沉积 n或p型半导体作为微区光阳极或光阴极;然后去除图形以外未显影的光刻胶,利用电化学方法在相应区域内沉积p或n型半导体作为微区光阴极或光阳极;n型半导体光阳极受光激发产生的光生空穴扩散至表面将水氧化释放出氧气,p型半导体光阴极受光激发产生的光生电子扩散至表面将水还原释放氢气,而n型半导体中光电子则通过导电基体与p型半导体中光生空穴复合,最终通过Z型转移机制实现水的全分解。
所述的图形化集成式高效光催化分解水系统的构筑方法,光刻技术为有机光刻或无机光刻技术。
所述的图形化集成式高效光催化分解水系统的构筑方法,n型半导体为各种多子为电子的半导体材料。
所述的图形化集成式高效光催化分解水系统的构筑方法,n型半导体材料为TiO2、WO3、BiVO4、Fe2O3、Ta3N5、TaON之一或两种以上的复合材料。
所述的图形化集成式高效光催化分解水系统的构筑方法,p型半导体为各种多子为空穴的半导体材料。
所述的图形化集成式高效光催化分解水系统的构筑方法,p型半导体材料为Cu2O、GaP、WSe2、InP之一或两种以上的复合材料。
所述的图形化集成式高效光催化分解水系统的构筑方法,成膜方法为各种湿化学沉积方法、物理沉积方法或气相沉积方法,其中:湿化学沉积方法为电化学沉积、溶胶旋涂法、浸渍提拉法或水热法,物理沉积方法为物理气相沉积或磁控溅射,气相沉积方法为原子层沉积或化学气相沉积。
所述的图形化集成式高效光催化分解水系统的构筑方法,光刻胶去除方法为化学溶解法或高温烧结法。
所述的图形化集成式高效光催化分解水系统的构筑方法,n型半导体光阳极,以Co(OH)2、Co3O4、“Co-Pi”、NiOx产氧助催化剂修饰,修饰过程如下:利用各种沉积手段在n型半导体光阳极表面担载沉积上述产氧助催化剂的纳米颗粒或薄膜,沉积手段为溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法或热喷涂法;
p型半导体光阴极,以Pt、RuO2、MoS2产氢助催化剂修饰,修饰过程如下:利用各种沉积手段在p型半导体光阳极表面担载沉积上述产氢助催化剂的纳米颗粒或薄膜,沉积手段为溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法或热喷涂法。
所述的图形化集成式高效光催化分解水系统的构筑方法,导电基体包括各种导电金属或合金基体、导电非金属基体或复合导电基体,导电非金属基体采用氟掺杂氧化锡透明导电玻璃/FTO或氧化铟锡透明导电玻璃/ITO。
本发明的设计思想是:
传统的光电化学水分解全电池是将独立的n型半导体光阳极和p型半导体光阴极通过外电路连接而构建的。利用光电化学水分解全电池实现光照下、无偏压下水的自发全分解则是将n型半导体光阳极和p型半导体光阴极直接短接,其中n型半导体光阳极中的光生电子通过外电路与p型半导体光阴极中的光生空穴复合。因光电极通常为宏观尺寸,导电集流体收集到的光生电荷在向外电路传输过程中,由于传输距离大而容易重新流回至表面半导体薄膜中发生复合,影响太阳能的光化学转化效率。微区图形化光阳极与光阴极的集成串联,可有效缩短光生电荷在集流体中的传输距离,大幅度减小集流体中光生电荷回流复合的几率而实现高效分离,是提高光催化系统量子效率的有效方法。
本发明的优点及有益效果在于:
本发明实现微区图形化光阳极与光阴极的集成串联,大大缩短光生电荷在两电极间的输运距离而实现高效分离,可有效提高光催化系统的量子效率。
附图说明
图1:本发明实施例1中获得的图形化氟掺杂氧化锡导电玻璃(FTO)基体的光学照片。
图2:本发明实施例1中获得的图形化的BiVO4薄膜电极扫描电子显微镜照片(SEM)。
图3:本发明实施例1中组装的获得的图形化集成式BiVO4/Cu2O光催化系统扫描电子显微镜照片(SEM)。
图4:本发明实施例1中获得的图形化集成式BiVO4/Cu2O光催化系统选择性光沉积后的扫描电子显微镜照片(SEM)。
图5:本发明实施例2中获得的图形化的TiO2薄膜电极扫描电子显微镜照片(SEM)。
图6:本发明实施例2中组装的获得的图形化集成式TiO2/Cu2O光催化系统扫描电子显微镜照片(SEM)。
具体实施方式
在具体实施过程中,以光刻技术为手段在导电基体上进行图形化设计,利用各种成膜方法在光刻显影去除光刻胶的图形区域内沉积n(或p)型半导体作为微区光阳极 (或光阴极)。然后去除图形以外未显影的光刻胶,利用电化学方法在相应区域内沉积 p(或n)型半导体作为微区光阴极(或光阳极)。n型半导体光阳极受光激发产生的光生空穴扩散至表面将水氧化释放出氧气,p型半导体光阴极受光激发产生的光生电子扩散至表面将水还原释放氢气,而n型半导体中光电子则通过导电基体与p型半导体中光生空穴复合,最终通过Z型转移机制实现水的全分解。其中,具体的特征在于:
1、所述的光刻技术包括有机光刻和无机光刻技术。
2、所述的n型半导体包括各种多子(多数载流子)为电子的半导体材料,优选TiO2、WO3、BiVO4、Fe2O3、Ta3N5、TaON之一或两种以上的复合材料。
3、所述的p型半导体包括各种多子(多数载流子)为空穴的半导体材料,优选Cu2O、GaP、WSe2、InP之一或两种以上的复合材料。
4、所述的成膜方法包括各种湿化学沉积方法(如:电化学沉积、溶胶旋涂法、浸渍提拉法及水热法等)、物理沉积方法(如:物理气相沉积、磁控溅射等)和气相沉积方法(如:原子层沉积和化学气相沉积)。
5、所述的光刻胶去除方法包括化学溶解法和高温烧结法。
6、所述的n型半导体光阳极,以Co(OH)2、Co3O4、“Co-Pi”、NiOx等产氧助催化剂修饰,修饰过程如下:利用各种沉积手段(包括溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法、热喷涂法等)在n型半导体光阳极表面担载沉积上述产氧助催化剂的纳米颗粒或薄膜。
7、所述的p型半导体光阴极,以Pt、RuO2、MoS2等产氢助催化剂修饰,修饰过程如下:利用各种沉积手段(包括溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法、热喷涂法等)在p型半导体光阳极表面担载沉积上述产氢助催化剂的纳米颗粒或薄膜。
8、所述的导电基体包括各种导电金属(合金)基体、导电非金属基体(如氟掺杂氧化锡透明导电玻璃/FTO和氧化铟锡透明导电玻璃/ITO)以及复合导电基体。
9、所述的Z型转移机制是指具有二型错排能带结构(半导体1的导带边和价带边均低于半导体2)的两种半导体异质结构中的一种光生电荷转移机制,低导带边半导体1中的光生电子与高价带边半导体2中的光生空穴通过界面(或媒介)复合,而低价带边半导体1中的光生空穴和高导带边半导体2中的光生电子分别输运至表面诱导氧化和还原反应,这种光生电荷转移机制称之为Z型转移机制。
下面结合实施例及附图来更加详细描述本发明。
实施例1
本实施例中,清洗FTO导电基体,在水、乙醇、丙酮、异丙醇溶剂中分别超声 30min,然后用氮气吹干,O2等离子体处理10~20min。将清洗好的FTO导电基体放在加热台上120℃烘烤5min,在FTO导电基体上滴两滴约0.1ml的MCC-PRIMA增粘剂(主要成分为六甲基乙硅氮烷),3000转/分旋涂40s。然后均匀滴一层S-1813光刻胶,5000转/分旋涂60s。将旋涂好的FTO导电基体放在加热台上120℃烘烤2min。利用条纹状掩模板在光刻机上曝光4.5s,然后在正胶显影液中浸泡30s,并轻轻晃动 30s后,依次放入两个去离子水烧杯中各30s,去除残余显影液,然后用枪吹干,获得图形化的FTO导电基体,见图1。由图1的光学显微镜下观察可以看出,在FTO基体上得到规整的条纹状图案。
将0.3234g的Bi(NO3)3·5H2O溶于1ml浓硝酸(浓度68%)中,加2ml去离子水稀释后,将0.078g的NH4VO3和0.167g聚乙烯醇并借助超声溶解成种子溶液。将上述种子溶液旋涂到图形化的FTO导电基体上,并在空气中450℃热处理2h,升温速度5℃/min,获得植有图形化BiVO4种子层的FTO导电基体。将0.1164g的Bi(NO3)3·5H2O 和0.028g的NH4VO3溶于1.6mL浓硝酸(浓度68%),加入去离子水使溶液体积达到 60mL,形成前驱体溶液。在反应釜中加入15mL该前驱体溶液,将生长有图形化BiVO4种子层的FTO导电基体的导电面向下浸入前驱体溶液中,反应釜在180℃下反应12h,升温速度5℃/min。待冷却至室温后,将FTO导电基体从反应釜中取出,并用去离子水冲洗后在N2气流中干燥,然后在空气中450℃热处理2h,升温速度5℃/min,获得图形化的BiVO4薄膜电极片,见图2。由图2可以看出,BiVO4薄膜依照光刻显影图案选择性生长成间隔式条带图形。
用量筒量取22.4ml乳酸,并加去离子水至100ml,倒入200ml烧杯中并搅拌均匀。向上述溶液中加5g的CuSO4·5H2O,溶解后,加入16g的NaOH,用保鲜膜封住,待冷却至室温后,将上述溶液放入水浴锅中,保温30℃。将制备好的图形化的BiVO4薄膜电极片用作阴极,对电极采用Pt片,浸入配置好的溶液中,恒电流1mAcm-2沉积 30min。取出电极片,并用大量去离子水冲洗干净,吹干,获得图形化集成式BiVO4/Cu2O 光催化系统,见图3。由图3可以看出,Cu2O薄膜选择性地生长于BiVO4条带的间隙,在FTO导电基体上形成互补、间隔的条带图案式复合BiVO4/Cu2O薄膜。
在进行选择性光沉积时,还原产物会选择性沉积在Cu2O上,而氧化产物会选择性沉积在BiVO4上,见图4。由图4可以看出,光还原沉积Au选择性沉积在Cu2O条带上,而光氧化沉积MnO2选择性沉积在BiVO4条带上。
实施例2
本实施例中,清洗FTO导电基体,在水、乙醇、丙酮、异丙醇溶剂中分别超声 30min,然后用氮气吹干,O2等离子体处理10~20min。将清洗好的FTO导电基体放在加热台上120℃烘烤5min,在FTO导电基体上滴两滴约0.1ml的MCC-PRIMA增粘剂(主要成分为六甲基乙硅氮烷),3000转/分旋涂40s。然后均匀滴一层S-1813光刻胶,5000转/分旋涂60s。将旋涂好的FTO导电基体放在加热台上120℃烘烤2min。利用条纹状掩模板在光刻机上曝光4.5s,然后在正胶显影液中浸泡30s,并轻轻晃动 30s后,依次放入两个去离子水烧杯中各30s,去除残余显影液,然后用枪吹干,获得图形化的FTO导电基体(图1)。用量筒量取30ml浓盐酸、30ml水,放入200烧杯中,搅拌均匀。用移液枪量取1ml钛酸异丙酯逐滴慢速加入到溶液中,搅拌使溶液澄清。取45ml上述溶液加入到反应釜内胆中,并将图形化的FTO导电基体斜放在反应釜内胆中,并使正面朝下。随后装入不锈钢反应釜中,并在150℃下反应6h。待反应釜冷却至室温后,取出FTO导电基体并用大量去离子水冲洗后吹干,然后在马弗炉中 500℃热处理2h(升温速率10℃/min),获得图形化的TiO2纳米棒阵列薄膜电极片,见图5。由图5可以看出,TiO2纳米棒阵列薄膜依照光刻显影图案选择性生长成间隔式条带图形。
用量筒量取22.4ml乳酸,并加去离子水至100ml,倒入200ml烧杯中并搅拌均匀。向上述溶液中加5g的CuSO4·5H2O,溶解后,加入16g的NaOH,用保鲜膜封住,待冷却至室温后,将上述溶液放入水浴锅中,保温30℃。将制备好的图形化的TiO2纳米棒阵列薄膜电极片用作阴极,对电极采用Pt片,浸入配置好的溶液中,恒电流 1mAcm-2沉积30min。取出电极片,并用大量去离子水冲洗干净,吹干,获得图形化集成式光催化系统,见图6。由图6可以看出,Cu2O薄膜选择性地生长于TiO2纳米棒阵列条带的间隙,在FTO导电基体上形成互补、间隔的条带图案式复合TiO2/Cu2O 薄膜。
以上实例仅为本发明中较佳结果,并不用于限制本发明,凡是在本发明原则基础上做的同等替换或修饰所获得的技术方案,均在本发明的保护范围之内。

Claims (10)

1.一种图形化集成式高效光催化分解水系统的构筑方法,其特征在于,以光刻技术为手段在导电基体上进行图形化设计,利用各种成膜方法在光刻显影去除光刻胶的图形区域内沉积n或p型半导体作为微区光阳极或光阴极;然后去除图形以外未显影的光刻胶,利用电化学方法在相应区域内沉积p或n型半导体作为微区光阴极或光阳极;n型半导体光阳极受光激发产生的光生空穴扩散至表面将水氧化释放出氧气,p型半导体光阴极受光激发产生的光生电子扩散至表面将水还原释放氢气,而n型半导体中光电子则通过导电基体与p型半导体中光生空穴复合,最终通过Z型转移机制实现水的全分解。
2.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,光刻技术为有机光刻或无机光刻技术。
3.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,n型半导体为各种多子为电子的半导体材料。
4.按照权利要求3所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,n型半导体材料为TiO2、WO3、BiVO4、Fe2O3、Ta3N5、TaON之一或两种以上的复合材料。
5.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,p型半导体为各种多子为空穴的半导体材料。
6.按照权利要求5所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,p型半导体材料为Cu2O、GaP、WSe2、InP之一或两种以上的复合材料。
7.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,成膜方法为各种湿化学沉积方法、物理沉积方法或气相沉积方法,其中:湿化学沉积方法为电化学沉积、溶胶旋涂法、浸渍提拉法或水热法,物理沉积方法为物理气相沉积或磁控溅射,气相沉积方法为原子层沉积或化学气相沉积。
8.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,光刻胶去除方法为化学溶解法或高温烧结法。
9.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,n型半导体光阳极,以Co(OH)2、Co3O4、“Co-Pi”、NiOx产氧助催化剂修饰,修饰过程如下:利用各种沉积手段在n型半导体光阳极表面担载沉积上述产氧助催化剂的纳米颗粒或薄膜,沉积手段为溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法或热喷涂法;
p型半导体光阴极,以Pt、RuO2、MoS2产氢助催化剂修饰,修饰过程如下:利用各种沉积手段在p型半导体光阳极表面担载沉积上述产氢助催化剂的纳米颗粒或薄膜,沉积手段为溶液离子反应法、原子层沉积法、激射镀膜法、电沉积法、溶胶旋涂法或热喷涂法。
10.按照权利要求1所述的图形化集成式高效光催化分解水系统的构筑方法,其特征在于,导电基体包括各种导电金属或合金基体、导电非金属基体或复合导电基体,导电非金属基体采用氟掺杂氧化锡透明导电玻璃/FTO或氧化铟锡透明导电玻璃/ITO。
CN201811254244.7A 2018-10-26 2018-10-26 一种图形化集成式高效光催化分解水系统的构筑方法 Active CN111101142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811254244.7A CN111101142B (zh) 2018-10-26 2018-10-26 一种图形化集成式高效光催化分解水系统的构筑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811254244.7A CN111101142B (zh) 2018-10-26 2018-10-26 一种图形化集成式高效光催化分解水系统的构筑方法

Publications (2)

Publication Number Publication Date
CN111101142A true CN111101142A (zh) 2020-05-05
CN111101142B CN111101142B (zh) 2021-05-18

Family

ID=70418732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811254244.7A Active CN111101142B (zh) 2018-10-26 2018-10-26 一种图形化集成式高效光催化分解水系统的构筑方法

Country Status (1)

Country Link
CN (1) CN111101142B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899717A (zh) * 2021-01-18 2021-06-04 五邑大学 一种光电极及其制备方法和应用
CN115074746A (zh) * 2021-03-10 2022-09-20 中国科学院大连化学物理研究所 一种有机-无机半导体杂化的双光电极无偏压光电催化全分解水制氢方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592850A (zh) * 2012-03-27 2012-07-18 上海联孚新能源科技有限公司 一种染料敏化太阳能电池及其制备方法
CN102598285A (zh) * 2009-11-20 2012-07-18 株式会社半导体能源研究所 用于制造半导体器件的方法
US20120313073A1 (en) * 2011-06-07 2012-12-13 California Institute Of Technology Nickel-based electrocatalytic photoelectrodes
CN102826506A (zh) * 2012-09-17 2012-12-19 浙江工商大学 一种基于可见光驱动的光电降解有机污染物制氢的方法和装置
CN104240958A (zh) * 2013-06-05 2014-12-24 香港城市大学 具有金属纳米结构的等离子体增强的叠层染料敏化太阳能电池
CN104711627A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种光阳极-光伏电池耦合的双光照完全光驱动分解水制氢方法
CN107012475A (zh) * 2017-04-24 2017-08-04 太原师范学院 一种双极膜表面粉末态光催化剂在水分解中的应用
CN107464881A (zh) * 2016-06-02 2017-12-12 华中科技大学 一种面向光解水制氢的集成器件及其制作方法
CN108335911A (zh) * 2018-01-22 2018-07-27 华南师范大学 一种太阳光分解水产氢微电子器件及其制备方法
CN109187705A (zh) * 2018-10-18 2019-01-11 宁波诺丁汉大学 一种光电化学池
US10351963B2 (en) * 2015-03-16 2019-07-16 The Royal Institution For The Advancement Of Learning/ Mcgill University Photocathodes and dual photoelectrodes for nanowire photonic devices

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598285A (zh) * 2009-11-20 2012-07-18 株式会社半导体能源研究所 用于制造半导体器件的方法
US20120313073A1 (en) * 2011-06-07 2012-12-13 California Institute Of Technology Nickel-based electrocatalytic photoelectrodes
CN102592850A (zh) * 2012-03-27 2012-07-18 上海联孚新能源科技有限公司 一种染料敏化太阳能电池及其制备方法
CN102826506A (zh) * 2012-09-17 2012-12-19 浙江工商大学 一种基于可见光驱动的光电降解有机污染物制氢的方法和装置
CN104240958A (zh) * 2013-06-05 2014-12-24 香港城市大学 具有金属纳米结构的等离子体增强的叠层染料敏化太阳能电池
CN104711627A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种光阳极-光伏电池耦合的双光照完全光驱动分解水制氢方法
US10351963B2 (en) * 2015-03-16 2019-07-16 The Royal Institution For The Advancement Of Learning/ Mcgill University Photocathodes and dual photoelectrodes for nanowire photonic devices
CN107464881A (zh) * 2016-06-02 2017-12-12 华中科技大学 一种面向光解水制氢的集成器件及其制作方法
CN107012475A (zh) * 2017-04-24 2017-08-04 太原师范学院 一种双极膜表面粉末态光催化剂在水分解中的应用
CN108335911A (zh) * 2018-01-22 2018-07-27 华南师范大学 一种太阳光分解水产氢微电子器件及其制备方法
CN109187705A (zh) * 2018-10-18 2019-01-11 宁波诺丁汉大学 一种光电化学池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899717A (zh) * 2021-01-18 2021-06-04 五邑大学 一种光电极及其制备方法和应用
CN115074746A (zh) * 2021-03-10 2022-09-20 中国科学院大连化学物理研究所 一种有机-无机半导体杂化的双光电极无偏压光电催化全分解水制氢方法

Also Published As

Publication number Publication date
CN111101142B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN108479806B (zh) 一种由同种金属与氧族元素构成的异质结薄膜及其制备和应用
Kim et al. Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes
WO2021082403A1 (zh) 一种富含表层氧空位的钒酸铋电极及其制备方法和应用
CN114059071B (zh) 用于钢筋光电阴极保护的光阳极膜及其制备方法和应用
CN108183242B (zh) 一种锂空气电池及其正极的制备方法
CN111101142B (zh) 一种图形化集成式高效光催化分解水系统的构筑方法
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
Guo et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes
CN109244249A (zh) 对空穴传输层进行修饰的钙钛矿太阳能电池器件及其制备方法
CN101956194A (zh) 一种TiO2薄膜修饰的钛基β-PbO2光电极的制备方法
CN105514283B (zh) 一种树枝状复合光阳极的钙钛矿太阳能电池及制备方法
CN104928648B (zh) 一种氧化锌光阳极薄膜及其制备方法和应用
CN106783186A (zh) 一种ZnO纳米棒光阳极及其制备方法、太阳能电池
CN111020501A (zh) 一种铋酸铜薄膜的制备方法
CN110212096A (zh) 基于具有陷光结构的三氧化钼空穴传输层的有机太阳能电池及其制备方法
CN110010770A (zh) 一种金双棱锥等离子增强的钙钛矿太阳能电池的制备
CN111326603A (zh) 一种以氧化锌做电子传输层的无机钙钛矿电池制备方法
US20130186768A1 (en) Articles, devices, systems, and methods for solar energy storage and/or utilization
JP6652706B2 (ja) 光化学電極、及びその製造方法
KR101075876B1 (ko) 광전기화학전지용 산화전극 촉매막의 제조방법, 이에 따라 제조되는 촉매막 및 이를 이용한 광전기화학전지
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN113782684A (zh) 一种钙钛矿薄膜及其制备方法
Naushad et al. High current density cation-exchanged SnO 2–CdSe/ZnSe and SnO 2–CdSe/SnSe quantum-dot photoelectrochemical cells
WO2024103781A1 (zh) 基于p型铜基硫化物半导体薄膜的光电化学裂解水光阳极及其电极系统
Santinacci ALD for photoelectrochemical water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant