CN111073280A - 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用 - Google Patents

一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用 Download PDF

Info

Publication number
CN111073280A
CN111073280A CN201911166201.8A CN201911166201A CN111073280A CN 111073280 A CN111073280 A CN 111073280A CN 201911166201 A CN201911166201 A CN 201911166201A CN 111073280 A CN111073280 A CN 111073280A
Authority
CN
China
Prior art keywords
electrode
titanium dioxide
composite film
shell structure
structure composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911166201.8A
Other languages
English (en)
Other versions
CN111073280B (zh
Inventor
欧阳密
胡旭明
徐宁
李维军
张�诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201911166201.8A priority Critical patent/CN111073280B/zh
Publication of CN111073280A publication Critical patent/CN111073280A/zh
Application granted granted Critical
Publication of CN111073280B publication Critical patent/CN111073280B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明公开了一种二氧化钛/聚六氮杂萘三苯胺核‑壳结构复合薄膜及其制备方法与应用。所述的方法为:将去离子水和37%wt浓盐酸混合,加入钛酸四丁酯,再将氟掺杂氧化锡导电玻璃浸渍在混合液中,装入不锈钢反应釜中,放入120~180℃的电烘箱中反应完全,得到氟掺杂氧化锡导电玻璃/二氧化钛电极;然后在三电极电解池体系中,以氟掺杂氧化锡导电玻璃/二氧化钛电极为工作电极,以金电极或铂电极为辅助电极,以银/氯化银电极为参比电极,在室温下采用循环伏安法,在‑2~2V电压条件下进行电化学聚合反应,得到二氧化钛/聚六氮杂萘三苯胺核‑壳结构复合薄膜。本发明制备方法成本较低、操作简单、绿色环保且复合薄膜具有优异的电致变色性能。

Description

一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制 备方法与应用
技术领域
本发明涉及一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法,此方法制备的复合薄膜可应用于电致变色器件中。
背景技术
电致变色(EC)根据材料的不同可以分为无机EC材料和有机EC材料;无机电致变色材料主要有WO3、TiO2、NiO等具有良好的光化学稳定性,但是无机电致变色材料颜色单一,变色速度慢;与无机电致变色材料相比,有机电致变色材料具有结构易修饰、种类多以及光学对比度高等特点备受人们青睐。但有机电致变色材料稳定性差,阻碍了它在实际生活中的应用。已有多篇文献报道,利用纳米材料和有机导电聚合物复合,从而改善导电聚合物的电致变色性能。
TiO2作为一种间隙宽的半导体材料,由于其低电导率。近年来,具有一维纳米结构的TiO2引起了研究者的广泛关注,因为这种结构可以为电子传递提供更短的路径,降低电子传递阻力,然后提高电子传递速率和电导率。更重要的是,当与p型导电聚合物复合时,可以在TiO2(作为电子受体)和导电聚合物(作为电子供体)之间形成给体-受体(D-A)结构。D-A结构具有可控的分子能隙,出色的光学物理特性和载流子传输特性,在光电材料领域引起了研究人员的广泛关注。Cai等人成功制备了TiO2/PANI纳米复合材料,使复合材料电致变色性能得到显着提高。
聚六氮杂萘三苯胺(PTPA-HATN)因其稳定性差,响应速度慢,限制了其在电致变色材料中的应用。在实际应用中,电致变色材料除了应具有多色显示、高光学对比度、加工性好以及可柔性显示等性能外,还需要满足快速响应、高稳定性等要求,但单层电致变色薄膜往往性能不能满足需求。
发明内容
本发明的目的之一在于提供一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜制备方法与应用。
本发明为解决技术问题采用如下技术方案:
一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜具体按如下方法进行制备:
(1)先将去离子水和37%wt浓盐酸混合搅拌均匀后,加入钛酸四丁酯,搅拌10~30分钟后,得到混合液倒入聚四氟乙烯内衬中,再将氟掺杂氧化锡(FTO)导电玻璃放入聚四氟乙烯内衬中浸渍在混合液中,装入不锈钢反应釜中,放入120~180℃的电烘箱中加热2~5小时,待反应结束后,静置冷却至室温,取出生长有TiO2的氟掺杂氧化锡(FTO)导电玻璃,经淋洗、烘干得到氟掺杂氧化锡导电玻璃/二氧化钛电极(FTO/TiO2);所述的去离子水、浓盐酸及钛酸四丁酯的体积比为10~100:10~100:100:1;
(2)在三电极电解池体系中,以六氮杂萘三苯胺(TPA-HATN)为单体,以四正丁基高氯酸铵(TBAP)、高氯酸锂(LiClO4)或四正丁基六氟磷酸铵(TBAPF6)为支持电解质,以二氯甲烷、乙腈或碳酸丙烯酯为电解溶剂,混合均匀得到电解液,以步骤(1)得到的氟掺杂氧化锡导电玻璃/二氧化钛电极(FTO/TiO2)为工作电极,以金电极或铂电极为辅助电极,以银/氯化银电极为参比电极,在室温下采用循环伏安法,在-2~2V电压条件下进行电化学聚合反应,当聚合圈数达到2~10圈时,聚合结束,得到沉积在工作电极上的聚合物薄膜,经淋洗、干燥得到二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜(TiO2/PTPA-HATN);所述的电解液中,所述的TPA-HATN单体的初始浓度为20~50mmol/L;所述的电解液中,所述的支持电解质四正丁基高氯酸铵(TBAP)初始终浓度为0.05~0.15mol/L。
本发明所述的无水乙醇溶剂规格为分析纯。
进一步,步骤(1)中,所述的去离子水、浓盐酸及钛酸四丁酯的体积比为40:40:1。
进一步,步骤(1)中,所述的搅拌时间优选为15分钟。
进一步,步骤(1)中,所述的反应温度优选为150℃,反应时间优选为3小时。
再进一步,步骤(1)中,所述的淋洗、烘干过程具体操作为:分别用去离子水、无水乙醇淋洗沉积在FTO导电玻璃上的TiO2,然后将有TiO2的FTO导电玻璃电极置于60℃烘箱中干燥2小时,即得成品氟掺杂氧化锡导电玻璃/二氧化钛(FTO/TiO2)电极。
进一步,步骤(2)中,所述的支撑电解质优选为四正丁基高氯酸铵。
进一步,步骤(2)中,所述的电解溶剂优选为二氯甲烷。
进一步,步骤(2)中,所述的辅助电极优选为铂电极。
进一步,步骤(2)中,所述的参比电极优选为双液接型银/氯化银电极;所述的双液接型银/氯化银电极以饱和的氯化钾水溶液为第一液接,以本发明所述的电解液为第二液接。
进一步,步骤(2)中,所述的循环电压优选为-1.1~1.4V。
再进一步,步骤(2)中,所述的聚合圈数优选4圈。
再进一步,步骤(2)中,所述的淋洗、干燥过程的具体操作为:用二氯甲烷淋洗沉积在FTO/TiO2上的PTPA-HATN,然后将沉积有PTPA-HATN的FTO/TiO2导电玻璃电极置于空气中自然干燥,即得成品TiO2/PTPA-HATN核-壳结构复合薄膜电极。
本发明通过扫描电镜对所述的TiO2、TiO2/PTPA-HATN核-壳结构复合薄膜的形貌进行了表征,结果表明,所述的TiO2呈现出清晰的纳米棒阵列结构,TiO2/PTPA-HATN呈现出纳米阵列核-壳包裹形貌。
本发明通过红外光谱来表征所得TiO2、TiO2/PTPA-HATN的结构,证实了所述的TiO2、TiO2/PTPA-HATN复合薄膜的制备。
本发明的目的之二在于所述的TiO2/PTPA-HATN核-壳结构复合薄膜在制备电致变色材料中的应用。
本发明所述的TiO2/PTPA-HATN核-壳结构复合薄膜的光谱电化学和电致变色性能测试:通过电化学工作站与紫外-可见分光光度计联用可以对聚合物薄膜进行紫外吸收测试、对比度测试以及响应时间计算。以聚合有TiO2/PTPA-HATN核-壳结构复合薄膜的FTO导电玻璃为工作电极,以铂丝作为对电极,以银/氯化银电极作为参比电极,在支持电解液中,通过在工作电极上施加不同电压进而测试薄膜的紫外可见吸收光谱;通过双电位阶跃法来测试薄膜的动力学性能。
进一步所述的电解液优选高氯酸锂乙腈溶液;所述的高氯酸锂初始浓度为0.05~0.15mol/L;所述的乙腈溶剂规格为色谱级乙腈。
进一步,所述的电压范围为0~1.2V,优选为0V、0.8V、0.9V、1.0V、1.1V、1.2V。
进一步,所述的双电位阶跃法为:在0V到1.2V之间的电致变色切换响应,电压阶跃时间为15s、6s。
与现有技术相比,本发明的有益效果在于:
(1)和普通的化学合成法、旋涂、喷涂等方法制备TiO2/PTPA-HATN核-壳结构复合薄膜相比,电化学合成法成本较低,操作简单,电解液可重复使用,而且制备过程不会产生对环境有危害性的物质。
(2)本发明制备的TiO2/PTPA-HATN核-壳结构复合薄膜具有优异的电致变色性能,在电致变色器件、智能窗、军工防伪等领域有非常广阔的应用前景。
附图说明
图1是实施例1制备的FTO/TiO2电极的扫描电镜图。图2是实施例2制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜的扫描电镜图;。
图3是实施例2制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜的紫外吸收光谱图。
图4是实施例2制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜在783nm波长处的光学对比度图。
图5是实施例2制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜的响应时间测试图。
图6是实施例3制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜在783nm波长处的光学对比度图。
图7是是实施例3制备的TiO2/PTPA-HATN核-壳纳米结构复合薄膜的响应时间测试图。
图8是对比例1制备的PTPA-HATN薄膜的扫描电镜图。
图9是对比例1制备的PTPA-HATN薄膜的紫外吸收光谱图。
图10是对比例1制备的PTPA-HATN薄膜在783nm波长处的光学对比度图。
图11是对比例1制备的PTPA-HATN薄膜的响应时间测试图。
图12是实施例1、2和对比例1制备的FTO/TiO2、TiO2/PTPA-HATN、PTPA-HATN薄膜的红外光谱图。
图13是实施例1、2和对比例1制备的FTO/TiO2、TiO2/PTPA-HATN、PTPA-HATN薄膜的X射线衍射图谱。
具体实施方式
实施例1
(1)在超声仪中清洗干净FTO导电玻璃基底,用氮气吹干备用。分别量取100ml去离子水和100ml浓盐酸倒入250ml干净的锥形瓶中搅拌10min,再加入2.5ml钛酸四丁酯搅拌15min,待溶液澄清,转移到聚四氟乙烯反应釜内衬中,再将FTO导电玻璃放入内衬中。最后将内衬置于不锈钢反应釜中,放入150℃烘箱中,加热3小时。反应结束后,自然冷却至室温,将FTO转移,用去离子水和无水乙醇冲洗表面,并且放入60℃烘箱中干燥2小时后得到FTO/TiO2电极。通过扫描电镜检测其表面微观形貌,如图1所示。
实施例2
(1)在三电极体系电解池体系中,以TPA-HATN(10.24mg,0.0006mmol)为单体,以四正丁基高氯酸铵(0.8548g,0.0025mol)为支持电解质,以二氯甲烷(25mL)为电解溶剂,配制成单体浓度40mmol/L、支持电解质浓度0.1mol/L的混合溶液25mL,以实施例1中的FTO/TiO2电极为工作电极,以铂电极为辅助电极,以银/氯化银电极为参比电极,以饱和的氯化钾水溶液为第一液接,以本发明所述的电解液为第二液接。在室温下,采用循环伏安法-1.1~1.4V进行电化学聚合反应,聚合圈数为4圈,得到FTO/TiO2工作电极上的橙红色聚合物薄膜,用二氯甲烷淋洗去除聚合物薄膜表面残留的电解液,并在室温下自然干燥后,得到TiO2/PTPA-HATN核-壳纳米结构复合薄膜。通过扫描电镜测试其表面微观形貌,如图2所示。
以高氯酸锂(1.06g,0.01mol)为支持电解质,以二氯甲烷(100mL)为电解溶剂,测试TiO2/PTPA-HATN核-壳纳米结构复合薄膜的光谱电化学和电致变色性能:通过电化学工作站与紫外-可见分光光度计联用进而对聚合物薄膜进行紫外吸收测试、对比度的测试以及响应时间的计算,计算结果分别如图3、4、5所示。由图3~5可知:对步骤(1)中得到TiO2/PTPA-HATN核-壳纳米结构复合薄膜施加1.2V的电压时,所述得到TiO2/PTPA-HATN核-壳纳米结构复合薄膜对应的最大吸收峰位于783nm处,该吸收是由聚合物链上的Π-Π*跃迁导致的,此时所述的薄膜呈现绿色。根据紫外光谱图,选择在783nm不可见光区,电压阶跃时间为15s,测试TiO2/PTPA-HATN核-壳纳米结构复合薄膜的光学对比度和响应时间。在783nm处TiO2/PTPA-HATN核-壳纳米结构复合薄膜的着色时间为3.16s,褪色时间为2.83s。同时该薄膜在测试100个循环后,对比度由68%降低到51%,表面该复合材料的稳定性较好。相比较对比例1而言,TiO2/PTPA-HATN核-壳纳米结构复合薄膜的电致变色性能很大的提高。归因于核-壳纳米结构提高了电解质离子扩散速率,增大了离子的接触面积。
实施例3
(1)在三电极体系电解池体系中,以TPA-HATN(10.24mg,0.0006mmol)为单体,以四正丁基高氯酸铵(0.8548g,0.0025mol)为支持电解质,以二氯甲烷(25mL)为电解溶剂,配制成单体浓度40mmol/L、支持电解质浓度0.1mol/L的混合溶液25mL,以实施例1中的FTO/TiO2电极为工作电极,以铂电极为辅助电极,以银/氯化银电极为参比电极,以饱和的氯化钾水溶液为第一液接,以本发明所述的电解液为第二液接。在室温下,采用循环伏安法-1.1~1.4V进行电化学聚合反应,聚合圈数为4圈,得到FTO/TiO2工作电极上的橙红色聚合物薄膜,用二氯甲烷淋洗去除聚合物薄膜表面残留的电解液,并在室温下自然干燥后,得到TiO2/PTPA-HATN核-壳纳米结构复合薄膜。
(2)以高氯酸锂(1.06g,0.01mol)为支持电解质,以二氯甲烷(100mL)为电解溶剂,测试TiO2/PTPA-HATN核-壳纳米结构复合薄膜的光谱电化学和电致变色性能:通过电化学工作站与紫外-可见分光光度计联用进而对聚合物薄膜进行对比度的测试以及响应时间的计算,计算结果分别如图6、7所示。由图6、7可知:在783nm不可见光区,电压阶跃时间为6s,测试TiO2/PTPA-HATN核-壳纳米结构复合薄膜的光学对比度和响应时间。在783nm处TiO2/PTPA-HATN核-壳纳米结构复合薄膜的着色时间为3.58s,褪色时间为3.02s。同时该薄膜在测试100个循环后,对比度由57%降低到51%,表面该复合材料的稳定性较好。相比较对比例1而言,TiO2/PTPA-HATN核-壳纳米结构复合薄膜的电致变色性能得到了很大的改善。归因于核-壳纳米结构提高了电解质离子扩散速率,增大了离子的接触面积。
对比例1
(1)在三电极体系电解池体系中,以TPA-HATN(10.24mg,0.0006mmol)为单体,以四正丁基高氯酸铵(0.8548g,0.0025mol)为支持电解质,以二氯甲烷(25mL)为电解溶剂,配制成单体浓度40mmol/L、支持电解质浓度0.1mol/L的混合溶液25mL,以FTO电极为工作电极,以铂电极为辅助电极,以银/氯化银电极为参比电极,以饱和的氯化钾水溶液为第一液接,以本发明所述的电解液为第二液接。在室温下,采用循环伏安法-1.1~1.4V进行电化学聚合反应,聚合圈数为4圈,得到FTO工作电极上的橙红色聚合物薄膜,用二氯甲烷淋洗去除聚合物薄膜表面残留的电解液,并在室温下自然干燥后,得到PTPA-HATN薄膜。通过扫描电镜测试其表面微观形貌,如图8所示。
(2)以高氯酸锂(1.06g,0.01mol)为支持电解质,以二氯甲烷(100mL)为电解溶剂,测试PTPA-HATN薄膜的光谱电化学和电致变色性能:通过电化学工作站与紫外-可见分光光度计联用进而对聚合物薄膜进行紫外吸收测试、对比度的测试以及响应时间的计算,计算结果分别如图9、10、11所示。由图9~11可知:对步骤(1)中得到PTPA-HATN薄膜施加1.2V的电压时,所述得到PTPA-HATN薄膜对应的最大吸收峰位于783nm处,该吸收是由聚合物链上的Π-Π*跃迁导致的,此时所述的薄膜呈现绿色。根据紫外光谱图,选择在783nm不可见光区,电压阶跃时间为15s,测试PTPA-HATN薄膜的光学对比度和响应时间。在783nm处,PTPA-HATN薄膜的着色时间为10.95s,褪色时间为8.84s。同时该薄膜在测试100个循环后,对比度由62%降低到20%,表面该材料的稳定性很差。不能长期应用于电致变色领域中。

Claims (10)

1.一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜按如下方法进行制备:
(1)先将去离子水和37%wt浓盐酸混合搅拌均匀后,加入钛酸四丁酯,搅拌10~30分钟后,得到混合液倒入聚四氟乙烯内衬中,再将氟掺杂氧化锡导电玻璃放入聚四氟乙烯内衬中浸渍在混合液中,装入不锈钢反应釜中,放入120~180℃的电烘箱中加热2~5小时,待反应结束后,静置冷却至室温,取出生长有TiO2的氟掺杂氧化锡导电玻璃,经淋洗、烘干得到氟掺杂氧化锡导电玻璃/二氧化钛电极;所述的去离子水、浓盐酸及钛酸四丁酯的体积比为10~100:10~100:100:1;
(2)在三电极电解池体系中,以六氮杂萘三苯胺为单体,以四正丁基高氯酸铵、高氯酸锂或四正丁基六氟磷酸铵为支持电解质,以二氯甲烷、乙腈或碳酸丙烯酯为电解溶剂,混合均匀得到电解液,以步骤(1)得到的氟掺杂氧化锡导电玻璃/二氧化钛电极为工作电极,以金电极或铂电极为辅助电极,以银/氯化银电极为参比电极,在室温下采用循环伏安法,在-2~2V电压条件下进行电化学聚合反应,当聚合圈数达到2~10圈时,聚合结束,得到沉积在工作电极上的聚合物薄膜,经淋洗、干燥得到二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜;所述的电解液中,所述的TPA-HATN单体的初始浓度为20~50mmol/L;所述的电解液中,所述的支持电解质四正丁基高氯酸铵初始终浓度为0.05~0.15mol/L。
2.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(1)中,所述的去离子水、浓盐酸及钛酸四丁酯的体积比为40:40:1。
3.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(1)中,所述的反应温度为150℃,反应时间为3小时。
4.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(1)中,所述的淋洗、烘干过程为:分别用去离子水、无水乙醇淋洗沉积在FTO导电玻璃上的TiO2,然后将有TiO2的FTO导电玻璃电极置于60℃烘箱中干燥2小时,即得成品氟掺杂氧化锡导电玻璃/二氧化钛电极。
5.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(2)中,所述的支撑电解质为四正丁基高氯酸铵;所述的电解溶剂为二氯甲烷。
6.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(2)中,所述的辅助电极为铂电极。
7.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(2)中,所述的参比电极为双液接型银/氯化银电极;所述的双液接型银/氯化银电极以饱和的氯化钾水溶液为第一液接,以所述的电解液为第二液接。
8.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(2)中,所述的循环电压为-1.1~1.4V,所述的聚合圈数为4圈。
9.如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜,其特征在于:步骤(2)中,所述的淋洗、干燥过程为:用二氯甲烷淋洗沉积在FTO/TiO2上的PTPA-HATN,然后将沉积有PTPA-HATN的FTO/TiO2导电玻璃电极置于空气中自然干燥,即得成品TiO2/PTPA-HATN核-壳结构复合薄膜电极。
10.一种如权利要求1所述的二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜在制备电致变色材料中的应用。
CN201911166201.8A 2019-11-25 2019-11-25 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用 Active CN111073280B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911166201.8A CN111073280B (zh) 2019-11-25 2019-11-25 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911166201.8A CN111073280B (zh) 2019-11-25 2019-11-25 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111073280A true CN111073280A (zh) 2020-04-28
CN111073280B CN111073280B (zh) 2022-04-19

Family

ID=70311547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911166201.8A Active CN111073280B (zh) 2019-11-25 2019-11-25 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111073280B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415826A (zh) * 2020-11-18 2021-02-26 浙江大学 一种简单高效制备多色全固态电致变色器件的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633779A (zh) * 2009-08-21 2010-01-27 昆明理工大学 导电聚苯胺复合电极材料及其制备方法
CN102005540A (zh) * 2010-10-12 2011-04-06 西安文景光电科技有限公司 金属与p型盘状化合物作为复合阳极的有机电致发光器件
AU2011315948A1 (en) * 2010-10-15 2013-05-02 Dankook University Materials for controlling the epitaxial growth of photoactive layers in photovoltaic devices
JP2015201507A (ja) * 2014-04-07 2015-11-12 坂上 惠 有機el素子
CN107445199A (zh) * 2017-06-15 2017-12-08 中国科学院上海硅酸盐研究所 多级结构二氧化钛纳米线阵列及其制备方法
KR20180079902A (ko) * 2017-01-03 2018-07-11 성균관대학교산학협력단 지연형광 재료 및 이를 포함하는 유기 발광장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633779A (zh) * 2009-08-21 2010-01-27 昆明理工大学 导电聚苯胺复合电极材料及其制备方法
CN102005540A (zh) * 2010-10-12 2011-04-06 西安文景光电科技有限公司 金属与p型盘状化合物作为复合阳极的有机电致发光器件
AU2011315948A1 (en) * 2010-10-15 2013-05-02 Dankook University Materials for controlling the epitaxial growth of photoactive layers in photovoltaic devices
JP2015201507A (ja) * 2014-04-07 2015-11-12 坂上 惠 有機el素子
KR20180079902A (ko) * 2017-01-03 2018-07-11 성균관대학교산학협력단 지연형광 재료 및 이를 포함하는 유기 발광장치
CN107445199A (zh) * 2017-06-15 2017-12-08 中国科学院上海硅酸盐研究所 多级结构二氧化钛纳米线阵列及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BARNSLEY, JONATHAN E.LOMAX, BETHANY A.MCLAY, JAMES R. W.: "Flicking the Switch on Donor-Acceptor Interactions in Hexaazatrinaphthalene Dyes: A Spectroscopic and Computational Study", 《CHEMPHOTOCHEM》 *
CAI, GUOFA.TU, JIANGPING.ZHOU, DING.ZHANG, JIAHENG.XIONG, QINQIN: "Multicolor Electrochromic Film Based on TiO2@Polyaniline Core/Shell Nanorod Array", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *
GAO, BAOXIANG.XIA, DEFANG.GENG, YANHOU.CHENG, YANXIANG: "Band gap tunable for near-infrared absorbing chromophores with multi-triphenylamine and tris (thieno)hexaazatriphenylenes acceptors", 《TETRAHEDRON LETTERS》 *
LARSEN, CHRISTOPHER B.BARNSLEY, JONATHAN E.VAN DER SALM, HOLLY.F: "Synthesis and Optical Properties of Unsymmetrically Substituted Triarylamine Hexaazatrinaphthalenes", 《EUROPEAN JOURNAL OF ORGANIC CHEMISTRY》 *
欧阳密;朱睿;吕晓静;曲星星;李维军: "多色显示电致变色聚合物叠层复合薄膜的可控制备", 《高等学校化学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415826A (zh) * 2020-11-18 2021-02-26 浙江大学 一种简单高效制备多色全固态电致变色器件的方法

Also Published As

Publication number Publication date
CN111073280B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN105887126B (zh) 聚(3,4‑乙撑二氧噻吩)纳米线薄膜及其合成方法与应用
CN106543415B (zh) 基于交叉结构共轭分子的聚合物薄膜及其制备方法与应用
Yao et al. Flexible conjugated polyfurans for bifunctional electrochromic energy storage application
CN110592609B (zh) 一种提高聚合物电致变色薄膜循环稳定性的方法
Hu et al. Pyrazine-EDOT DAD type hybrid polymer for patterned flexible electrochromic devices
CN110894343B (zh) 一种MoO3@PEDOT复合材料及其制备与应用
Ming et al. Solvent effects on electrosynthesis, morphological and electrochromic properties of a nitrogen analog of PEDOT
Brooke et al. Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications
Ouyang et al. In situ preparation and determination of electrochemical and electrochromic properties of copper phthalocyanine-polyaniline nanocomposite films
CN110424040B (zh) 一种酞菁铜/聚苯胺复合薄膜及其制备方法与应用
CN111323980B (zh) 一种二氧化钛/聚三[2-(4-噻吩)苯]胺复合薄膜的制备方法和应用
CN104311798A (zh) 一种具有反蛋白石结构的导电聚合物薄膜的制备方法
CN109369890A (zh) 一种聚3,4-乙烯二氧噻吩纳米网状结构薄膜及其制备方法与应用
CN111073280B (zh) 一种二氧化钛/聚六氮杂萘三苯胺核-壳结构复合薄膜及其制备方法与应用
CN109796612B (zh) 一种苝酰亚胺衍生物自组装薄膜及其制备方法与应用
Lv et al. Micro/Nano‐Fabrication of Flexible Poly (3, 4‐Ethylenedioxythiophene)‐Based Conductive Films for High‐Performance Microdevices
CN108503839B (zh) 多功能网状聚合物与薄膜、制备方法及该薄膜在电致变色或电控荧光方面的应用
CN109293889A (zh) 一种聚3,4-乙烯二氧噻吩纳米网状薄膜pedot-td及其制备方法与应用
CN104086754B (zh) 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管
CN110229312A (zh) 一种黑色聚合物材料及其制备方法与应用
Lv et al. Effective process to achieve enhanced electrochromic performances based on poly (4, 4′, 4 ″-tris [4-(2-bithienyl) pheny] amine)/ZnO nanorod composites
Zhuang et al. Solvent-induced lengthened conjugated chains in electrochromic PEDOT for enhanced optical modulation
CN102605417B (zh) 一种聚合物纳米管的制备方法
Shahhosseini et al. Electrochemical synthesis of novel polymer based on (4-(2, 3-dihydrothieno [3, 4-6][1, 4][dioxin-5-yl) aniline) in aqueous solution: Characterization and application
CN109776823B (zh) 一种ptbtpa/pedot聚合物叠层复合薄膜及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant