CN111058018A - 一种td3合金表面抗氧化涂层的制备方法 - Google Patents

一种td3合金表面抗氧化涂层的制备方法 Download PDF

Info

Publication number
CN111058018A
CN111058018A CN201911363973.0A CN201911363973A CN111058018A CN 111058018 A CN111058018 A CN 111058018A CN 201911363973 A CN201911363973 A CN 201911363973A CN 111058018 A CN111058018 A CN 111058018A
Authority
CN
China
Prior art keywords
substrate
sio
sol
preparation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911363973.0A
Other languages
English (en)
Inventor
张永和
何俊
翟大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Original Assignee
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Physics of Chinese Academy of Space Technology filed Critical Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority to CN201911363973.0A priority Critical patent/CN111058018A/zh
Publication of CN111058018A publication Critical patent/CN111058018A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种TD3合金表面抗氧化涂层的制备方法,属于耐高温涂层制备技术领域。本发明中的过渡层选用NiO溶胶为原料,复相陶瓷层选用Al2O3‑SiO2溶胶为原料,通过溶胶凝胶、低温烧结和电子束熔覆相结合的方法进行制备,该方法工艺简单容易实现,而且所制备的抗氧化涂层与基体具有良好的结合力,还具有良好的抗高温氧化腐蚀性能和耐冲刷性能。

Description

一种TD3合金表面抗氧化涂层的制备方法
技术领域
本发明涉及一种TD3合金表面抗氧化涂层的制备方法,属于耐高温涂层制备技术领域。
背景技术
目前我国研制的TD3合金,长期使用温度为650℃,短时可用于750℃~850℃。在600℃以上的有氧环境下,TD3合金的性能明显下降,通过调整组织形态提高合金的高温抗氧化的特性作用有限。加入合金元素改变钛铝合金高温抗氧化特性是开发高温合金的主要途径。但整体合金化提高高温抗氧化特性同时,也会影响合金的塑性、屈服强度等力学性能。因此,为了保持合金整体性能的稳定性,TD3合金的表面抗氧化涂层技术就很有必要。
中国专利授权公告号CN102732832B,公开了一种钛合金表面抗高温氧化和耐磨损的氧化物梯度涂层及其制备方法,先通过双辉等离子表面冶金技术在钛合金表面制备Al-Cr-Ni合金层,然后对Al-Cr-Ni合金层进行离子渗氧处理;中国专利授权公告号CN104674218B,公开了一种钛基体表面高温抗氧化复合涂层的制备方法,通过微弧氧化在钛基体先制备二氧化钛陶瓷层,然后采用沉积法制备铝涂层,最后真空热处理,在钛基体表面得到高温抗氧化复合涂层;中国专利授权公告号CN100368330C,公开了一种高温钛合金的表面防护方法,采用电泳预涂覆的方法在高温钛合金的表面制备一层高温抗氧化搪瓷涂层,涂层厚度为15μm~70μm。采用上述方法制备防护涂层的工艺复杂,成本高,周期长,有的采用高温烧结,而TD3合金在800℃以上的高温环境下抗拉强度会严重降低,因此需要高温烧结(>1000℃)的固相反应也不再适用。另外,采用上述方法制备的涂层均存在陶瓷涂层内应力较大,与基体结合不牢固等问题,致使涂层的抗循环氧化能力不理想。
我国TD3合金在航空航天方面主要用于发动机推力室等高温结构领域,据测算,发动机材料的耐高温性能每提高100℃,发动机功率就能提高20%。因此,迫切需要提高TD3材料的高温使用温度。
发明内容
针对现有技术中存在的不足,本发明提供一种TD3合金表面抗氧化涂层的制备方法,过渡层选用NiO溶胶为原料,复相陶瓷层选用Al2O3-SiO2溶胶为原料,通过溶胶凝胶、低温烧结和电子束熔覆相结合的方法进行制备,该方法工艺简单,而且所制备的抗氧化涂层与基体具有良好的结合力,还具有良好的抗高温氧化腐蚀性能和耐冲刷性能。
本发明的目的是通过以下技术方案实现的。
一种TD3合金表面抗氧化涂层的制备方法,所述方法步骤如下:
(1)对基体进行表面进行清洁以及粗糙化处理,使其表面粗糙度为0.01μm~10μm;
(2)将粗糙化处理后的基体浸入NiO溶胶中并拉出,待基体表面上的NiO溶胶干燥后,再重复浸入-拉出-干燥直至基体表面形成所需厚度的过渡层;
(3)将浸涂过渡层后的基体浸入Al2O3-SiO2溶胶中并拉出,待过渡层上的Al2O3-SiO2溶胶干燥后,再重复浸入-拉出-干燥直至在过渡层上形成所需厚度的复相陶瓷层;
以Al2O3-SiO2溶胶总质量为100%计,Al2O3-SiO2溶胶中的组成成分及各成分的质量分数如下:SiO2水溶液20%~30%,Al2O3纳米粉体40%~50%,Al2O3微米粉体10%~20%,Al(H2PO4)3 10%~20%以及Na2SiO3 10%~20%,其中SiO2水溶液的质量分数为20%~50%;
(4)将浸涂复相陶瓷层后的基体置于烧结炉中,先升温至(120±20)℃并保温1h~2h,再继续升温至(800±10)℃,保温2h~3h后随炉冷却;
(5)在5.0×10-2Pa~5.0×10-3Pa的真空条件下对基体上烧结后的涂层进行熔覆处理,则在基体上得到抗氧化涂层;
电子束熔覆的工艺参数:电子束功率为900W~1200W,扫描波形频率为10Hz~2000Hz,扫描速度为1mm/s~30mm/s,工作距离为200mm~500mm。
进一步地,步骤(2)中,过渡层的厚度为10μm~15μm。
进一步地,步骤(2)中,所用NiO溶胶的浓度为0.4mol/L~0.8mol/L。
进一步地,步骤(3)中,Al2O3纳米粉体的粒径为30nm~50nm,Al2O3微米粉体的粒径为0.5μm~5μm。
进一步地,步骤(3)中,SiO2水溶液、Al2O3纳米粉体、Al2O3微米粉体、Al(H2PO4)3以及Na2SiO3的质量比为2:5:1:1:1。
进一步地,步骤(3)中,复相陶瓷层的厚度为60μm~100μm。
进一步地,步骤(4)中,以5℃/min~8℃/min的升温速率升温至(120±20)℃,以3℃/min~5℃/min的升温速率升温至(800±10)℃。
有益效果:
(1)本发明利用溶胶凝胶、低温烧结和电子束熔覆相结合的方法在TD3合金表面制备抗氧化涂层,该方法可以满足任意形状零件的涂层制备,工艺方法简单,容易实现;
(2)本发明针对TD3合金高温时拉伸性能和屈服强度变化较大的特点,在所制备的抗氧化涂层中引入低熔点纳米状颗粒,降低烧结温度,在800℃烧结后仍能保持基体的拉伸性能和屈服强度,同时提高了高温使用温度;
(3)本发明针对陶瓷涂层与基体之间热膨胀系数差异较大,容易出现裂纹甚至陶瓷涂层脱落的现象,设计了应力缓冲层,即在基体与陶瓷涂层之间浸涂NiO溶胶,高温环境下基体中的Al可以与NiO发生铝热反应,生成纳米金属Ni扩散到陶瓷涂层之中,可以降低陶瓷涂层与金属基体间的热膨胀系数差,从而提高抗氧化涂层与基体间的结合性能;
(4)本发明采用电子束熔覆,可以有效控制熔覆参数能量,利用快速熔凝特点生成组织致密无缺陷的改性层,弥合原有涂层的孔洞与裂纹;同时,电子束熔覆还可以有效增加过渡层元素的扩散深度,提高涂层与基体结合力;
综上所述,本发明所述方法工艺简单,所制备的抗氧化涂层结构连续致密,与基体具有良好的结合力,而且能有效提高TD3合金高温抗氧化能力。
附图说明
图1为实施例1步骤(4)中经过烧结处理后基体上涂层的表面扫描电子显微镜(SEM)图。
图2为实施例1步骤(5)中经过熔覆处理后基体上涂层的表面扫描电子显微镜图。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
以下实施例中:
NiO溶胶的配制步骤如下:乙酸镍粉体加入乙二醇甲醚中,加热到50℃~80℃,搅拌1h~2h,待固体颗粒完全溶解后陈化2h~3h,得到浓度为0.4mol/L~0.8mol/L的NiO溶胶;
抗氧化性能的测试:参照GJB 9568-2018《航天用铌钨合金(NbW5-1)高温抗氧化涂层规范》,对表面制备抗氧化涂层后的基体进行通电加热,在1min之内迅速加热至1000℃,且温度变化范围控制在±1‰以内,基体温度达到1000℃时固定加热电压和电流,并对其进行连续不间断的加热。氧化失效的判定采用行业一般标准,即当发现基体表面有黑色物质产生并伴有涂层剥落现象时,即判定涂层失效。
实施例1
在TD3合金表面制备抗氧化涂层的具体步骤如下:
(1)选用尺寸为70mm×8mm×1mm的TD3合金为基体,对基体表面进行打磨、抛光、去油、酸洗、清洗以及干燥处理,使其表面粗糙度为5μm;
(2)将粗糙化处理后的基体浸入浓度为0.65mol/L的NiO溶胶中,然后匀速缓慢拉出,使NiO溶胶均匀覆盖在基体表面,待NiO溶胶在室温下晾干后再置于200℃下烘干1h,重复浸入-拉出-干燥操作2次,在基体表面形成厚度为5μm的过渡层;
(3)质量分数为30%的SiO2水溶液、平均粒径为30nm的Al2O3粉体、平均粒径为0.5μm的Al2O3粉体、Al(H2PO4)3以及Na2SiO3按照2:5:1:1:1的质量比配制成pH值为4的Al2O3-SiO2溶胶;
将浸涂过渡层后的基体浸入Al2O3-SiO2溶胶中,然后匀速缓慢拉出,使Al2O3-SiO2溶胶覆盖在过渡层上,待Al2O3-SiO2溶胶在室温下晾干后再置于100℃下烘干2h,重复浸入-拉出-干燥操作2次,在过渡层上形成厚度为95μm的复相陶瓷层;
(4)将浸涂复相陶瓷层后的基体置于烧结炉中,先按照7℃/min的升温速率升温至120℃,保温2h后,再以5℃/min的升温速率升温至800℃,保温3h后随炉冷却;
(5)将烧结后的基体放置在电子束熔覆的工作台上,抽真空至3.0×10-2Pa,工作距离调整为300mm,电子束功率设置为950W,扫描波形频率设置为800Hz,扫描速度设置为15mm/s,然后对基体上的涂层进行熔覆处理,熔覆处理完成后则在基体上得到抗氧化涂层。
对比图1和图2中的SEM照片可知,经过熔覆处理后,涂层中的颗粒尺寸变小,颗粒之间的分布更加均匀致密,能够弥合烧结处理后涂层中存在的孔洞以及裂纹。经过抗氧化性能测试可知,测试10h后本实施例所制备的抗氧化涂层依然完好,未出现失效现象。
实施例2
在TD3合金表面制备抗氧化涂层的具体步骤如下:
(1)选用尺寸为70mm×8mm×1mm的TD3合金为基体,对基体表面进行打磨、抛光、去油、酸洗、清洗以及干燥处理,使其表面粗糙度为2μm;
(2)将粗糙化处理后的基体浸入浓度为0.8mol/L的NiO溶胶中,然后匀速缓慢拉出,使NiO溶胶均匀覆盖在基体表面,待NiO溶胶在室温下晾干后再置于200℃下烘干1h,重复浸入-拉出-干燥操作3次,在基体表面形成厚度为10μm的过渡层;
(3)质量分数为25%的SiO2水溶液、平均粒径为10nm的Al2O3粉体、平均粒径为0.5μm的Al2O3粉体、Al(H2PO4)3以及Na2SiO3按照2:5:1:1:1的质量比配制成pH值为5的Al2O3-SiO2溶胶;
将浸涂过渡层后的基体浸入Al2O3-SiO2溶胶中,然后匀速缓慢拉出,使Al2O3-SiO2溶胶覆盖在过渡层上,待Al2O3-SiO2溶胶在室温下晾干后再置于150℃下烘干1.5h,重复浸入-拉出-干燥操作7次,在过渡层上形成厚度为80μm的复相陶瓷层;
(4)将浸涂复相陶瓷层后的基体置于烧结炉中,先按照7℃/min的升温速率升温至120℃,保温2h后,再以5℃/min的升温速率升温至800℃,保温3h后随炉冷却;
(5)将烧结后的基体放置在电子束熔覆的工作台上,抽真空至3.0×10-2Pa,工作距离调整为450mm,电子束功率设置为1200W,扫描波形频率设置为1000Hz,扫描速度设置为8mm/s,然后对基体上的涂层进行熔覆处理,熔覆处理完成后则在基体上得到抗氧化涂层。
根据SEM表征结果可知,本实施例在基体上制备的抗氧化涂层中的颗粒尺寸较小、分布均匀且致密,该抗氧化涂层中无明显的孔洞以及裂纹。经过抗氧化性能测试可知,测试10h后本实施例所制备的抗氧化涂层依然完好,未出现失效现象。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种TD3合金表面抗氧化涂层的制备方法,其特征在于:所述方法步骤如下:
(1)对基体进行表面进行清洁以及粗糙化处理,使其表面粗糙度为0.01μm~10μm;
(2)将粗糙化处理后的基体浸入NiO溶胶中并拉出,待基体表面上的NiO溶胶干燥后,再重复浸入-拉出-干燥直至基体表面形成所需厚度的过渡层;
(3)将浸涂过渡层后的基体浸入Al2O3-SiO2溶胶中并拉出,待过渡层上的Al2O3-SiO2溶胶干燥后,再重复浸入-拉出-干燥直至在过渡层上形成所需厚度的复相陶瓷层;
(4)将浸涂复相陶瓷层后的基体置于烧结炉中,先升温至(120±20)℃并保温1h~2h,再继续升温至(800±10)℃,保温2h~3h后随炉冷却;
(5)在5.0×10-2Pa~5.0×10-3Pa的真空条件下对基体上烧结后的涂层进行熔覆处理,则在基体上得到抗氧化涂层;
以Al2O3-SiO2溶胶总质量为100%计,Al2O3-SiO2溶胶中的组成成分及各成分的质量分数如下:SiO2水溶液20%~30%,Al2O3纳米粉体40%~50%,Al2O3微米粉体10%~20%,Al(H2PO4)3 10%~20%以及Na2SiO3 10%~20%,其中SiO2水溶液的质量分数为20%~50%;
电子束熔覆的工艺参数:电子束功率为900W~1200W,扫描波形频率为10Hz~2000Hz,扫描速度为1mm/s~30mm/s,工作距离为200mm~500mm。
2.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:步骤(2)中所用NiO溶胶的浓度为0.4mol/L~0.8mol/L。
3.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:过渡层的厚度为10μm~15μm。
4.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:Al2O3纳米粉体的粒径为30nm~50nm,Al2O3微米粉体的粒径为0.5μm~5μm。
5.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:SiO2水溶液、Al2O3纳米粉体、Al2O3微米粉体、Al(H2PO4)3以及Na2SiO3的质量比为2:5:1:1:1。
6.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:复相陶瓷层的厚度为60μm~100μm。
7.根据权利要求1所述的TD3合金表面抗氧化涂层的制备方法,其特征在于:以5℃/min~8℃/min的升温速率升温至(120±20)℃,以3℃/min~5℃/min的升温速率升温至(800±10)℃。
CN201911363973.0A 2019-12-26 2019-12-26 一种td3合金表面抗氧化涂层的制备方法 Pending CN111058018A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911363973.0A CN111058018A (zh) 2019-12-26 2019-12-26 一种td3合金表面抗氧化涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911363973.0A CN111058018A (zh) 2019-12-26 2019-12-26 一种td3合金表面抗氧化涂层的制备方法

Publications (1)

Publication Number Publication Date
CN111058018A true CN111058018A (zh) 2020-04-24

Family

ID=70303827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911363973.0A Pending CN111058018A (zh) 2019-12-26 2019-12-26 一种td3合金表面抗氧化涂层的制备方法

Country Status (1)

Country Link
CN (1) CN111058018A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115815088A (zh) * 2022-11-22 2023-03-21 兰州空间技术物理研究所 一种火箭发动机喷管内表面电子束改性方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080063339A1 (en) * 2006-09-07 2008-03-13 Spillane Sean M Scalable and defect-tolerant color-center-based quantum computer architectures and methods for fabricating color-center-based quantum computer architectures
CN101962767A (zh) * 2010-10-26 2011-02-02 中国航天科技集团公司第五研究院第五一○研究所 一种用于高温预置涂层的电子束熔覆改性方法
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
CN103827056A (zh) * 2011-09-06 2014-05-28 赫拉克勒斯公司 在由包含SiC的陶瓷基质复合材料制成的基材上形成平滑釉质涂层的方法,和由设置有所述涂层的陶瓷基质复合材料制成的部件
CN107964655A (zh) * 2017-11-11 2018-04-27 汕头华兴冶金设备股份有限公司 一种在金属基体上制备陶瓷防护涂层的方法
CN110607494A (zh) * 2019-09-11 2019-12-24 上海工程技术大学 一种钛合金表面等离子喷涂-电子束熔覆改性的抗高温氧化涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080063339A1 (en) * 2006-09-07 2008-03-13 Spillane Sean M Scalable and defect-tolerant color-center-based quantum computer architectures and methods for fabricating color-center-based quantum computer architectures
CN101962767A (zh) * 2010-10-26 2011-02-02 中国航天科技集团公司第五研究院第五一○研究所 一种用于高温预置涂层的电子束熔覆改性方法
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
CN103827056A (zh) * 2011-09-06 2014-05-28 赫拉克勒斯公司 在由包含SiC的陶瓷基质复合材料制成的基材上形成平滑釉质涂层的方法,和由设置有所述涂层的陶瓷基质复合材料制成的部件
CN107964655A (zh) * 2017-11-11 2018-04-27 汕头华兴冶金设备股份有限公司 一种在金属基体上制备陶瓷防护涂层的方法
CN110607494A (zh) * 2019-09-11 2019-12-24 上海工程技术大学 一种钛合金表面等离子喷涂-电子束熔覆改性的抗高温氧化涂层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘慎中 等: "铝合金上等离子喷涂镍层的研究", 《复合材料学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115815088A (zh) * 2022-11-22 2023-03-21 兰州空间技术物理研究所 一种火箭发动机喷管内表面电子束改性方法
CN115815088B (zh) * 2022-11-22 2024-02-06 兰州空间技术物理研究所 一种火箭发动机喷管内表面电子束改性方法

Similar Documents

Publication Publication Date Title
CN107217281B (zh) 一种复合阻氚涂层及其制备方法
CN113996812B (zh) 一种提高激光选区熔化α-β型钛合金疲劳性能的热处理方法
CN108588771B (zh) 一种含贵金属中间层的复合陶瓷涂层及其制备工艺
CN110330357A (zh) 一种用于连接碳化硅材料的连接材料及其应用
CN114591102A (zh) 一种C/C复合材料SiB6-Glass抗氧化涂层及其制备方法
CN107937874B (zh) 一种在铌合金表面制备Pt-Al高温防护涂层的方法
CN108559942A (zh) 一种在锆基合金表面制备黑色陶瓷层的方法
AU2020100541A4 (en) Method for preparing oxidation-resistant coating for pure tungsten by modifying with rare earth element yttrium and aluminizing by embedding
CN107217227A (zh) 一种提高镍基合金抗氧化性能的方法
CN111020557B (zh) 一种陶瓷基缓冲隔热层辅助镁合金表面激光熔覆复合涂层及其制备方法
CN112410782A (zh) 一种激光熔覆涂层材料的热处理方法
CN113512702B (zh) 一种单相β-NiAl粘结层及其制备方法
WO2015096684A1 (zh) 一种在Cu基体表面微波熔覆CuW合金的方法
CN111058018A (zh) 一种td3合金表面抗氧化涂层的制备方法
CN108179377B (zh) 一种复合梯度涂层及其制备方法
CN112853288A (zh) 一种具有长时间耐高温水蒸汽氧化的Fe-Cr-Al基防护涂层及其制备方法
CN115537808B (zh) 一种陶瓷基复合材料表面沉积高熵合金涂层的方法
CN111575643A (zh) 一种在钛合金表面制备钽扩散层的方法
CN106544627A (zh) 一种抗高温热腐蚀复合涂层及其制备方法
CN112760636B (zh) 一种激光熔覆原位合成钼-硅-硼合金涂层的方法
CN112063966B (zh) 一种提高钼合金表面抗高温烧蚀性能的方法
CN113278973B (zh) 一种具有镍改性的硅基防护涂层的钛基合金件及其制备方法
CN115198271A (zh) 一种高热匹配性热障涂层及其制备方法与应用
CN109437974B (zh) 一种具有Mo-Si-B-O高温抗氧化涂层的C/SiC复合材料及其制备方法
CN108517551B (zh) 一种新型硅铝涂层及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200424