CN111057654B - 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用 - Google Patents

一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用 Download PDF

Info

Publication number
CN111057654B
CN111057654B CN201911319809.XA CN201911319809A CN111057654B CN 111057654 B CN111057654 B CN 111057654B CN 201911319809 A CN201911319809 A CN 201911319809A CN 111057654 B CN111057654 B CN 111057654B
Authority
CN
China
Prior art keywords
cytospora
bam
crispr
sgrna
morinda officinalis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911319809.XA
Other languages
English (en)
Other versions
CN111057654A (zh
Inventor
叶伟
孔亚丽
章卫民
朱牧孜
李赛妮
刘洪新
岑由飞
刘珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of Guangdong Academy of Sciences
Original Assignee
Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology filed Critical Guangdong Detection Center of Microbiology of Guangdong Institute of Microbiology
Priority to CN201911319809.XA priority Critical patent/CN111057654B/zh
Publication of CN111057654A publication Critical patent/CN111057654A/zh
Application granted granted Critical
Publication of CN111057654B publication Critical patent/CN111057654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用。首次公开利用CRISPR/Cas9技术构建新型二苯甲酮类化合物生物合成基因bam被敲除的重组C.rhizophorae菌株,为巴戟天内生真菌C.rhizophorae中cytosporaphenones生物合成机制的阐明奠定分子生物学基础。本发明首次公开利用CRISPR/Cas9体系敲除巴戟天内生真菌C.rhizophorae A761的cysporaphenones生物合成基因,建立了一种巴戟天内生真菌C.rhizophorae A761的CRISPR/Cas9基因敲除体系,从而促进C.rhizophorae的基因工程改造,为发掘更多新颖的具有显著生物学活性的二苯甲酮cytosporaphenones类衍生物奠定分子生物学基础。

Description

一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构 建方法和应用
技术领域
本发明涉及生物化学和分子生物学领域,具体涉及一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用。
背景技术
Cytospora rhizophorae A761是一种分离自巴戟天的内生真菌。该内生真菌能产生一系列骨架新颖、高度氧化的二苯甲酮类cytosporaphenones化合物,且这类化合物具有很好的抗肿瘤活性及较强的抗菌活性,具有开发成为农业抗菌剂和杀虫剂的潜力。二苯甲酮类化合物广泛应用于医药、工业和农业等领域,如在医药方面可作为酮基布洛芬、安定、苯海拉明、双环己哌啶等药物的中间体或原料;在工业方面可作为紫外线吸收剂、UV涂料、染料等的中间体;二苯甲酮类杀菌剂氟吗啉、丁吡吗啉、苯菌酮等已广泛应用于农业。
CRISPR/Cas9是一种由sgRNA介导Cas9核酸酶对靶向基因进行特定DNA修饰的技术。Cas9蛋白中的RuVC1和HNH两个核酸酶活性区域使其内切酶活性,在gRNA引导下能对靶标基因进行切割。CRISPR/Cas9系统由于基因敲除效率高、构建简单,成本较低等优点已经在哺乳动物细胞、干细胞和植物等真核细胞的基因组编辑方面有着十分广泛的应用,而由于相应载体的缺乏,CRISPR/Cas9系统在丝状真菌中较少,目前关于广东药用植物内生真菌基因编辑方面的研究尚未。
发明内容
本发明的目的是提供一种适用于巴戟天内生真菌C. rhizophorae A761中cytosporaphenones生物合成基因敲除的CRISPR/Cas9载体及其构建方法和应用。
本发明采取的技术方案如下:
一种适用于巴戟天内生真菌A761的CRISPR/Cas9载体的构建方法,其包括以下步骤:
在pFC332-sgRNA质粒基础上,设计BAM 基因的靶点序列5’-GCAGTGGGAACAGGAGAGAT-3’,设计5SrRNA和含靶点序列的sgRNA片段,利用PCR扩增5SrRNA和含靶点序列的sgRNA片段,然后将5SrRNA和sgRNA片段为模板,利用同源重组将两个片段整合到一起,构建5SrRNA-bam-sgRNA片段;
用限制性内切酶BglⅡ和PacⅠ双酶切质粒pFC332和5SrRNA-bam-sgRNA片段,再用T4连接酶将5SrRNA-bam-sgRNA连接至双酶切的pFC332载体中,构建bam-pFC332敲除载体,转化至Trans5a感受态细胞,用含氨苄的LB平板筛选,菌液PCR筛选阳性克隆,将阳性克隆子扩大培养,提取质粒进行测序鉴定,由此获得适用于巴戟天内生真菌A761的CRISPR/Cas9载体。
本发明第二个目的是提供一种上述构建方法构建得到的适用于巴戟天内生真菌A761的CRISPR/Cas9载体。
本发明第三个目的是提供了一种CRISPR/Cas9载体应用于巴戟天内生真菌A761cytosporaphenones生物合成基因的敲除方法,将上述适用于巴戟天内生真菌A761的CRISPR/Cas9载体通过原生质体转化法导入A761原生质体中,对目标基因进行敲除。
具体是:在bam基因上下游各寻找1kb左右的同源臂CF和CR,以C. rhizophoraeA761基因组为模板进行扩增,然后将CF和CR进行融合PCR,得到2kb左右的CFR片段,通过PEG介导法将适用于巴戟天内生真菌A761的CRISPR/Cas9载体和CFR片段导入C. rhizophoraeA761原生质体,用潮霉素抗性PDA平板筛选阳性克隆,挑取克隆扩大培养提取基因组验证重组载体的导入,并通过左同源臂上游引物和右同源臂下游引物验证目标基因的敲除。
与现有技术相比,本发明具有以下有益效果:
目前,真菌的基因敲除一般采取Cre/loxp同源重组的方法进行基因敲除,但存在载体构建过程繁琐、同源重组效率低等缺点,导致丝状真菌基因编辑进展缓慢,阻碍了丝状真菌的代谢工程改造和新型活性天然产物的发掘。CRISPR/Cas9基因敲除系统具有载体构建方便,基因敲除效率较高等优势,从而有利于C. rhizophorae A761中cytosporaphenones,从而发掘更多具有生物活性的先导化合物。因此,本发明将构建适用于巴戟天内生真菌C. rhizophorae A761的CRISPR/Cas9基因敲除载体,并对cytosporaphenones类化合物生物合成关键基因bam(编码苯甲酮单加氧酶)进行敲除,以为后期解析C. rhizophorae A761 cytosporaphenones类化合物生物合成机制及发掘新型具有较强生物学活性的cytosporaphenones类化合物奠定分子生物学基础,从而促进cytosporaphenones类化合物的开发利用。
附图说明
图1为靶向cytosporaphenones生物合成基因bam重组载体pFC332-bam-sgRNA 构建图。其中,图A为含靶标gRNA的5SrRNA启动子和含有sgRNA骨架及其终止子片段的扩增图,图B为重组载体pFC332-bam-sgRNA构建验证图;Marker为 DNA 2000 plus marker (北京全式金)
图2为bam基因左(上)右(下)同源臂的扩增及融合(Donor)PCR验证图;Marker为DNA 2000 plus marker (北京全式金)
图3为潮霉素筛选C. rhizophorae A761及其原生质体制备图。其中,图A为含有不同浓度潮霉素平板筛选图,图B为C. rhizophorae A761原生质体显微镜观察图;
图4 为pFC332-bam-sgRNA 重组载体导入C. rhizophorae A761原生质体的验证图。图A为潮霉素抗性平板上筛选得到的基因敲除菌落;图B为Cas9基因扩增验证图,其中1-4均为Cas9基因的PCR产物; Marker为 DNA 2000 plus marker (北京全式金)
图5 为同源臂和敲除载体导入C. rhizophorae A761敲除bam基因验证图;水代表空白对照,k1,k2代表阴性对照,即为以A761野生菌为模板的扩增产物。1-4为以基因敲除菌提取DNA为模板的同源臂PCR产物。Marker为 DNA 2000 plus marker (北京全式金)
图6为野生菌和bam基因敲除菌发酵产物HPLC分析图。其中A为cytosporaphenone单体HPLC分析图;B为野生A761菌株粗提物HPLC分析图;C为bam基因敲除株粗提物HPLC分析图。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1 基因敲除载体pFC332-sgRNA-bam的构建
根据BAM序列在网站http://www.e-crisp.org/E-CRISP/index.html设计BAM的靶点序列5’-GCAGTGGGAACAGGAGAGAT-3’。设计5srRNA启动子和含靶点序列的sgRNA及相应终止子片段,利用同源重组将两个片段整合到一起,得到5SrRNA-bam-sgRNA-ter片段,其序列如SEQ ID NO.1 所示。具体如下:
设计5SrRNA扩增引物,分别是5SrRNA-F:5′-CGGGAAGATCTCACATACGACCACAGGG-3′,5SrRNA-R:5′-CATACAACAGAAGGGATTCGCTGGTG-3′,
含靶点序列的sgRNA片段的扩增引物:sgRNA-F:5′-αCGAATCCCTTCTGTTGTGCAGTGGGAACAGGAGAGATGGGGTTTTAGAGCTAGA-3′,sgRNA-R:5′-GTCTTAATTAAGCGGCCCTCTAGATGCATGC-3′。
引物由广州天一辉远公司合成。
分别以5SrRNA启动子片段,含靶点序列的sgRNA片段为模板,利用PCR扩增5SrRNA和含靶点序列的sgRNA片段。5SrRNA启动子片段反应体系50 μL:5SrRNA -F 0.5 μL,5SrRNA-R 0.5 μL,5SrRNA 1 μL,2 ×prime star 25 μL,ddH2O 23 μL。PCR程序:98℃预变性5min,98 ℃变性10 s,55 ℃退火 15 s,72 ℃延伸10 s,35个循环,最后72 ℃延伸10 min。含靶点序列的sgRNA片段扩增方法同上,只是替换一下相对应的模板和引物。然后再将含有靶点序列的5SrRNA启动子和含靶点序列的sgRNA片段为模板,以5SrRNA-F和sgRNA-R为引物,利用同源重组将两个片段整合到一起,构建得到5SrRNA-bam-sgRNA片段(图1A)。
(2)用限制性内切酶BglⅡ和PacⅠ双酶切质粒pFC332和5SrRNA-bam-sgRNA片段,37℃孵育3 h。用T4连接酶将5SrRNA-bam-sgRNA连接至双酶切的pFC332载体中,构建bam-pFC332敲除载体(pFC332-sgRNA-bam),转化至Trans5a感受态细胞,用含氨苄的LB平板筛选,挑取克隆扩大培养,以5SrRNA-F和sgRNA-R为引物,菌液PCR筛选阳性克隆(图1B)。将阳性克隆子扩大培养,提取质粒进行测序鉴定。测序由广州天一辉远测序公司完成。由此获得基因敲除载体pFC332-sgRNA-bam
(3)在bam基因上下游各寻找1kb左右的同源臂CL和CR,以C. rhizophorae A761基因组为模板进行扩增,然后将CF和CR进行融合PCR,得到2kb左右的CFR片段- donorDNA(图2)。
其中,左同源臂(CL)引物分别为LF:GGGGGAATAGAGAGCTTACAACTTCAAC,LR:GAAATCTACTGGTGCTGGCTTGGCCCCTT,右同源臂(CR)引物分别为:RF:AGCCAGCACCAGTAGATTTCGATAACAAATAAGAT, RR: TGGCTTCTCAGGGCTCAGACT。
实施例2
C. rhizophorae A761中cytosporaphenones生物合成基因bam的敲除:
重组敲除载体pFC332-sgRNA-bam导入C. rhizophorae A761原生质体方法如下:
C.rhizophoraeA761菌丝转接到潮霉素浓度为0 μg/mL,20 μg/mL,40 μg/mL,60μg/mL,80 μg/mL的PDA平板上,进行潮霉素抗性筛选。结果表明潮霉素浓度为80 μg/mL时C. rhizophorae A761无法生长(图3A)。
Cytospora rhizophorae A761菌丝接种于PDA液体培养基培养7天,取生长较好的菌体2g,PBS洗涤菌体2次。0.15g裂解酶溶解于20mL KC buffer,并用0.22 μm滤膜过滤,而后加入洗涤好的菌体,28℃ 68 r/min 裂解3 h。裂解后的菌液倒入滤网过滤去除菌丝,用6张擦镜纸再次过滤。滤液在4℃,4000 r/min 离心5min,弃上清(轻拿轻放,防止沉淀被打散,冰置),向沉淀中加入5mL KC buffer轻轻吹打混匀,4℃4000 r/min 离心5min,弃上清。再向沉淀中加入1mL KCbuffer,轻轻吹打混匀,即原生质体。而后镜检,观察C.rhizophorae A761原生质体的形态和数量(图3B)。
按原生质体1×107 CFU 加5μg pFC332-sgRNA-bam,加1μg donorDNA,加500 μLPEG4000;空白对照取原生质体1×107 CFU 加PEG4000 500 μL,冰置30 min,再加入700 μLPEG4000,冰置25 min。最后加WI至10 mL。28℃ 68r/min 培养12 h。取1mL空白对照原生质体加入融化了的PDA固体培养基倒板,再取1mL空白对照原生质体加入含80 μg/mL潮霉素融化了的PDA固体培养基倒板,最后取1 mL导入质粒的原生质体加入含80 μg/mL潮霉素融化了的PDA固体培养基倒板。28℃培养7天。
将突变株单菌落转接到PDA平板扩大培养,提取基因组,以基因组为模板,PCR扩增ITS、Cas9 验证pFC332-sgRNA-bam质粒是否导入C. rhizophorae A761原生质体中。所采用引物为Cas9 F: ATGGACTATAAGGACCACGACGGAGAC和Cas9 R:CTATTACTTTTTCTTTTTTGCCTGGCCG。Cas9扩增结果得知质粒pFC332-sgRNA-bam成功导入C. rhizophorae A761原生质体中(图4A,图4B)。成功构建了在C. rhizophorae A761中pFC332的敲除体系,获得bam基因敲除的C. rhizophorae A761菌株。
实施例3 C. rhizophorae A761中bam基因的敲除验证及产物比对分析
提取野生C. rhizophorae A761菌株和bam基因敲除的C. rhizophorae A761菌株的基因组DNA,以左同源臂上游引物LF和右同源臂引物RR为引物,以所提取基因组为模板,用Prime STAR MAX(TAKARA, Japan)进行扩增。结果表明,以野生A761菌株基因组DNA为模板时,可扩增得到3.5 kb的目标片段,而以bam基因敲除的C. rhizophorae A761菌株的基因组DNA为模板时,得到1.5 kb左右的片段,证明bam基因被成功敲除(图5)。
接种野生C. rhizophorae A761菌株和bam基因敲除的C. rhizophorae A761菌株至PDA培养基中,28℃,180 rpm条件下培养7天。乙酸乙酯萃取发酵产物,旋转蒸发浓缩至干燥。用1.5 mL色谱甲醇溶解粗提物。将溶解后的粗提物上样至HPLC (岛津LC-20A),用C18柱(4.6×250mm)进行分析检测。检测条件为:50 min内洗脱液从30%甲醇增加至100%甲醇,流速为1.0 mL/min。并以从A761中分离得到的二苯甲酮单体化合物为标准品,对比分析二苯甲酮单体化合物cytosporaphenones的缺失。结果表明,在野生A761菌株的粗提物中能检测到与标准品保留时间一致(40.18min)的cytosporaphenone单体对应的色谱峰,而bam基因敲除的C. rhizophorae A761菌株粗提物中在40.18min左右则无法检测得到cytosporaphenone单体对应的明显色谱峰(图6),进一步说明bam基因的成功敲除。同时也说明bam基因是cytosporaphenones生物合成的关键基因。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 广东省微生物研究所(广东省微生物分析检测中心)
<120> 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 338
<212> DNA
<213> 内生真菌A761(Cytospora rhizophorae)
<400> 1
cgggaagatc tcacatacga ccacagggtg tggaaaacag ggcttcccgt ccgctcagcc 60
gtacttaagc cacacgccgg gaggttagta gttgggtggg tgaccaccag cgaatccctt 120
ctgttgtatg gcagtgggaa caggagagat ggcagcttcc ctgttctcgg gttttagagc 180
tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt 240
cggtggtgct ttttttgttt tttatgtctg aattctgcag atatccatca cactggcggc 300
cgctcgagca tgcatctaga gggccgctta attaagac 338

Claims (4)

1.一种适用于巴戟天内生真菌Cytospora rhizophorae A761的CRISPR/Cas9载体的构建方法,其特征在于,包括以下步骤:
在pFC332-sgRNA质粒基础上,以cytosporaphenones生物合成基因的靶点序列5’-GCAGTGGGAACAGGAGAGAT-3’,设计5SrRNA和含靶点序列的sgRNA片段,利用PCR扩增5SrRNA和含靶点序列的sgRNA片段,然后将5SrRNA和sgRNA片段为模板,利用同源重组将两个片段整合到一起,构建5SrRNA-bam-sgRNA片段,所述的5SrRNA-bam-sgRNA片段的核苷酸序列如SEQID NO.1所示;
用限制性内切酶Bgl II和Pac I双酶切质粒pFC332和所述5SrRNA-bam-sgRNA片段,再用T4连接酶将所述5SrRNA-bam-sgRNA连接至双酶切的pFC332载体中,构建bam-pFC332敲除载体,转化至Trans5a感受态细胞,用含氨苄的LB平板筛选,菌液PCR筛选阳性克隆,将阳性克隆子扩大培养,提取质粒进行测序鉴定,由此获得适用于巴戟天内生真菌Cytosporarhizophorae A761的CRISPR/Cas9载体。
2.一种按照权利要求1所述的构建方法构建得到的适用于巴戟天内生真菌Cytosporarhizophorae A761的CRISPR/Cas9载体。
3.一种CRISPR/Cas9载体应用于巴戟天内生真菌Cytospora rhizophorae A761cytosporaphenones生物合成基因的敲除方法,其特征在于,将权利要求2的适用于巴戟天内生真菌Cytospora rhizophorae A761的CRISPR/Cas9载体通过原生质体转化法导入A761原生质体中,对目标基因进行敲除。
4.根据权利要求3所述的敲除方法,其特征在于,在cytosporaphenones生物合成基因上下游各寻找同源臂片段,以Cytospora rhizophorae A761基因组为模板进行扩增,然后将左右同源臂片段进行融合PCR,得到融合基因片段,通过PEG介导法将适用于巴戟天内生真菌Cytospora rhizophorae A761的CRISPR/Cas9载体和所述融合基因片段导入Cytospora rhizophorae A761原生质体,用潮霉素抗性PDA平板筛选阳性克隆,挑取克隆扩大培养提取基因组验证重组载体的导入,并通过左同源臂上游引物和右同源臂下游引物验证目标基因的敲除。
CN201911319809.XA 2019-12-19 2019-12-19 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用 Active CN111057654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911319809.XA CN111057654B (zh) 2019-12-19 2019-12-19 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911319809.XA CN111057654B (zh) 2019-12-19 2019-12-19 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN111057654A CN111057654A (zh) 2020-04-24
CN111057654B true CN111057654B (zh) 2022-06-10

Family

ID=70302328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911319809.XA Active CN111057654B (zh) 2019-12-19 2019-12-19 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN111057654B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391400B (zh) * 2020-11-17 2022-09-30 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于巴戟天内生真菌a761的农杆菌介导的遗传转化方法
CN112538496A (zh) * 2020-12-23 2021-03-23 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于露湿漆斑菌A553的CRISPR/Cas9载体及其构建方法和应用
CN112760338B (zh) * 2020-12-28 2022-04-26 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164375A (zh) * 2017-05-25 2017-09-15 中国科学院天津工业生物技术研究所 一种新型向导RNA表达盒及在CRISPR/Cas系统中的应用
CN109022476A (zh) * 2018-07-16 2018-12-18 天津科技大学 一种地衣芽孢杆菌CRISPR-Cas9基因编辑系统及其应用
CN109776561A (zh) * 2019-01-18 2019-05-21 广东省微生物研究所(广东省微生物分析检测中心) 化合物cytorhizins B和C及其制备方法和在制备抗肿瘤药物中的应用
WO2019173248A1 (en) * 2018-03-07 2019-09-12 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164375A (zh) * 2017-05-25 2017-09-15 中国科学院天津工业生物技术研究所 一种新型向导RNA表达盒及在CRISPR/Cas系统中的应用
WO2019173248A1 (en) * 2018-03-07 2019-09-12 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
CN109022476A (zh) * 2018-07-16 2018-12-18 天津科技大学 一种地衣芽孢杆菌CRISPR-Cas9基因编辑系统及其应用
CN109776561A (zh) * 2019-01-18 2019-05-21 广东省微生物研究所(广东省微生物分析检测中心) 化合物cytorhizins B和C及其制备方法和在制备抗肿瘤药物中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Liu Hong-Xin 等.Cytosporins A-D, novel benzophenone derivatives from the endophytic fungus Cytospora rhizophorae A761.《Org Biomol Chem.》.2019,第17卷(第9期),第2346-2350页. *
Liu Hong-Xin 等.Three new highly-oxygenated metabolites from the endophytic fungus Cytospora rhizophorae A761.《Fitoterapia》.2016,第117卷第1-5页. *
李浩华 等.巴戟天内生真菌多样性及抗菌活性研究.《中国菌物学会第七届全国会员代表大会暨2017年学术年会摘要集》.2017,第196页. *
陈书帅 等.巴戟天内生真菌Trichoderma spirale A725中两个新的聚酮类化合物.《有机化学》.2019,第40卷第209-214页. *

Also Published As

Publication number Publication date
CN111057654A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
Ren et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters
CN111057654B (zh) 一种适用于巴戟天内生真菌A761的Cas9基因敲除载体及其构建方法和应用
CN108546716A (zh) 一种基因组编辑方法
CN108034671B (zh) 一种质粒载体及利用其建立植物群体的方法
CN110257420A (zh) 基于CasRx的植物基因沉默载体及其构建方法和应用
CN109609537A (zh) 一种基因编辑方法在东方拟无枝酸菌中的应用
CN112553238B (zh) 一种适用于拟盾壳霉FS482的CRISPR/Cas9载体及其构建方法和应用
CN109666690B (zh) 一种无痕迹木霉真菌基因过表达方法
CN104981540A (zh) 用于生物合成谷外停和羟谷外停的基因簇
CN108239620A (zh) IFN-β1编码基因缺失的MDCK细胞株及其构建方法和应用
CN103509823A (zh) 一种利用cho细胞生产重组蛋白的真核表达载体及系统
CN112359043B (zh) 一种适用于拟茎点霉FS508的CRISPR/Cas9载体及其构建方法和应用
CN108893486A (zh) 一种可用于丝状真菌基因敲除的载体及应用
CN109266676A (zh) 一种电击转化暹罗芽孢杆菌的方法
CN111088274B (zh) 一种适用于巴戟天内生真菌a761的过表达载体及其构建方法和应用
CN113667688A (zh) 一种长梗木霉质粒载体及其构建方法和应用
CN110628802B (zh) 一种高产埃博霉素d的纤维堆囊菌及其构建方法和应用
CN114507684B (zh) 一种抑制地中海富盐菌中目的基因表达的方法
Su et al. An efficient gene disruption method using a positive–negative split-selection marker and Agrobacterium tumefaciens-mediated transformation for Nomuraea rileyi
CN112391400B (zh) 一种适用于巴戟天内生真菌a761的农杆菌介导的遗传转化方法
CN103525854A (zh) 高基因敲除效率的谢瓦氏曲霉间型变种工程菌株的构建方法
CN114181943B (zh) 一种创制早熟玉米种质的方法及其应用
CN116254286B (zh) 氰胺诱导的酿酒酵母工程菌及其构建方法
CN114480468B (zh) 一种通过构建Sch9基因突变株抑制镰孢菌生长的方法
CN115820691B (zh) 一种基于LbCpf1变体的水稻碱基编辑系统和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510070 No.56 courtyard, No.100 Xianlie Middle Road, Yuexiu District, Guangzhou City, Guangdong Province

Patentee after: Institute of Microbiology, Guangdong Academy of Sciences

Address before: 510070 No.56 courtyard, No.100 Xianlie Middle Road, Yuexiu District, Guangzhou City, Guangdong Province

Patentee before: GUANGDONG INSTITUTE OF MICROBIOLOGY (GUANGDONG DETECTION CENTER OF MICROBIOLOGY)