CN111040230B - 一种高断裂伸长率pmi泡沫及其制备方法 - Google Patents

一种高断裂伸长率pmi泡沫及其制备方法 Download PDF

Info

Publication number
CN111040230B
CN111040230B CN201911273296.3A CN201911273296A CN111040230B CN 111040230 B CN111040230 B CN 111040230B CN 201911273296 A CN201911273296 A CN 201911273296A CN 111040230 B CN111040230 B CN 111040230B
Authority
CN
China
Prior art keywords
parts
weight
steps
high elongation
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911273296.3A
Other languages
English (en)
Other versions
CN111040230A (zh
Inventor
范晓庆
李克迪
徐文生
胡爱军
李黄生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cashem Advanced Materials Hi Tech Co ltd Zhejiang
Institute of Chemistry CAS
Original Assignee
Cashem Advanced Materials Hi Tech Co ltd Zhejiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cashem Advanced Materials Hi Tech Co ltd Zhejiang filed Critical Cashem Advanced Materials Hi Tech Co ltd Zhejiang
Priority to CN201911273296.3A priority Critical patent/CN111040230B/zh
Publication of CN111040230A publication Critical patent/CN111040230A/zh
Application granted granted Critical
Publication of CN111040230B publication Critical patent/CN111040230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开一种高断裂伸长率PMI泡沫及其制备方法,包括如下步骤:(1)将30‑70重量份甲基丙烯腈、30‑70重量份甲基丙烯酸及相关助剂混合均匀,搅拌溶解;(2)将改性纳米粒子加入到反应液中,高速分散;(3)将反应分散液注入模具,反应得到聚合物板材;(4)将聚合物板材加热发泡得到一种高断裂伸长率PMI泡沫板。本发明制备得到的聚(甲基)丙烯酰亚胺泡沫的断裂伸长率,相对于常规泡沫明显提高,且热力学性能基本和改性前相当。

Description

一种高断裂伸长率PMI泡沫及其制备方法
技术领域
本发明涉及材料制备领域,具体涉及一种一种高断裂伸长率PMI泡沫及其制备方法。
背景技术
聚甲基丙烯酰亚胺(PMI)结构泡沫芯材是一种硬质闭孔结构泡沫,主要用于纤维增强树脂基夹层结构的泡沫芯材,可实现复合材料夹层结构的一次性共固化,在航天航空、轨道交通、风力发电、船舶、新能源汽车等许多高技术领域具有重要的地位和巨大的商业价值。
Figure DEST_PATH_IMAGE001
PMI结构泡沫芯材具有7大特点:1)优异的耐热抗压性能,可承受180℃/0.7Mpa的苛刻加工环境;2)高闭孔率,各向同性,吸水率低;3)优异的抗压缩性能,高比强度、高比模量;4)可加热二次成型;5)易机械加工成复杂的形状;6)与各种树脂系统兼容;7)不含氟利昂和卤素等发泡剂。
PMI泡沫脆性较大,断裂伸长率低,耐低温性能差,通过本体增韧,可以提高PMI泡沫的断裂伸长率,提高韧性及耐低温性能。
专利TW1525144B中提出了一种通过使用柔性交联剂来提高PMI泡沫断裂伸长率的方法;
专利CN110317362A中提出了一种加入增塑剂、偶联剂、表面活性剂及交联剂复配的增韧剂来提高泡沫韧性,但是该专利未提及断裂伸长率是否提高;
专利CN104945553A中提出了一种通过往基体中加入橡胶核壳粒子的方法,但是该专利得到的PMI泡沫断裂伸长率较低。
PMI泡沫虽然耐热性能好,比强度高,但是断裂伸长率低,脆性大,不耐冲击和低温,大大限制了其在低温领域及对韧性有要求的相关领域的应用,通过提高PMI泡沫的断裂伸长率,可以提高泡沫在电子音响振膜切片的合格率,在低温管道等领域应用时防止泡沫基体和蒙皮由于热膨胀系数不同而脱粘从而造成管道破裂,可以拓展PMI泡沫在诸如会遇到低温环境的航天工业相关领域的应用。
发明内容
本发明提供一种高断裂伸长率PMI泡沫及其制备方法,制备得到了一种高断裂伸长率的PMI泡沫,同时泡沫热力学性能未发生明显下降。
一种高断裂伸长率PMI泡沫及其制备方法,包括如下步骤:
(1)将(甲基)丙烯腈30-70重量份、(甲基)丙烯酸30-70重量份、第三单体0-10重量份、引发剂0.1-2重量份、发泡剂5-15重量份、交联剂1-3重量份、增塑剂5-10重量份混合均匀,搅拌1-3h;
(2)将1-5重量份改性纳米粒子加入到混合液中,高速分散机2500-3000r/min分散10-30min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将反应液于30-70℃下反应60-100h,然后在60-130℃下热处理20-100h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在180-230℃下发泡2-6h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述第三单体包括二甲基丙烯酸长链二醇酯(分子量为250-1500g/mo)、马来酰亚胺及其衍生物、马来酸或其酸酐、衣康酸或其酸酐、乙烯基吡咯烷酮、苯乙烯、氯乙烯、偏二氯乙烯、甲基丙烯酸氟庚酯、甲基丙烯酸甲酯中一种或几种的组合物。
所述第三单体优选PEG400DMA、PEG600DMA、苯乙烯、甲基丙烯酸十二氟庚酯和衣康酸。
所述引发剂包括偶氮二异丁腈(AIBN)、偶氮二异戊睛或偶氮二异庚睛、过氧化二苯甲酰、过氧化月桂酰、过氧化辛酸叔丁酯或过氧化二缩酮、十六烷基过二碳酸酯、丁基过二碳酸酯、戊基过二碳酸酯、过新戊酸叔丁基酯、过苯甲酸叔丁基酯、过2-乙基己酸叔丁基酯、偶氮-双(4-氰基戊酸)或者偶氮-双(4-氰基戊酸)以上一种或几种的组合物;
所述引发剂优选偶氮二异庚睛、过氧化二苯甲酰、过氧化月桂酰、过氧化辛酸叔丁酯和过氧化二缩酮。
所述发泡剂包括异丙醇、正丁醇、异丁醇、叔丁醇、叔戊醇、己醇、尿素、甲基脲、二甲基脲中一种或几种的组合物。
所述交联剂包括氧化钙、氧化镁、丙烯酰胺(AM)、甲基丙烯酰胺(MAM)、三聚氰酸三烯丙酯、甲基丙烯酸烯丙酯、甲基丙烯酸金属盐、丙烯酸金属盐、金属氧化物、丙烯酸烯丙基酯、甲基丙烯酸烯丙基酯、烯丙基丙烯酰胺、烯丙基甲基丙烯酰胺、亚甲基-二-丙烯酰胺或-甲基丙烯酰胺、二亚乙基双(碳酸烯丙基酯)、乙二醇二丙烯酸酯或-二甲基丙烯酸酯、二甘醇二丙烯酰胺或-二甲基丙烯酰胺、三甘醇二丙烯酰胺或-二甲基丙烯酰胺、四甘醇二丙烯酰胺或-二甲基丙烯酰胺、三丙二醇二丙烯酰胺或-二甲基丙烯酰胺、1,3-丁二醇二丙烯酸酯或-二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯或-二甲基丙烯酸酯、新戊二醇二丙烯酸酯或-二甲基丙烯酸酯、己二醇-1,6-二丙烯酸酯或-二甲基丙烯酸酯、三羟甲基丙烷二丙烯酸酯或-二甲基丙烯酸酯,三羟甲基丙烷三丙烯酸酯或-三甲基丙烯酸酯、季戊四醇三丙烯酸酯或-三甲基丙烯酸酯、季戊四醇四丙烯酸酯或-四甲基丙烯酸酯、季戊四醇衍生物、超支化聚合物、三烯丙基异氰尿酸酯或三烯丙基氰尿酸酯、纳米核壳粒子和超支化聚合物;
所述交联剂优选氧化钙、甲基丙烯酰胺(MAM)、丙烯酸烯丙基酯、橡胶纳米核壳粒子和超支化有机硅树脂。
所述增塑剂包括α-甲基苯乙烯、正辛醇、三乙酸甘油酯、邻苯二甲酸酯、丙烯酸丁酯、2-10个碳原子的二酸酯、硬脂酸、二硬酯酰胺乙基环氧丙基氯化铵。
所述改性纳米粒子包括碳纳米管、石墨烯、纳米二氧化硅、纳米二氧化钛、纳米蒙脱土等的改性粒子,改性方法如下:
将纳米粒子浸入浸渍液,浸泡0.5-2h后捞出;然后送入电子辐照经过交联处理;所述纳米粒子与浸渍液的质量比为1:8-14,再经过滤,干燥,粉碎,得到核壳结构的改性纳米粒子。
所述浸渍液的制备方法为:按重量份,将0.05-0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,2-5份乙烯基溴化锌, 0.02-0.6份1,1'-二乙烯基二茂铁,100-500份丁酮,40-60℃混合1-5h,得到浸渍液。
所述电子辐照交联处理的参数为:电子束流为11-15mA,加速器能量为0.6-0.9McV。
本发明的关键过程为同时在基体中加入柔性增塑成分和改性的纳米粒子,进行协同增韧,通过纳米粒子的冷拉机理和空穴化增韧机理,同时提高基体的韧性和强度,克服了橡胶弹性体粒子增韧“韧而不强”的问题。
本发明纳米粒子采用电子辐照进行表面交联聚合改性,壳层的溴化锌赋予改性无机离子阻燃的效果,壳层的离子液四氟硼酸盐,使改性无机离子与聚合物相容性提高,也同时与无机物相容性提高,有利于提高聚甲基丙烯酰亚胺塑料板的强度;壳层的二茂铁金属配合物在聚甲基丙烯酰亚胺中沿聚合物骨架排列,提高了聚甲基丙烯酰亚胺参与电子转移和输送的能力,有利于提高聚甲基丙烯酰亚胺塑料板的机械性能。
跟现有技术相比,本发明的有益效果:可以将断裂伸长率提高到10%以上,同时不降低材料的热力学性能。
附图说明
图1为实施例2制备的聚甲基丙烯酰亚胺泡沫塑料所做的S-4300扫描电镜照片,放大倍数60。
具体实施方式
各性能测试方法如下:
1、密度按ASTM D1622进行测试;
2、压缩性能按GBT 8813-2008进行测试;
3、拉伸性能按ASTM D638进行测试;
4、蠕变性能按GBT 15048-1994进行测试,蠕变条件为180oC/0.7MPa/2h;
实施例1
(1)将(甲基)丙烯腈30重量份、(甲基)丙烯酸70重量份、PEG400DMA 1重量份、偶氮二异庚腈0.1重量份、异丙醇5重量份、氧化钙3重量份、α-甲基苯乙烯5重量份混合均匀,搅拌1h;
(2)将1重量份改性碳纳米管加入到混合液中,高速分散机2500r/min分散30min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于30℃下反应100h,然后将塑料板在60℃下热处理100h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在180℃下发泡6h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述碳纳米管改性方法如下:
将纳米粒子浸入浸渍液,浸泡1h后捞出;然后送入电子辐照经过交联处理;所述纳米粒子与浸渍液的质量比为1:11,再经过滤,干燥,粉碎,得到核壳结构的改性纳米粒子。
所述浸渍液的制备方法为:按重量份,将0.08份1-乙烯基-3-乙基咪唑四氟硼酸盐,3份乙烯基溴化锌, 0.1份1,1'-二乙烯基二茂铁,300份丁酮,50℃混合3h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为13mA,加速器能量为0.8McV。
实施例2
(1)将(甲基)丙烯腈38重量份、(甲基)丙烯酸62重量份、PEG600DMA 2.8重量份、过氧化二苯甲酰0.48重量份、叔戊醇7重量份、MAM 2.6重量份、正辛醇6重量份混合均匀,搅拌2h;
(2)将1.8重量份改性石墨烯加入到混合液中,高速分散机2600r/min分散26min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于40℃下反应92h,然后将塑料板在74℃下热处理80h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在190℃下发泡5.2h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述改性石墨烯改性方法如下:
将石墨烯浸入浸渍液,浸泡0.5-2h后捞出;然后送入电子辐照经过交联处理;所述石墨烯与浸渍液的质量比为1:8,再经过滤,干燥,粉碎,得到核壳结构的改性纳米粒子。
所述浸渍液的制备方法为:按重量份,将0.05份1-乙烯基-3-乙基咪唑四氟硼酸盐,2份乙烯基溴化锌, 0.02份1,1'-二乙烯基二茂铁,100份丁酮,40℃混合1h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为11mA,加速器能量为0.6McV。
实施例3
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份、三乙酸甘油酯7重量份混合均匀,搅拌3h;
(2)将2.6重量份改性纳米二氧化硅加入到混合液中,高速分散机2700r/min分散22min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在200℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米二氧化硅,改性方法如下:
将纳米二氧化硅浸入浸渍液,浸泡2h后捞出;然后送入电子辐照经过交联处理;所述纳米二氧化硅与浸渍液的质量比为1: 14,再经过滤,干燥,粉碎,得到核壳结构的纳米二氧化硅。
所述浸渍液的制备方法为:按重量份,将0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,5份乙烯基溴化锌, 0.6份1,1'-二乙烯基二茂铁,500份丁酮, 60℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为15mA,加速器能量为0.9McV。
实施例4
(1)将(甲基)丙烯腈54重量份、(甲基)丙烯酸46重量份、甲基丙烯酸十二氟庚酯6.4重量份、过氧化辛酸叔丁酯1.24重量份、己醇11重量份、纳米橡胶核壳粒子1.8重量份、邻苯二甲酸酯8重量份混合均匀,搅拌2h;
(2)将3.4重量份改性纳米二氧化钛加入到混合液中,高速分散机2800r/min分散18min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于60℃下反应76h,然后将塑料板在102℃下热处理36h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在210℃下发泡3.6h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米二氧化钛改性方法如下:
将纳米二氧化钛浸入浸渍液,浸泡0.5h后捞出;然后送入电子辐照经过交联处理;所述纳米二氧化钛与浸渍液的质量比为1: 14,再经过滤,干燥,粉碎,得到核壳结构的改性纳米二氧化钛。
所述浸渍液的制备方法为:按重量份,将0.05份1-乙烯基-3-乙基咪唑四氟硼酸盐, 5份乙烯基溴化锌, 0.02份1,1'-二乙烯基二茂铁, 500份丁酮,40℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为11mA,加速器能量为0.9McV。
实施例5
(1)将(甲基)丙烯腈70重量份、(甲基)丙烯酸30重量份、衣康酸10重量份、过氧化二缩酮2重量份、甲基脲15重量份、超支化有机硅1重量份、硬脂酸10重量份混合均匀,搅拌1.5h;
(2)将5重量份改性纳米蒙脱土加入到混合液中,高速分散机3000r/min分散10min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于70℃下反应60h,然后将塑料板在130℃下热处理20h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在230℃下发泡2h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米蒙脱土的改性方法如下:
将纳米蒙脱土浸入浸渍液,浸泡0.5-2h后捞出;然后送入电子辐照经过交联处理;所述纳米蒙脱土与浸渍液的质量比为1:8-14,再经过滤,干燥,粉碎,得到核壳结构的改性纳米蒙脱土。
所述浸渍液的制备方法为:按重量份,将0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,5份乙烯基溴化锌, 0.02份1,1'-二乙烯基二茂铁,100份丁酮,60℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为11mA,加速器能量为0.6McV。
对比实施例1
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份混合均匀,搅拌3h,充分溶解后注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在200℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
对比实施例2
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份,搅拌3h;
(2)将2.6重量份改性纳米二氧化硅加入到混合液中,高速分散机2700r/min分散22min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在210℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
对比实施例3
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份,搅拌3h,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在190℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
对比实施例4
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份、三乙酸甘油酯7重量份混合均匀,搅拌3h;
(2)将2.6重量份改性纳米二氧化硅加入到混合液中,高速分散机2700r/min分散22min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在200℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米二氧化硅,改性方法如下:
将纳米二氧化硅浸入浸渍液,浸泡2h后捞出;然后送入电子辐照经过交联处理;所述纳米二氧化硅与浸渍液的质量比为1: 14,再经过滤,干燥,粉碎,得到核壳结构的纳米二氧化硅。
所述浸渍液的制备方法为:按重量份,将5份乙烯基溴化锌, 0.6份1,1'-二乙烯基二茂铁,500份丁酮, 60℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为15mA,加速器能量为0.9McV。
对比实施例5
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份、三乙酸甘油酯7重量份混合均匀,搅拌3h;
(2)将2.6重量份改性纳米二氧化硅加入到混合液中,高速分散机2700r/min分散22min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在200℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米二氧化硅,改性方法如下:
将纳米二氧化硅浸入浸渍液,浸泡2h后捞出;然后送入电子辐照经过交联处理;所述纳米二氧化硅与浸渍液的质量比为1: 14,再经过滤,干燥,粉碎,得到核壳结构的纳米二氧化硅。
所述浸渍液的制备方法为:按重量份,将0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,5份乙烯基溴化锌, 500份丁酮, 60℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为15mA,加速器能量为0.9McV。
对比实施例6
(1)将(甲基)丙烯腈46重量份、(甲基)丙烯酸54重量份、苯乙烯4.6重量份、过氧化月桂酰0.86重量份、尿素9重量份、丙烯酸烯丙基酯2.2重量份、三乙酸甘油酯7重量份混合均匀,搅拌3h;
(2)将2.6重量份改性纳米二氧化硅加入到混合液中,高速分散机2700r/min分散22min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将模具置于50℃下反应84h,然后将塑料板在88℃下热处理44h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在200℃下发泡4.4h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述纳米二氧化硅,改性方法如下:
将纳米二氧化硅浸入浸渍液,浸泡2h后捞出;然后送入电子辐照经过交联处理;所述纳米二氧化硅与浸渍液的质量比为1: 14,再经过滤,干燥,粉碎,得到核壳结构的纳米二氧化硅。
所述浸渍液的制备方法为:按重量份,将0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,5份乙烯基溴化锌, 500份丁酮, 60℃混合5h,得到浸渍液。所述电子辐照交联处理的参数为:电子束流为15mA,加速器能量为0.9McV。
上述实施例和对比实施例所提及的组分份数均为重量份。
下表1列出了实施例和对比实施例中关于各实施例中性能值。
表1 力学性能表
实施例/性能 1 2 3 4 5 对比1 对比2 对比3 对比4 对比5 对比6
密度kg/m<sup>3</sup> 110 118 126 134 150 125 127 124 126 126 126
压缩强度Mpa 2.5 2.8 3.1 3.3 3.9 3.4 4.4 2.1 3.1 3.1 3.0
拉伸强度Mpa 5.9 6.0 6.1 6.1 6.3 5.2 5.1 4.2 5.9 5.7 5.6
断裂伸长率% 12.0 11.6 11.2 10.7 9.9 3.0 2.5 6.5 8.3 7.2 8.4
蠕变% 3.0 2.6 2.2 1.8 1.0 2.8 0.4 5.0 2.6 2.4 2.7
通过本发明的实施例制备的PMI泡沫,断裂伸长率均较高;通过对比实施例3和对比例1发现,采用不添加增塑剂和改性纳米粒子的配方,压缩强度/拉伸强度及蠕变性能相差不大,但是断裂伸长率较低,只有3%;通过对比实施例3和对比例2发现,配方中不添加增塑剂,只添加纳米粒子,得到泡沫拉伸强度较高,但是断裂伸长率反而降低,可见,对于脆性聚合物增韧,需要对基体同时增塑增强,起到协同作用,才能同时提高强度和韧性;通过对比实施例3和对比3发现,只添加增塑剂,不添加纳米粒子,断裂伸长率较高,但是强度及耐热均明显下降,不符和材料使用要求。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (10)

1.一种高断裂伸长率PMI泡沫的制备方法,其特征在于,包括如下步骤:
(1)将(甲基)丙烯腈30-70重量份、(甲基)丙烯酸30-70重量份、第三单体0-10重量份、引发剂0.1-2重量份、发泡剂5-15重量份、交联剂1-3重量份、增塑剂5-10重量份混合均匀,搅拌1-3h;
(2)将1-5重量份改性纳米粒子加入到混合液中,高速分散机2500-3000r/min分散10-30min,得到反应分散液,将反应液注入密闭的平面模具中;
(3)将反应液于30-70℃下反应60-100h,然后在60-130℃下热处理20-100h,得到聚甲基丙烯酰亚胺塑料板;
(4)将板材在180-230℃下发泡2-6h,得到聚甲基丙烯酰亚胺泡沫塑料;
所述改性纳米粒子包括碳纳米管、石墨烯、纳米二氧化硅、纳米二氧化钛、纳米蒙脱土的改性粒子,改性方法如下:将纳米粒子浸入浸渍液,浸泡0.5-2h后捞出,然后送入电子辐照经过交联处理;所述纳米粒子与浸渍液的质量比为1:8-14,再经过滤,干燥,粉碎,得到核壳结构的改性纳米粒子;
所述浸渍液的制备方法为:将0.05-0.2份1-乙烯基-3-乙基咪唑四氟硼酸盐,2-5份乙烯基溴化锌, 0.02-0.6份1,1'-二乙烯基二茂铁,100-500份丁酮,40-60℃混合1-5h,得到浸渍液。
2.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述第三单体包括分子量为250-1500g/mol的二甲基丙烯酸长链二醇酯、马来酰亚胺的衍生物、马来酸或其酸酐、衣康酸或其酸酐、乙烯基吡咯烷酮、苯乙烯、氯乙烯、偏二氯乙烯、甲基丙烯酸氟庚酯中一种或几种的组合物。
3.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述第三单体为PEG400DMA、PEG600DMA、苯乙烯、甲基丙烯酸十二氟庚酯、衣康酸。
4.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述引发剂包括偶氮二异丁腈(AIBN)、偶氮二异戊睛或偶氮二异庚睛、过氧化二苯甲酰、过氧化月桂酰、过氧化辛酸叔丁酯或过氧化二缩酮、十六烷基过二碳酸酯、丁基过二碳酸酯、戊基过二碳酸酯、过新戊酸叔丁基酯、过苯甲酸叔丁基酯、过2-乙基己酸叔丁基酯、偶氮-双(4-氰基戊酸)以上一种或几种的组合物。
5.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述引发剂为偶氮二异庚腈、过氧化二苯甲酰、过氧化月桂酰、过氧化辛酸叔丁酯、过氧化二缩酮。
6.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述发泡剂包括异丙醇、正丁醇、异丁醇、叔丁醇、叔戊醇、己醇、尿素、甲基脲、二甲基脲中一种或几种的组合物。
7.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述交联剂包括氧化钙、氧化镁、丙烯酰胺(AM)、甲基丙烯酰胺(MAM)、三聚氰酸三烯丙酯、甲基丙烯酸烯丙酯、甲基丙烯酸金属盐、丙烯酸金属盐、丙烯酸烯丙基酯、甲基丙烯酸烯丙基酯、烯丙基丙烯酰胺、烯丙基甲基丙烯酰胺、亚甲基-二-丙烯酰胺或亚甲基-二-甲基丙烯酰胺、二亚乙基双(碳酸烯丙基酯)、乙二醇二丙烯酸酯或乙二醇-二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯或1,3-丁二醇-二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯或1,4-丁二醇-二甲基丙烯酸酯、新戊二醇二丙烯酸酯或新戊二醇-二甲基丙烯酸酯、1,6-己二醇-二丙烯酸酯或1,6-己二醇-二甲基丙烯酸酯、三羟甲基丙烷二丙烯酸酯或三羟甲基丙烷-二甲基丙烯酸酯,三羟甲基丙烷三丙烯酸酯或三羟甲基丙烷-三甲基丙烯酸酯、季戊四醇三丙烯酸酯或季戊四醇-三甲基丙烯酸酯、季戊四醇四丙烯酸酯或季戊四醇-四甲基丙烯酸酯、超支化聚合物、三烯丙基异氰尿酸酯或三烯丙基氰尿酸酯、纳米核壳粒子。
8.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述交联剂为氧化钙、甲基丙烯酰胺(MAM)、丙烯酸烯丙基酯、橡胶核壳纳米粒子、超支化有机硅树脂。
9.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述增塑剂包括α-甲基苯乙烯、正辛醇、三乙酸甘油酯、邻苯二甲酸酯、丙烯酸丁酯、2-10个碳原子的二酸酯、硬脂酸、二硬酯酰胺乙基环氧丙基氯化铵。
10.根据权利要求1所述的一种高断裂伸长率PMI泡沫的制备方法,其特征在于:所述电子辐照交联处理的参数为:电子束流为11-15mA,加速器能量为0.6-0.9McV。
CN201911273296.3A 2019-12-12 2019-12-12 一种高断裂伸长率pmi泡沫及其制备方法 Active CN111040230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911273296.3A CN111040230B (zh) 2019-12-12 2019-12-12 一种高断裂伸长率pmi泡沫及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911273296.3A CN111040230B (zh) 2019-12-12 2019-12-12 一种高断裂伸长率pmi泡沫及其制备方法

Publications (2)

Publication Number Publication Date
CN111040230A CN111040230A (zh) 2020-04-21
CN111040230B true CN111040230B (zh) 2022-05-27

Family

ID=70236001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911273296.3A Active CN111040230B (zh) 2019-12-12 2019-12-12 一种高断裂伸长率pmi泡沫及其制备方法

Country Status (1)

Country Link
CN (1) CN111040230B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289565A (zh) * 2008-06-12 2008-10-22 中国人民解放军国防科学技术大学 聚甲基丙烯酰亚胺泡沫/无机纳米复合材料及其制备方法
CN103554355A (zh) * 2013-10-23 2014-02-05 江苏兆鋆新材料科技有限公司 一种针状硅灰石改性an/maa共聚物泡沫材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028695A1 (de) * 2010-05-06 2011-11-10 Evonik Röhm Gmbh Polymethacrylimid-Schaumstoffe mit verminderter Entflammbarkeit sowie Verfahren zur Herstellung dieser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289565A (zh) * 2008-06-12 2008-10-22 中国人民解放军国防科学技术大学 聚甲基丙烯酰亚胺泡沫/无机纳米复合材料及其制备方法
CN103554355A (zh) * 2013-10-23 2014-02-05 江苏兆鋆新材料科技有限公司 一种针状硅灰石改性an/maa共聚物泡沫材料的制备方法

Also Published As

Publication number Publication date
CN111040230A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP4996252B2 (ja) 熱形状安定性微孔質ポリメタクリルイミドフォーム
TW201213419A (en) Polymethacrylimide foams with reduced flammability and process for production thereof
US5928459A (en) Process for the production of polymethacrylimide foam materials
TWI525144B (zh) 具有改良的機械性質特別是增加的斷裂拉伸應變之聚甲基丙烯醯亞胺(pmi)發泡體
CN109280306B (zh) 一种聚甲基丙烯酰亚胺复合泡沫导电吸波材料的制备方法
CN101550215B (zh) 马来酰亚胺改性聚甲基丙烯酰亚胺泡沫及其制备方法
WO2013105340A1 (ja) 炭素繊維強化ポリプロピレンシートおよびその成形品
CN110746638B (zh) 一种悬浮聚合制备纳米碳纤维增强聚甲基丙烯酰亚胺泡沫的方法
CN111040230B (zh) 一种高断裂伸长率pmi泡沫及其制备方法
US20070077442A1 (en) Thermostable microporous polymethacrylimide foams
CN110746633B (zh) 一种微孔聚甲基丙烯酰亚胺泡沫的制备方法
CN110452487B (zh) 一种聚甲基丙烯酰亚胺泡沫用石墨烯基阻燃剂及阻燃泡沫的制备方法
JP4007738B2 (ja) 発泡性熱可塑性共重合体粒子
CN109265597A (zh) 一种低成本聚甲基丙烯酰亚胺泡沫塑料及其制备方法
KR20100032892A (ko) 코어 물질에 대한 개선된 버트 조인트 연결부
CN101974191A (zh) 玻璃微珠增强聚甲基丙烯酰亚胺泡沫材料制备方法及应用
WO2003078514A2 (de) Polymethacrylimid-schaumstoffe mit verringerter porengrösse
CN106700209A (zh) 一种含纳米碳纤维的复合发泡材料及其制备
CN110698715B (zh) 一种辐射交联聚甲基丙烯酰亚胺泡沫及其制备方法
CN116425919B (zh) 聚(甲基)丙烯酰亚胺泡沫材料及其制备方法
CN113637107A (zh) 一种阻燃型聚甲基丙烯酰亚胺泡沫复合材料的制备方法
CN116462791A (zh) 一种多功能聚甲基丙烯酰亚胺泡沫材料及其制备方法和应用
CN115948014A (zh) 一种纳米聚合物纤维增强聚甲基丙烯酰亚胺泡沫及其制备方法
CN118085403A (zh) 一种Mg-P复合改性阻燃剂、阻燃PMI泡沫及其制备方法和应用
CN116554388A (zh) 一种耐超高温的pmi泡沫塑料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240105

Address after: 312000 Shangyu Economic and Technological Development Zone, Hangzhou Bay, Shaoxing City, Zhejiang Province

Patentee after: CASHEM ADVANCED MATERIALS HI TECH Co.,Ltd. ZHEJIANG

Patentee after: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES

Address before: 312369 No. 15, Zhenxing Avenue, Dongyi District, Hangzhou Bay Economic Development Zone, Shangyu City, Shaoxing City, Zhejiang Province

Patentee before: CASHEM ADVANCED MATERIALS HI TECH Co.,Ltd. ZHEJIANG

TR01 Transfer of patent right