CN111020254A - 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法 - Google Patents

一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法 Download PDF

Info

Publication number
CN111020254A
CN111020254A CN201911133161.7A CN201911133161A CN111020254A CN 111020254 A CN111020254 A CN 111020254A CN 201911133161 A CN201911133161 A CN 201911133161A CN 111020254 A CN111020254 A CN 111020254A
Authority
CN
China
Prior art keywords
zinc alloy
alloy
preparation
low
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911133161.7A
Other languages
English (en)
Other versions
CN111020254B (zh
Inventor
刘欢
孙超
黄河
任康轩
江静华
马爱斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201911133161.7A priority Critical patent/CN111020254B/zh
Publication of CN111020254A publication Critical patent/CN111020254A/zh
Application granted granted Critical
Publication of CN111020254B publication Critical patent/CN111020254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法,该方法包括如下步骤:A、将锌合金原材料在CO2和SF6混合气氛保护下进行熔炼,控制凝固速度获得锌合金铸锭;B、从锌合金铸锭中切割出长方体或圆柱体坯料,进行多道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;再经一道次热挤压加工成棒材;C、对锌合金棒材进行室温拉拔加工,获得直径为0.1~0.3mm的高强韧易编织可降解医用锌合金丝材。本发明通过控制特定冷却速度在低合金元素含量的锌合金中获得三相共晶组织增强相,随后利用多道次等通道转角挤压加工促进合金组织均匀细化,提高可加工性,再利用室温拉拔加工获得锌合金丝材,显著提高了丝材的强韧性,且易于编织。

Description

一种低合金化高强韧易编织可降解医用锌合金丝材及其制备 方法
技术领域
本发明属于锌合金加工技术领域,具体涉及一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法。
背景技术
可降解医用金属材料在近十余年受到了广泛关注。与传统的惰性医用金属材料(如钛合金、铁基合金、镍基合金等)和可降解医用高分子材料(脂肪族聚酯、纤维素、聚乳酸等)相比,可降解金属同时集成了两类材料的优势,它既具有优异的力学性能,能够起到必要的承载作用,同时还具有良好的生物相容性和生物可降解性,在体内服役一段时间后能够完全降解,避免了二次手术。
铁基和镁基合金是当前应用和研究较广泛的两类潜在的可降解金属材料。铁是人体的一种微量营养元素,常存在于血红蛋白和各类酶当中。然而,虽然纯铁容易腐蚀,但其降解速率偏慢,需要提高降解速度才能有望达到临床的要求。此外,铁基合金降解过程中产生的大量铁氧化合物恐难以在体内安全降解。镁合金具有一定的强度、塑性和可加工性,能够满足骨板和支架材料等对力学和物理性能的要求。且镁的电极电位更负,容易发生腐蚀,因此是一种较为理想的可降解金属材料。然而,镁合金作为可降解医用材料,在临床应用上仍面临一些挑战,主要包括强韧性不足,强度和塑性的倒置关系突出,难以同时满足对其强度和塑性的要求;降解速率过快,容易发生局部腐蚀,且难以控制,需要将镁合金的腐蚀行为调控为均匀腐蚀才能实现其在体内的可控讲解;生物安全性仍有待评估。
相比于铁基合金和镁基合金,锌的标准电极电位位于二者之间,因此锌及其合金具有相对适宜的腐蚀速率。此外,锌合金具有良好的生物相容性,对于人体免疫系统和神经系统具有至关重要的作用,Zn是人体的必须营养元素,同时也是人体内第二多的过渡金属元素。因此,锌基合金作为可降解金属材料,更加符合临床的要求,有望发展成为新一代可降解植入器件材料。
然而,当前关于锌合金的研究尚处于起步阶段,尤其对锌合金力学性能的调控以及锌合金可加工性的研究较少。作为六方结构的金属,锌基合金的力学性能相对较差,限制了其作为可降解金属的应用潜力。
发明内容
本发明的目的是提供一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法。本发明针对具有特定成分的Zn-Mg基合金,采用联合剧烈塑性加工获得高性能锌合金丝材,所获得的锌合金丝材具有优异的强韧性等力学性能,易于编织成各类形状,能够用来制作吻合钉、编织绳和各类人体支架。
本发明采用的技术方案为:一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法,其步骤包括:
A、将纯锌锭、纯镁锭和中间合金在惰性气氛保护下进行熔炼,所述中间合金为Mg-Y中间合金、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Sr中间合金或Mg-Zr中间合金,随后控制凝固,凝固的冷却速度为100~300℃/s,获得锌合金铸锭,所述锌合金铸锭为三元合金,其中Mg的含量为0.2%~0.6wt%,第三组元Y、Gd、Nd、Sr或Zr的含量为0.03%~0.2wt%,余下为Zn;
B、从上述锌合金铸锭中切割出长方体或圆柱体坯料,进行多道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后经一道次热挤压加工,获得直径1~2mm的锌合金棒材;
C、对锌合金棒材进行室温拉拔加工,获得低合金化高强韧易编织可降解医用锌合金丝材。
所述低合金化高强韧易编织可降解医用锌合金丝材的直径为0.1~0.3mm。
所述惰性气氛为CO2和SF6混合气氛或氩气。
步骤B中,等通道转角挤压加工的温度为80~120℃,道次为12~20次。
步骤B中,热挤压加工的温度为150℃,热挤压加工的挤压比为9~25。
步骤C中,单道次拉拔变形量为15%~25%,当累积拉拔变形量超过300%时,在200℃退火10min。
步骤C中,拉拔获得最终直径的丝材后,需在180℃退火15min。
本发明还公开了上述的方法制备得到的低合金化高强韧易编织可降解医用锌合金丝材。
有益效果:本发明与现有技术相比,具有以下优点:
(1)合金元素总含量不高于0.8wt%,利用第三组元添加在具有较低Mg元素含量的Zn合金中获得了三相共晶组织(α-Zn+Mg2Zn11+MgZn2,其中MgZn2相为纳米晶颗粒,分布在Mg2Zn11相中),且降低了形成该组织所需的特定冷却速度范围区间,有利于降低生产成本,实现工业化应用。
(2)由于合金元素含量少,共晶组织含量低,经后续ECAP细化晶粒后,合金具有优异的塑性,能够满足室温拉拔条件,获得高强韧易编织的锌合金丝材。借助多道次低温剧烈塑性变形和冷拉拔,将多元Mg-Zn相细化和均匀分散,使锌合金丝材同时保持高强度和高塑韧性。获得的锌合金丝材的抗拉强度高于450MPa,屈服强度高于420MPa,延伸率大于20%。由于合金具有优异的强韧性,使其易编织,可根据要求编织成各类复杂形状(各类支架、吻合钉等)。
(3)多道次等通道转角挤压和多道次冷拉拔组合加工使增强相尺寸细小且分散均匀,消除了晶界偏聚第二相和带状组织等,使得丝材的腐蚀类型为均匀腐蚀,有益于作为可降解器件植入人体环境中。
(4) 第三组元的标准电极电位与Zn和Mg不同,这些组元能够改变第二相的电极电位,使得锌合金丝材的腐蚀速率在一定范围内调控,因此可以根据具体的使用环境和要求选择适宜的合金系列。
附图说明
图1为实施例5中Zn-0.5wt%Mg-0.15wtSr%铸态合金中共晶区域的透射电子显微照片,该共晶组织由胞状的α-Zn、网络状的Mg2Zn11相和纳米级尺寸的MgZn2颗粒相构成。
具体实施方式
以下通过具体实施例对本发明的技术方案进行进一步说明,但本发明并不限于以下具体实施例。
实施例1
将成分为Zn-0.2wt%Mg-0.2wt%Y合金所需的纯锌锭、纯镁锭和镁钇中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为100℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在80℃进行12道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为9,获得直径3mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为25%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.3mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例2
将成分为Zn-0.6wt%Mg-0.03wt%Gd合金所需的纯锌锭、纯镁锭和镁钆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为300℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在120℃进行20道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为15%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例3
将成分为Zn-0.4wt%Mg-0.1Nd合金所需的纯锌锭、纯镁锭和镁钕中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为180℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为16,获得直径为2mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.2mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例4
将成分为Zn-0.3wt%Mg-0.15wt%Zr合金所需的纯锌锭、纯镁锭和镁锆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为250℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为15%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.3mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例5
将成分为Zn-0.5wt%Mg-0.15wt%Sr合金所需的纯锌锭、纯镁锭和镁锶中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例6
将成分为Zn-0.5wt%Mg-0.15wt%Y合金所需的纯锌锭、纯镁锭和镁钇中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例7
将成分为Zn-0.5wt%Mg-0.15wt%Gd合金所需的纯锌锭、纯镁锭和镁钆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例8
将成分为Zn-0.5wt%Mg-0.15wt%Nd合金所需的纯锌锭、纯镁锭和镁钕中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例9
将成分为Zn-0.5wt%Mg-0.15wt%Zr合金所需的纯锌锭、纯镁锭和镁锆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭;从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为20%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得高强韧易编织可降解医用锌合金丝材。
实施例10
将成分为Zn-0.5wt%Mg-0.15wt%Sr合金所需的纯锌锭、纯镁锭和镁锆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为50℃/s,获得锌合金铸锭。从上述锌合金铸锭中切割出长方体坯料,在100℃进行16道次转模等通道转角挤压加工,随后在150℃经一道次热挤压加工,挤压比为25,获得直径为1mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为15%,当累积拉拔变形量超过300%时,在200℃退火10min;拉拔获得直径为0.1mm的丝材后,在180℃退火15min,获得锌合金丝材。
实施例11
将成分为Zn-0.5wt%Mg-0.15wt%Sr合金所需的纯锌锭、纯镁锭和镁锆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为500℃/s,获得锌合金铸锭。
实施例12
将成分为Zn-0.5wt%Mg-0.01wt%Sr合金所需的纯锌锭、纯镁锭和镁锆中间合金在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为200℃/s,获得锌合金铸锭。
实施例13
将成分为Zn-0.5wt%Mg合金所需的纯锌锭和纯镁锭在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为300℃/s,获得锌合金铸锭。
实施例14
将成分为Zn-1.2wt%Mg合金所需的纯锌锭和纯镁锭在CO2和SF6混合气氛(99:1)保护下进行熔炼,随后控制凝固的冷却速度为100℃/s,获得锌合金铸锭。
从上述锌合金铸锭中切割出长方体坯料,在150℃进行16道次转模等通道转角挤压加工,随后在150℃经一道次热挤压加工,挤压比为16,获得直径为2mm的锌合金棒材;对锌合金棒材进行室温拉拔加工,单道次变形量为10%,当累积拉拔变形量超过150%时,在200℃退火10min;拉拔获得直径为0.3mm的丝材后,在180℃退火15min,获得锌合金丝材。
对以上实施例中铸态合金的显微组织进行了观察,本发明范围内实施例1-9中的三元锌合金中均形成了部分α-Zn+Mg2Zn11+MgZn2三相共晶组织。如图1所示,为实施例5中Zn-0.5wt%Mg-0.15wtSr%铸态合金中共晶区域的透射电子显微照片,该共晶组织由胞状的α-Zn、网络状的Mg2Zn11相和纳米级尺寸的MgZn2颗粒相构成。实施例10-14中的锌合金中均未形成该三相共晶组织,对比实施例5、实施例10和实施例11可以得出,当冷却速度低于100℃/s和高于300℃/s时(即凝固速度不在本发明限定范围内),本发明成分范围内的合金中未形成三相共晶组;对比实施例5、实施例12和实施例13可以得出,当合金中Mg含量在本发明限定范围内,而第三组元不在本发明限定范围或不含后第三组元时,控制合金冷却速度在本发明限定范围内,合金中未形成三相共晶组织。
对部分实施例的力学性能和腐蚀性能进行了测试,结果如表1所示。可以看出,在本发明范围内获得的锌合金丝材(实施例5-9)具有高强度和高韧性的特点,其屈服强度均高于450MPa,抗拉强度均高于480MPa,延伸率均大于20%。由于该发明锌合金丝材的高强韧性,易于编织成各类形状而不发生破坏。对比实施例5和实施例10可以得出,当合金成分相同,组织中未形成三相共晶时,在后续相同的剧烈塑性变形和拉拔加工条件下,含有三相共晶组织的合金具有更加优异的强韧性。实施例14结果表明,在合金元素含量较高的二元Zn-Mg合金,由于铸态组织中Zn+Mg2Zn11二元共晶组织含量增多,合金的塑性急剧下降,其所需的等通道转角挤压加工的温度提升,同时室温拉拔性能变差,在本发明限定的拉拔速度和累积拉拔变形量下,无法顺利制备出锌合金丝材。只有在更慢的拉拔速度下,且需要增加退火工艺次数,才可以获得直径0.3mm的丝材,且进一步拉拔时稳定性恶化,难以获得更细的丝材。此外,实施例14得到的丝材的强度和延伸率均显著低于实施例5-9,表明本发明在更低合金元素含量的条件下获得了优异的力学性能。
此外,对上述锌合金丝材在模拟体液中进行了浸泡试验(该浸泡试验方法参照参考文献【E. Mostaed, et al., J. Mech. Behav. Biomed. Mater. 60 (2016) 581–602.】中第2.4.2小节记载的试验方法),结果如表1所示。可见,各合金丝材的腐蚀速率均低于0.20 mm/year,能够满足可降解金属植入材料对腐蚀速率的要求。另外,从表中可以看出,实施例5-10中锌合金丝材在相同的制备工艺下具有不同的腐蚀速率,与Zn-Mg二元合金丝材相比,Y、Gd和Nd元素的加入能够加快丝材的腐蚀,而Sr和Zr元素的加入降低了丝材的腐蚀速率,即通过合金成分设计能够实现对锌合金丝材腐蚀速率在0.06~0.18 mm/year范围内的调控,从而满足不同环境内的应用。
表1 本发明部分实施例中锌合金丝材的室温拉伸力学性能和在模拟体液中的腐蚀速率
Figure 853848DEST_PATH_IMAGE002
现有文献的记载中,Zn-Mg二元合金中的主要强化相是Mg2Zn11相,且合金的强度通常随Mg2Zn11相含量的增加而逐渐提高。然而,当Mg元素含量高于>1.5wt%时,合金的塑性和成型性能急剧下降,难以进行后续加工制备各种型材及丝材。发明人经研究发现,对于Mg含量为0.3~1.2wt%的Zn-Mg二元合金,当其凝固冷却速度较快为600~800℃/s时,合金中可形成特殊的α-Zn+Mg2Zn11+MgZn2三相共晶组织。其中MgZn2相呈纳米晶形态,分布在共晶组织相Mg2Zn11中,大量MgZn2纳米晶的形成使得变形锌合金的强韧性显著提高。在本发明中,限定合金中Mg元素含量为0.2%~0.6wt%,并在Zn-Mg二元基础上进一步添加0.03%~0.2wt%的第三组元Y、Gd、Nd、Sr或Zr元素(必选其一)。这些第三组元元素均为密排六方结构,原子半径大于Mg和Zn原子,且在锌基体中具有随温度升高而逐渐增大的固溶度。合金凝固过程中,溶解于锌基体以及共晶Mg2Zn11相中的第三组元进一步降低了Mg元素在Mg2Zn11相中的固溶度,促使大量富Mg团簇在Mg2Zn11相中形成,且提高了富Mg团簇的稳定性。因此,第三组元的加入降低了本发明低合金化镁合金中α-Zn+Mg2Zn11+MgZn2三相共晶组织形成的冷却速度条件,降为100~300℃/s。当合金凝固冷却速度不在该特定范围内时,富Mg团簇会发生重熔(冷却速度降低时)或不形成(冷却速度提高时),即不会形成该α-Zn+Mg2Zn11+MgZn2三相共晶组织。
对以上特殊组织的锌合金进行12~20道次的较低温(80~120℃)等通道转角挤压加工,能够显著细化合金组织,促进铸态粗大共晶组织的破碎,使第二相均匀分散,同时避免细小动态再结晶晶粒的长大,获得细小均匀的超细晶合金组织。这提高了合金的塑性和可加工性,以保证合金后续的室温可拉拔。利用一道次热挤压将超细晶合金获得可拉拔的尺寸(直径3mm以内),随后在室温对超细晶锌合金进行冷拉拔。拉拔的单道次变形量为15%~25%,当累积拉拔变形量超过300%时,在200℃退火10min,以消除合金中累积的内应力,恢复合金的高塑韧性,保证拉拔顺利进行。由于拉拔前合金的超细晶组态,使得合金的可拉拔性提高,减少了拉拔过程中的退火次数。拉拔获得最终直径的丝材后,在180℃退火15min,获得低合金化高强韧易编织可降解医用锌合金丝材。

Claims (8)

1.一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于,该方法包括如下步骤:
A、将纯锌锭、纯镁锭和中间合金在惰性气氛保护下进行熔炼,所述中间合金为Mg-Y中间合金、Mg-Gd中间合金、Mg-Nd中间合金、Mg-Sr中间合金或Mg-Zr中间合金,随后控制凝固,凝固的冷却速度为100~300℃/s,获得锌合金铸锭,所述锌合金铸锭为三元合金,其中Mg的含量为0.2%~0.6wt%,第三组元Y、Gd、Nd、Sr或Zr的含量为0.03%~0.2wt%,余下为Zn;
B、从上述锌合金铸锭中切割出长方体或圆柱体坯料,进行多道次转模等通道转角挤压加工,获得组织超细均匀的锌合金;随后经一道次热挤压加工,获得直径1~2mm的锌合金棒材;
C、对锌合金棒材进行室温拉拔加工,获得低合金化高强韧易编织可降解医用锌合金丝材。
2.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:所述低合金化高强韧易编织可降解医用锌合金丝材的直径为0.1~0.3mm。
3.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:所述惰性气氛为CO2和SF6混合气氛或氩气。
4.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:步骤B中,等通道转角挤压加工的温度为80~120℃,道次为12~20次。
5.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:步骤B中,热挤压加工的温度为150℃,热挤压加工的挤压比为9~25。
6.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:步骤C中,单道次拉拔变形量为15%~25%,当累积拉拔变形量超过300%时,在200℃退火10min。
7.根据权利要求1所述的一种低合金化高强韧易编织可降解医用锌合金丝材的制备方法,其特征在于:步骤C中,拉拔获得最终直径的丝材后,需在180℃退火15min。
8.权利要求1-7中任一项所述的方法制备得到低合金化高强韧易编织可降解医用锌合金丝材。
CN201911133161.7A 2019-11-19 2019-11-19 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法 Active CN111020254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911133161.7A CN111020254B (zh) 2019-11-19 2019-11-19 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911133161.7A CN111020254B (zh) 2019-11-19 2019-11-19 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法

Publications (2)

Publication Number Publication Date
CN111020254A true CN111020254A (zh) 2020-04-17
CN111020254B CN111020254B (zh) 2021-04-06

Family

ID=70200626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911133161.7A Active CN111020254B (zh) 2019-11-19 2019-11-19 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法

Country Status (1)

Country Link
CN (1) CN111020254B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186427A (zh) * 2021-04-27 2021-07-30 河海大学 一种具有高加工硬化率的高强韧可降解锌合金及其制备方法和应用
CN113351679A (zh) * 2021-06-03 2021-09-07 东南大学 医用锌合金吻合钉的制备方法
CN114309124A (zh) * 2021-12-27 2022-04-12 江苏中矿大正表面工程技术有限公司 一种高韧性锌基铜钛合金丝材的制备工艺
CN114733925A (zh) * 2022-04-18 2022-07-12 东南大学 一种用于锌合金超细丝材的连续制备方法
CN117778801A (zh) * 2024-02-26 2024-03-29 山东瑞安泰医疗技术有限公司 一种可降解铜基形状记忆合金医用植入物及其制备方法
CN117778801B (zh) * 2024-02-26 2024-05-24 山东瑞安泰医疗技术有限公司 一种可降解铜基形状记忆合金医用植入物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212998A (zh) * 2014-08-21 2014-12-17 北京大学 一种Zn-Mg系锌合金及其制备方法与应用
CN106676327A (zh) * 2017-03-14 2017-05-17 郑州大学 一种新型可生物降解Zn‑Mg‑Nd锌合金植入材料及其制备方法
CN108411158A (zh) * 2018-03-05 2018-08-17 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种生物可降解的Zn-Mg-Zr合金材料、制备方法及应用
EP3427763A1 (en) * 2016-03-10 2019-01-16 Shandong Rientech Medical Technology Co., Ltd. Degradable zinc base alloy implant material and preparation method and use thereof
CN109797315A (zh) * 2019-03-01 2019-05-24 湖南华耀百奥医疗科技有限公司 一种医用可降解锌基复合材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212998A (zh) * 2014-08-21 2014-12-17 北京大学 一种Zn-Mg系锌合金及其制备方法与应用
EP3427763A1 (en) * 2016-03-10 2019-01-16 Shandong Rientech Medical Technology Co., Ltd. Degradable zinc base alloy implant material and preparation method and use thereof
CN106676327A (zh) * 2017-03-14 2017-05-17 郑州大学 一种新型可生物降解Zn‑Mg‑Nd锌合金植入材料及其制备方法
CN108411158A (zh) * 2018-03-05 2018-08-17 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种生物可降解的Zn-Mg-Zr合金材料、制备方法及应用
CN109797315A (zh) * 2019-03-01 2019-05-24 湖南华耀百奥医疗科技有限公司 一种医用可降解锌基复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAN LIU ET AL.: "Evolution of Mg-Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6Mg (wt.%) alloys", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186427A (zh) * 2021-04-27 2021-07-30 河海大学 一种具有高加工硬化率的高强韧可降解锌合金及其制备方法和应用
CN113186427B (zh) * 2021-04-27 2021-11-09 河海大学 一种具有高加工硬化率的高强韧可降解锌合金及其制备方法和应用
CN113351679A (zh) * 2021-06-03 2021-09-07 东南大学 医用锌合金吻合钉的制备方法
CN113351679B (zh) * 2021-06-03 2024-05-17 东南大学 医用锌合金吻合钉的制备方法
CN114309124A (zh) * 2021-12-27 2022-04-12 江苏中矿大正表面工程技术有限公司 一种高韧性锌基铜钛合金丝材的制备工艺
CN114309124B (zh) * 2021-12-27 2024-04-19 江苏中矿大正表面工程技术有限公司 一种高韧性锌基铜钛合金丝材的制备工艺
CN114733925A (zh) * 2022-04-18 2022-07-12 东南大学 一种用于锌合金超细丝材的连续制备方法
CN114733925B (zh) * 2022-04-18 2024-04-23 东南大学 一种用于锌合金超细丝材的连续制备方法
CN117778801A (zh) * 2024-02-26 2024-03-29 山东瑞安泰医疗技术有限公司 一种可降解铜基形状记忆合金医用植入物及其制备方法
CN117778801B (zh) * 2024-02-26 2024-05-24 山东瑞安泰医疗技术有限公司 一种可降解铜基形状记忆合金医用植入物及其制备方法

Also Published As

Publication number Publication date
CN111020254B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN111020254B (zh) 一种低合金化高强韧易编织可降解医用锌合金丝材及其制备方法
JP7448581B2 (ja) マグネシウム合金、その製造方法およびその使用
CN104284993B (zh) 镁合金、其生产方法及其用途
CN101702923B (zh) 镁基合金
Ardakani et al. The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05 Mg alloy
CN108588484B (zh) 一种高强高塑可生物降解Zn-Mn-Mg系锌合金及其制备方法
EP2864513B1 (en) Biodegradable implant made from magnesium-aluminum-zinc alloy and method for the production thereof
Gunde et al. High-strength magnesium alloys for degradable implant applications
CN104328318B (zh) 一种高耐蚀性生物可降解镁合金的制备方法
CN108754232B (zh) 一种高强高塑可生物降解Zn-Mn-Li系锌合金及其用途
CN110129644B (zh) 一种耐热可溶解镁合金及其制备方法和应用
CN109763004B (zh) 一种显著改善含Fe可降解锌合金组织和性能的方法
CN111187943A (zh) 一种生物医用Zn-Cu-Mg系合金及其制备方法
CN109338187B (zh) 一种低成本可高速挤压的高强韧变形镁合金及其制备方法
CN110284031B (zh) 一种可快速时效强化的Mg-Sn-Li系镁合金及其制备方法
CN110983135A (zh) 一种可快速时效强化的高强高塑Mg-Ga-Li系镁合金及其制备方法
CN110195178B (zh) 一种高强高塑性耐热耐燃镁合金及其制造方法
CN111020246A (zh) 一种基于超细三相共晶组织增强的高强韧医用生物可降解锌合金及其制备方法
CN109735755B (zh) 一种可双级时效强化的Mg-Sn-Li-Zn系镁合金及其制备方法
JP4433916B2 (ja) 塑性加工用マグネシウム合金およびマグネシウム合金部材
US20200354818A1 (en) High Strength Microalloyed Magnesium Alloy
CN108642359B (zh) 一种高强度的快速降解生物医用Mg-Zn-Zr-Fe合金材料及其制备方法
Mollaei et al. Zinc based bioalloys processed by severe plastic deformation–A review
CN115976383A (zh) 纳米MgO颗粒调控超细晶镁基复合材料及其加工方法
CN112301262A (zh) 一种细晶生物镁锌合金板材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant