CN110981451B - 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法 - Google Patents

一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN110981451B
CN110981451B CN201911285002.9A CN201911285002A CN110981451B CN 110981451 B CN110981451 B CN 110981451B CN 201911285002 A CN201911285002 A CN 201911285002A CN 110981451 B CN110981451 B CN 110981451B
Authority
CN
China
Prior art keywords
oxide
interface
oxide fiber
elastic structure
ceramic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911285002.9A
Other languages
English (en)
Other versions
CN110981451A (zh
Inventor
李建章
张海昇
王鹏
马文科
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xinyao Ceramic Composite Material Co Ltd
Original Assignee
Xi'an Golden Mountain Ceramic Composites Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Golden Mountain Ceramic Composites Co ltd filed Critical Xi'an Golden Mountain Ceramic Composites Co ltd
Priority to CN201911285002.9A priority Critical patent/CN110981451B/zh
Publication of CN110981451A publication Critical patent/CN110981451A/zh
Application granted granted Critical
Publication of CN110981451B publication Critical patent/CN110981451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种陶瓷基复合材料的制备方法,具体涉及一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,以解决现有技术中存在的含间隙型界面氧化物/氧化物陶瓷基复合材料强度较低、韧性不足的问题。采用的技术方案包括制备弹性结构界面溶液、制备含纳米线及热解碳界面的氧化物纤维预制体、基体浸渗与烧结、氧化,最终得到含弹性结构界面的氧化物/氧化物陶瓷基复合材料。该制备方法可根据部件需要,通过调节SiC纳米线含量和间隙界面厚度,灵活调整间隙界面的结构,在基本提高材料断裂韧性的同时,有效增强间隙型界面复合材料的强度,使间隙型界面的氧化物/氧化物陶瓷基复合材料更好的应用于耐压结构件。

Description

一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制 备方法
技术领域
本发明涉及一种陶瓷基复合材料的制备方法,具体涉及一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法。
背景技术
氧化物/氧化物陶瓷基复合材料的增强体纤维和基体都为氧化物,而氧化物具有高的扩散系数,很容易扩散形成强界面结合。间隙型界面是氧化物/氧化物陶瓷基复合材料的一种较为常用的界面,旨在纤维与基体之间留下一层间隙,实现纤维与基体弱结合,达到复合材料韧化的目的。
间隙界面的制备原理是,采用化学气相沉积法或者有机先驱体浸渗热解法在纤维表面上沉积一层热解碳,然后在真空或保护性气氛下进行基体浸渗与烧结,最后,在空气中氧化除去纤维和基体之间的碳层,从而在纤维和基体之间留下一层间隙,形成间隙型界面。但是,这种间隙界面很难将载荷从基体传递到纤维,在一定程度上牺牲了复合材料的强度和模量,而且纤维很容易从断裂的基体中拔出,相应的拔出长度较长,韧化作用极为有限,所以带有间隙型界面的氧化物/氧化物陶瓷基复合材料很少作为承受载荷的结构件。因此,在间隙界面处实现基体到界面的载荷传递,同时提高材料韧性成为制备强韧性氧化物/氧化物陶瓷基复合材料的关键。
发明内容
为了解决现有技术中存在的含间隙型界面氧化物/氧化物陶瓷基复合材料压缩强度较低、韧性不足的问题,本发明提供了一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法。
本发明所采用的技术方案是:
一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特殊之处在于,包括以下步骤:
1)制备弹性结构界面溶液
1.1)配制浓度为2-10wt.%的聚乙烯醇溶液;
1.2)将SiC纳米线混入到聚乙烯醇溶液中,混入过程中同时进行磁力搅拌,搅拌至SiC纳米线在聚乙烯醇溶液中的浓度为5-15wt.%;
1.3)将步骤1.2制备的溶液球磨0.5-1小时,得弹性结构界面溶液;
2)制备含纳米线热解碳界面的氧化物纤维预制体
2.1)将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5-1小时;
2.2)浸渍完成后,将所述氧化物纤维布层叠铺在模具中并固定,然后在真空或惰性气氛条件下进行界面固化和热解,使氧化物纤维表面形成含纳米线热解碳界面;
2.3)重复步骤2.1-2.2至热解碳界面厚度为150-200nm,得含纳米线热解碳界面的氧化物纤维预制体;
3)基体浸渗与烧结
3.1)将步骤2制得的氧化物纤维预制体浸渗于金属氧化物溶胶中0.5-1小时;
3.2)浸渗完成后,将所述氧化物纤维预制体置于真空或惰性气氛条件下烧结,烧结温度为800-1200℃;
3.3)重复步骤3.1-3.2至氧化物纤维预制体增重率低于2%,得复合材料坯体;
4)氧化
将步骤3制备的氧化物纤维坯体置于500-700℃的温度下氧化2-4小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
进一步地,步骤1.1中配制浓度为5wt.%的聚乙烯醇溶液。
进一步地,步骤1.2中所述SiC纳米线的直径为15nm,长度<50μm。
进一步地,步骤2.2中所述界面固化温度为250-400℃,热解温度为600-1000℃。
进一步地,步骤3.1中所述金属氧化物溶胶是固含量为10-25%、胶体粒子直径为10-20nm的氧化物溶胶,包括但不限于氧化铝溶胶或莫来石溶胶或二氧化硅溶胶。
本发明的有益效果:
(1)本发明所提供的含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,可根据应用需要,通过调节SiC纳米线含量和间隙界面厚度,灵活调整间隙界面的结构,在基本提高材料断裂韧性的同时,能够有效增强间隙型界面复合材料的强度,使含间隙型界面的氧化物/氧化物陶瓷基复合材料更好地应用于结构件;
(2)本发明选用混入了SiC纳米线的聚乙烯醇溶液作为弹性结构界面溶液,聚乙烯醇作为热解碳源,且具有低温粘结性,能够使层叠的氧化物纤维布之间紧密粘结起来;
(3)本发明中制得的氧化物纤维预制体的厚度为150-200nm,能够保证纳米线在间隙界面中的排布和载荷有效传递。
附图说明
图1为本发明含弹性结构界面的氧化物/氧化物陶瓷基复合材料示意图。
1-基体,2-纤维,3-间隙界面,4-S iC纳米线。
具体实施方式
下面以具体实施例对本发明进行详细说明。
实施例一
1.配制浓度为2wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为5wt.%,然后球磨0.5小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中250℃固化和600℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为150nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为10%、胶体粒子直径为10nm的氧化铝溶胶中0.5小时,再在真空炉中1000℃烧结;
5.将步骤4重复10次至氧化物纤维预制体烧结后的增重率为1.8%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在500℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了10%,韧性提高2%,效果明显。
实施例二
1.配制浓度为5wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为10wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中300℃固化和800℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为180nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的氧化铝溶胶中1小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.0%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在600℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了15%,韧性提高5%,效果明显。
实施例三
1.配制浓度为10wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为15wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中1小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中400℃固化和1000℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复4次,得含纳米线热解碳界面厚度为200nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为25%,胶体粒子直径为20nm的氧化铝溶胶中1小时,再在真空炉中1200℃烧结;
5.将步骤4重复4次至氧化物纤维预制体烧结后的增重率为1.2%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在700℃的温度下氧化4小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了12%,韧性提高5%,效果明显。
实施例四
1.配制浓度为5wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为5wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中250℃固化和600℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为160nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的氧化铝溶胶中0.5小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.1%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在600℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本实施例除步骤1中SiC纳米线在聚乙烯醇溶液中的浓度为5wt.%,其余步骤同实施例二。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了10%,韧性提高5%,效果明显。
实施例五
1.配制浓度为5wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为15wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中250℃固化和600℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为185nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的氧化铝溶胶中0.5小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.3%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在350℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本实施例除步骤1中SiC纳米线在聚乙烯醇溶液中的浓度为15wt.%,其余步骤同实施例二。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了12%,韧性提高2%,效果明显。
实施例六
1.配制浓度为5wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为10wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中300℃固化和800℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为180nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的莫来石溶胶中1小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.4%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在600℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本实施例除步骤4中氧化物纤维预制体浸渗到莫来石溶胶中,其余步骤同实施例二。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了15%,韧性提高5%,效果明显。
实施例七
1.配制浓度为10wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为15wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中1小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中400℃固化和1000℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复4次,得含纳米线热解碳界面厚度为200nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为25%,胶体粒子直径为20nm的莫来石溶胶中1小时,再在真空炉中1200℃烧结;
5.将步骤4重复4次至氧化物纤维预制体烧结后的增重率为0.8%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在700℃的温度下氧化4小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本实施例除步骤4中氧化物纤维预制体浸渗到莫来石溶胶中,其余步骤同实施例三。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了13%,韧性提高5%,效果明显。
实施例八
1.配制浓度为10wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为15wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中1小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中400℃固化和1000℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复4次,得含纳米线热解碳界面厚度为200nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为25%,胶体粒子直径为20nm的二氧化硅溶胶中1小时,再在真空炉中800℃烧结;
5.将步骤4重复4次至氧化物纤维预制体烧结后的增重率为0.8%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在700℃的温度下氧化4小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本实施例除步骤4中氧化物纤维预制体浸渗到二氧化硅溶胶中,其余步骤同实施例三。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度提高了6%,韧性提高5%,效果明显。
对比例一
1.配制浓度为20wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为5wt.%,然后球磨0.5小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中250℃固化和600℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为400nm(不符合)的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的氧化铝溶胶中1小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.8%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在500℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本对比例步骤1中聚乙烯醇溶液浓度值为20wt.%,不符合本发明提供范围,其余步骤同实施例二。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度降低了10%(不符合),韧性提高2%,劣于本发明效果。
对比例二
1.配制浓度为5wt.%的聚乙烯醇溶液,在磁力搅拌作用下,将直径为15nm、长度<50μm的SiC纳米线均匀混入到聚乙烯醇溶液中,直至SiC纳米线在聚乙烯醇溶液中的浓度为25wt.%,然后球磨1小时,得弹性结构界面溶液;
2.将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5小时,然后将其取出,层叠铺在模具中并固定好,在真空炉中300℃固化和800℃热解,使氧化物纤维表面形成含纳米线热解碳界面;
3.将步骤2重复3次,得含纳米线热解碳界面厚度为180nm的氧化物纤维预制体;
4.将步骤3制得的氧化物纤维预制体浸渗于固含量为20%,胶体粒子直径为10nm的氧化铝溶胶中1小时,再在真空炉中1100℃烧结;
5.将步骤4重复6次至氧化物纤维预制体烧结后的增重率为1.0%,得复合材料坯体;
6.将步骤5制得的氧化物纤维坯体置于马弗炉中,在600℃的温度下氧化2小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
本对比例步骤1中SiC纳米线浓度值为25wt.%,不符合本发明提供范围,其余步骤同实施例二。
对上述得到的复合材料进行弯曲强度测试,测试样品要求为60mm×9mm×3mm(长×宽×厚)的长方体,打磨表面,不得有明显的裂纹、孔洞和分层纤维裸露等缺陷,每组试样不少于3个。
经对比测试氧化物/氧化物陶瓷基复合材料的耐压强度,当间隙界面中有以上SiC纳米线填充时,复合材料的耐压强度降低了5%,韧性降低5%,明显劣于本发明效果。

Claims (5)

1.一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
1)制备弹性结构界面溶液
1.1)配制浓度为2-10wt.%的聚乙烯醇溶液;
1.2)将SiC纳米线混入到聚乙烯醇溶液中,混入过程中同时进行磁力搅拌,搅拌至SiC纳米线在聚乙烯醇溶液中的浓度为5-15wt.%;
1.3)将步骤1.2制备的溶液球磨0.5-1小时,得弹性结构界面溶液;
2)制备含纳米线热解碳界面的氧化物纤维预制体
2.1)将氧化物纤维布浸渍在步骤1所配制的弹性结构界面溶液中0.5-1小时;
2.2)浸渍完成后,将所述氧化物纤维布层叠铺在模具中并固定,然后在真空或惰性气氛条件下进行界面固化和热解,使氧化物纤维表面形成含纳米线热解碳界面;
2.3)重复步骤2.1-2.2至含纳米线热解碳界面厚度为150-200nm,得含纳米线热解碳界面的氧化物纤维预制体;
3)基体浸渗与烧结
3.1)将步骤2制得的氧化物纤维预制体浸渗于金属氧化物溶胶中0.5-1小时;
3.2)浸渗完成后,将所述氧化物纤维预制体置于真空或惰性气氛条件下烧结,烧结温度为800-1200℃;
3.3)重复步骤3.1-3.2至氧化物纤维预制体增重率低于2%,得复合材料坯体;
4)氧化
将步骤3制备的氧化物纤维坯体置于500-700℃的温度下氧化2-4小时,制成含弹性结构界面的氧化物/氧化物陶瓷基复合材料。
2.根据权利要求1所述的一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特征在于:
步骤1.1中配制浓度为5wt.%的聚乙烯醇溶液。
3.根据权利要求1所述的一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特征在于:
步骤1.2中所述SiC纳米线的直径为15nm,长度<50μm。
4.根据权利要求1所述的一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特征在于:
步骤2.2中所述界面固化温度为250-400℃,热解温度为600-1000℃。
5.根据权利要求1所述的一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法,其特征在于:
步骤3.1中所述金属氧化物溶胶是固含量为10-25%、胶体粒子直径为10-20nm的氧化铝溶胶或莫来石溶胶或二氧化硅溶胶。
CN201911285002.9A 2019-12-13 2019-12-13 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法 Active CN110981451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911285002.9A CN110981451B (zh) 2019-12-13 2019-12-13 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911285002.9A CN110981451B (zh) 2019-12-13 2019-12-13 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110981451A CN110981451A (zh) 2020-04-10
CN110981451B true CN110981451B (zh) 2022-05-13

Family

ID=70093441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911285002.9A Active CN110981451B (zh) 2019-12-13 2019-12-13 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110981451B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773092A (zh) * 2022-04-29 2022-07-22 西安交通大学 一种通过氧化处理提高碳化硅纳米线气凝胶力学性能和隔热性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
CN104926343A (zh) * 2015-05-22 2015-09-23 中国人民解放军国防科学技术大学 含界面相的硅酸铝纤维增强氧化物陶瓷及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN108840696A (zh) * 2018-08-09 2018-11-20 西安鑫垚陶瓷复合材料有限公司 一种含抗氧化弱化界面的氧化物纤维/氧化物陶瓷基复合材料的制备方法
CN109206146A (zh) * 2018-11-28 2019-01-15 西安工程大学 碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
CN104926343A (zh) * 2015-05-22 2015-09-23 中国人民解放军国防科学技术大学 含界面相的硅酸铝纤维增强氧化物陶瓷及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN108840696A (zh) * 2018-08-09 2018-11-20 西安鑫垚陶瓷复合材料有限公司 一种含抗氧化弱化界面的氧化物纤维/氧化物陶瓷基复合材料的制备方法
CN109206146A (zh) * 2018-11-28 2019-01-15 西安工程大学 碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法

Also Published As

Publication number Publication date
CN110981451A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US4752503A (en) Process for the manufacture of a composite material with refractory fibrous reinforcement and ceramic matrix
US8871044B2 (en) Part based on C/C composite material, and a method of fabricating it
Dong et al. Preparation of SiC/SiC composites by hot pressing, using Tyranno‐SA fiber as reinforcement
US8268393B2 (en) Method of fabricating a friction part out of carbon/carbon composite material
CN106904984B (zh) 一种SiC短纤维复合材料及复合包壳管及其制备方法
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
US7364794B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
EP1028099B1 (en) Fibrous composite material and process for producing the same
JP2000327441A (ja) 複合炭素質断熱材及びその製造方法
CN110981451B (zh) 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法
CN113735604A (zh) 航空发动机热结构件用多层陶瓷基复合材料及其制备方法
CN114621020A (zh) 一种碳陶复合结构及其制备方法
KR101101244B1 (ko) 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
EP0672637B1 (de) Faserverbundwerkstoff mit keramischer Matrix und Verfahren zu seiner Herstellung
JPH08501523A (ja) ファイバー複合材料の製造方法
CN115124361B (zh) 一种具有混杂结构的陶瓷基复合材料及其制备方法
CN115417685B (zh) 一种具备电磁波吸收性能的SiC/Si3N4复合物及其制备方法
US6251317B1 (en) Method for manufacturing a ceramic composite material
CN113149680A (zh) 一种碳纤维强化硅硼碳氮基陶瓷复合材料及其制备方法
JP3562989B2 (ja) 溶射層を有する複合材およびその製造方法
CN107663101A (zh) 一种抗氧化SiC泡沫及其制备方法
CN112552067A (zh) 一种C/C-SiC-CuSnTi复合材料及其制备方法
JPH01188468A (ja) 摩擦材用炭素繊維強化炭素複合材料
CN116239384B (zh) 一种MAX相陶瓷颗粒改性SiCf/SiC复合材料及其制备方法
JP2000344582A (ja) 繊維強化複合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Country or region after: China

Address before: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD.

Country or region before: China

CP03 Change of name, title or address