CN110980647A - 一种适用于液化过程的氢气净化方法 - Google Patents

一种适用于液化过程的氢气净化方法 Download PDF

Info

Publication number
CN110980647A
CN110980647A CN201911360352.7A CN201911360352A CN110980647A CN 110980647 A CN110980647 A CN 110980647A CN 201911360352 A CN201911360352 A CN 201911360352A CN 110980647 A CN110980647 A CN 110980647A
Authority
CN
China
Prior art keywords
hydrogen
temperature
liquefaction process
desulfurizer
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911360352.7A
Other languages
English (en)
Other versions
CN110980647B (zh
Inventor
陈国华
唐珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XIAMEN LELIRUNAN TECHNOLOGY Co.,Ltd.
Original Assignee
Xiamen Xijiao Hardware Industry Technology Research Institute Co Ltd
Xiamen Lelirunan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Xijiao Hardware Industry Technology Research Institute Co Ltd, Xiamen Lelirunan Technology Co ltd filed Critical Xiamen Xijiao Hardware Industry Technology Research Institute Co Ltd
Priority to CN201911360352.7A priority Critical patent/CN110980647B/zh
Publication of CN110980647A publication Critical patent/CN110980647A/zh
Application granted granted Critical
Publication of CN110980647B publication Critical patent/CN110980647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种适用于液化过程的氢气净化方法,该净化方法包括以下步骤:步骤一、通过脱氧剂进行脱氧处理,随后依次进行脱硫、脱烃处理;步骤二、进行脱水;步骤三、脱水后将氢气温度升至400℃通过钯膜进行初步净化;步骤四、将初步净化后的进行低温吸附,所述低温吸附以液氮做冷源,吸附操作的温度为‑196℃,低温吸附后的氢气即可进入下一工序。本发明提供一种适用于液化过程的氢气净化方法克服了现有的单一氢气方法造成的氢气纯度不高的缺点,通过钯膜扩散结合低温吸附法,取长补短,使精制后的氢气纯度可达到7N。

Description

一种适用于液化过程的氢气净化方法
技术领域
本发明涉及氢气净化技术领域,尤其涉及一种适用于液化过程的氢气净化方法。
背景技术
随着工业的发展和人们物质生活水平的提高,能源的需求也与日俱增。由于煤炭、石油等化石能源在使用时不可避免地会污染环境,再加上其储量有限,人类面临着开发高效、洁净的二次能源的艰巨挑战,因而寻找可再生的绿色能源迫在眉睫。氢作为可从多种途径获取的理想能源载体,是化石能源向可再生能源过渡的重要桥梁之一,将为终端能源利用提供新的重要形式。
在液氢温度下,除氦气以外,所有其他气体杂质均已固化,固化杂质可能会堵塞氢气液化装置中各气体及液体通道、管道,尤其是节流部位更容易发生堵塞现象,极易引起爆炸,所以,对原料氢气必须进行严格净化。因此,需要设计一种适用于液化过程的氢气净化方法。
发明内容
为了克服现有技术中的缺陷,提供一种适用于液化过程的氢气净化方法。
本发明通过下述方案实现:
一种适用于液化过程的氢气净化方法,该净化方法包括以下步骤:
步骤一、调整氢气的压力至0.1-0.5MPa,然后将氢气升温至100℃通过脱氧剂进行脱氧处理,随后依次进行脱硫、脱烃处理;
步骤二、然后将氢气温度调节至300℃通过脱水剂进行脱水;
步骤三、脱水后将氢气温度升至400℃通过钯膜进行初步净化;
步骤四、将初步净化后的进行低温吸附,所述低温吸附以液氮做冷源,吸附操作的温度为-196℃,低温吸附后的氢气即可进入下一工序。
在所述步骤一中,所述脱氧剂以氧化铝为载体,贵金属银作为活性成分。
所述脱硫、脱烃处理的具体步骤为:将氢气依次通过铁木屑脱硫剂、活性炭脱硫剂、水解催化剂和脱硫剂。
所述脱硫剂以氧化铝为载体,贵金属钯和铂作为活性成分。
氢气温度降至25℃时依次经过铁木屑脱硫剂、活性炭脱硫剂,氢气在经过水解催化剂处理时,氢气的温度提升至80℃,在经过脱硫剂处理时,氢气的温度提升至350℃。
在步骤二中,所述脱水剂为4A分子筛,所述4A分子筛的化学式为Na2O·Al2O3·2SiO2·9/2H2O,所述4A分子筛的硅铝比:SiO2/Al2O3=2。
在步骤三中,所述钯膜为钯铜复合膜,所述钯铜复合膜中钯元素:铜元素为60:40。
所述低温吸附的吸附剂为5A分子筛;
所述5A分子筛的硅铝比为SiO2/AI2O3=2,所述5A分子筛的化学式为3/4CaO·1/4Na2O·Al2O3·2SiO2·9/2H2O。
本发明的有益效果为:
本发明提供一种适用于液化过程的氢气净化方法克服了现有的单一氢气方法造成的氢气纯度不高的缺点,通过钯膜扩散结合低温吸附法,取长补短,使精制后的氢气纯度可达到7N(99.99999%)。
具体实施方式
下面对本发明进一步说明:
一种适用于液化过程的氢气净化方法,该净化方法包括以下步骤:
步骤一、调整氢气的压力至0.1-0.5MPa,然后将氢气升温至100℃通过脱氧剂进行脱氧处理,随后依次进行脱硫、脱烃处理;
步骤二、然后将氢气温度调节至300℃通过脱水剂进行脱水;
步骤三、脱水后将氢气温度升至400℃通过钯膜进行初步净化;
步骤四、将初步净化后的进行低温吸附,所述低温吸附以液氮做冷源,吸附操作的温度为-196℃,低温吸附后的氢气即可进入下一工序。
在所述步骤一中,所述脱氧剂以氧化铝为载体,贵金属银作为活性成分。
所述脱硫、脱烃处理的具体步骤为:将氢气依次通过铁木屑脱硫剂、活性炭脱硫剂、水解催化剂和脱硫剂。
所述脱硫剂以氧化铝为载体,贵金属钯和铂作为活性成分。
氢气温度降至25℃时依次经过铁木屑脱硫剂、活性炭脱硫剂,氢气在经过水解催化剂处理时,氢气的温度提升至80℃,在经过脱硫剂处理时,氢气的温度提升至350℃。
本申请的脱氧剂在常温常温下就会有很好的脱氧能力,可以将氧气去除至0.1×10-6(V/V)以下。经过脱硫处理后,氢气中硫含量低于0.3×10-6(V/V)。经过脱烃处理后,氢气中烃含量低于0.5×10-6(V/V)。
在步骤二中,所述脱水剂为4A分子筛,所述4A分子筛的化学式为Na2O·Al2O3·2SiO2·9/2H2O,所述4A分子筛的硅铝比:SiO2/Al2O3=2。
在步骤三中,所述钯膜为钯铜复合膜,所述钯铜复合膜中钯元素:铜元素为60:40。为了制取超纯氢气,首先必须去除其中的杂质。氢气中的主要杂质大致有氧、氮、一氧化碳、二氧化碳、水、烃类等,单一的提纯手段,各有优点和缺点,往往不能很好的达到精制的目的。氢气分子在钯膜一侧的表面离解成氢原子,氢原子溶于钯并扩散到钯膜的另一侧,然后结合成分子。由于钯合金膜只能透过氢,不能透过其他气体,借此使氢气得以从混合气中分离,经一级分离即可得到纯度为5N~6N的氢气。
所述低温吸附的吸附剂为5A分子筛;
所述5A分子筛的硅铝比为SiO2/AI2O3=2,所述5A分子筛的化学式为3/4CaO·1/4Na2O·Al2O3·2SiO2·9/2H2O。
本申请引入低温吸附法,通过钯膜扩散结合低温吸附法,取长补短,使精制后的氢气纯度可达到7N。
本申请的脱氧剂和脱硫剂等催化剂在空速4000h-1和7000h-1均具有较好的催化活性,但随着空速的提高,要达到相同的净化效果,反应温度需要提高30℃左右,本申请在进行氢气净化过程中,选择空速为4000h-1至7000h-1之间。
钯和钯复合膜以其良好的氢气渗透性,钯膜本身性质引起的氢脆现象又极大地影响到了钯膜的广泛推广和使用。本申请的钯铜复合膜通过化学镀方法制备,具有良好的氢气渗透性、机械性和稳定性,而且在温度升至500℃时,本申请的钯铜复合膜都具有很好的抗氢脆性能。
尽管已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例做出修改或者采用等同的替代方案,这对本领域的技术人员而言是显而易见,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种适用于液化过程的氢气净化方法,其特征在于,该净化方法包括以下步骤:
步骤一、调整氢气的压力至0.1-0.5MPa,然后将氢气升温至100℃通过脱氧剂进行脱氧处理,随后依次进行脱硫、脱烃处理;
步骤二、然后将氢气温度调节至300℃通过脱水剂进行脱水;
步骤三、脱水后将氢气温度升至400℃通过钯膜进行初步净化;
步骤四、将初步净化后的进行低温吸附,所述低温吸附以液氮做冷源,吸附操作的温度为-196℃,低温吸附后的氢气即可进入下一工序。
2.根据权利要求1所述的一种适用于液化过程的氢气净化方法,其特征在于:在所述步骤一中,所述脱氧剂以氧化铝为载体,贵金属银作为活性成分。
3.根据权利要求1所述的一种适用于液化过程的氢气净化方法,其特征在于:所述脱硫、脱烃处理的具体步骤为:将氢气依次通过铁木屑脱硫剂、活性炭脱硫剂、水解催化剂和脱硫剂。
4.根据权利要求3所述的一种适用于液化过程的氢气净化方法,其特征在于:所述脱硫剂以氧化铝为载体,贵金属钯和铂作为活性成分。
5.根据权利要求3所述的一种适用于液化过程的氢气净化方法,其特征在于:氢气温度降至25℃时依次经过铁木屑脱硫剂、活性炭脱硫剂,氢气在经过水解催化剂处理时,氢气的温度提升至80℃,在经过脱硫剂处理时,氢气的温度提升至350℃。
6.根据权利要求1所述的一种适用于液化过程的氢气净化方法,其特征在于:在步骤二中,所述脱水剂为4A分子筛,所述4A分子筛的化学式为Na2O·Al2O3·2SiO2·9/2H2O,所述4A分子筛的硅铝比为SiO2/Al2O3=2。
7.根据权利要求1所述的一种适用于液化过程的氢气净化方法,其特征在于:在步骤三中,所述钯膜为钯铜复合膜,所述钯铜复合膜中钯元素:铜元素为60:40。
8.根据权利要求1所述的一种适用于液化过程的氢气净化方法,其特征在于:所述低温吸附的吸附剂为5A分子筛;
所述5A分子筛的硅铝比为SiO2/AI2O3=2,所述5A分子筛的化学式为3/4CaO·1/4Na2O·Al2O3·2SiO2·9/2H2O。
CN201911360352.7A 2019-12-25 2019-12-25 一种适用于液化过程的氢气净化方法 Active CN110980647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911360352.7A CN110980647B (zh) 2019-12-25 2019-12-25 一种适用于液化过程的氢气净化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911360352.7A CN110980647B (zh) 2019-12-25 2019-12-25 一种适用于液化过程的氢气净化方法

Publications (2)

Publication Number Publication Date
CN110980647A true CN110980647A (zh) 2020-04-10
CN110980647B CN110980647B (zh) 2021-04-06

Family

ID=70077005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911360352.7A Active CN110980647B (zh) 2019-12-25 2019-12-25 一种适用于液化过程的氢气净化方法

Country Status (1)

Country Link
CN (1) CN110980647B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850191A1 (de) * 1995-09-14 1998-07-01 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abscheiden von wasserstoff aus einem gasgemisch
CN101648698A (zh) * 2009-08-31 2010-02-17 济南德洋特种气体有限公司 一种高纯度氢气制备工艺
CN106145037A (zh) * 2015-04-01 2016-11-23 大连中鼎化学有限公司 从硅外延炉放空尾气中回收氢气的装置及制高纯氢的方法
CN107434243A (zh) * 2017-07-25 2017-12-05 大连中鼎化学有限公司 一种超高纯氢气、氩气、氦气纯化方法
CN108715436A (zh) * 2018-05-29 2018-10-30 四川天采科技有限责任公司 半导体制程常压废氢气全温程变压吸附提纯再利用的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850191A1 (de) * 1995-09-14 1998-07-01 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abscheiden von wasserstoff aus einem gasgemisch
CN101648698A (zh) * 2009-08-31 2010-02-17 济南德洋特种气体有限公司 一种高纯度氢气制备工艺
CN106145037A (zh) * 2015-04-01 2016-11-23 大连中鼎化学有限公司 从硅外延炉放空尾气中回收氢气的装置及制高纯氢的方法
CN107434243A (zh) * 2017-07-25 2017-12-05 大连中鼎化学有限公司 一种超高纯氢气、氩气、氦气纯化方法
CN108715436A (zh) * 2018-05-29 2018-10-30 四川天采科技有限责任公司 半导体制程常压废氢气全温程变压吸附提纯再利用的方法

Also Published As

Publication number Publication date
CN110980647B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Adhikari et al. Hydrogen membrane separation techniques
CN100556997C (zh) 一种利用焦炉气制备合成天然气的方法
CN100453447C (zh) 一种富氢气源提纯氢气的工艺方法
CN105858606B (zh) 一种超纯氢的全温程变压吸附纯化方法
CN100398439C (zh) 一氧化碳的高得率生产方法
CN108179046A (zh) 一种焦炉煤气制取氢气和lng的方法
KR20170109088A (ko) 발전 및 석유 고차 회수를 위한 시스템 및 방법
CN108117047B (zh) 荒煤气制氢的低压耐硫变换和专有吸附剂排惰技术
JP2003531795A (ja) 炭化水素の部分的酸化による水素の製造方法
CN202063710U (zh) 从炼厂气中回收氢气的装置
KR950031892A (ko) 수소가스의 정제방법
CN101745391B (zh) 一种催化裂化干气脱除微量氧的催化剂
EA200800297A1 (ru) Выделение потока продукта с высокой концентрацией со из смешанного газа, содержащего тяжёлые углеводороды
Wiesmann et al. Techniques to remove traces of oxygen by catalytic conversion from gas mixtures
WO2016157980A1 (ja) 二酸化炭素製造設備及び二酸化炭素製造方法
JPH09278403A (ja) 高純度水素の製造方法
JPH09235101A (ja) 水素及びエネルギーの生成方法及び装置
CN110980647B (zh) 一种适用于液化过程的氢气净化方法
CN113582800B (zh) 一种高纯电子级乙烯的提纯方法
KR920002205A (ko) 불활성 가스 스트림의 정제방법
Yang et al. Hydrogen permeance and surface states of Pd‐Ag/ceramic composite membranes
CN107376603B (zh) 脱除制氢变换气变压吸附工艺尾气中co2的方法
JPS5849604A (ja) コ−クス炉ガスの精製法
CN113735080B (zh) 一种含氦天然气常温梯级提取超纯氦气的方法及生产装置
CN113830734B (zh) 燃料电池用氢气的纯化系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210602

Address after: 361006 area B, 5th floor, North building, No. 40, Huli Avenue, Huli District, Xiamen City, Fujian Province

Patentee after: XIAMEN LELIRUNAN TECHNOLOGY Co.,Ltd.

Address before: 361000 area B, 5th floor, North building, No.40, Huli Avenue, Xiamen City, Fujian Province

Patentee before: XIAMEN LELIRUNAN TECHNOLOGY Co.,Ltd.

Patentee before: Xiamen Xijiao Hardware Industry Technology Research Institute Co.,Ltd.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A hydrogen purification method suitable for liquefaction process

Effective date of registration: 20230728

Granted publication date: 20210406

Pledgee: Xiamen Bank Co.,Ltd.

Pledgor: XIAMEN LELIRUNAN TECHNOLOGY Co.,Ltd.

Registration number: Y2023980050161

PE01 Entry into force of the registration of the contract for pledge of patent right