CN110923482B - 一种优质高钨高钴镍合金材料及其制备方法 - Google Patents

一种优质高钨高钴镍合金材料及其制备方法 Download PDF

Info

Publication number
CN110923482B
CN110923482B CN201911164747.XA CN201911164747A CN110923482B CN 110923482 B CN110923482 B CN 110923482B CN 201911164747 A CN201911164747 A CN 201911164747A CN 110923482 B CN110923482 B CN 110923482B
Authority
CN
China
Prior art keywords
tungsten
cobalt
nickel alloy
refining
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911164747.XA
Other languages
English (en)
Other versions
CN110923482A (zh
Inventor
郑磊
赵鑫
刘辉
刘洪亮
吕金娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201911164747.XA priority Critical patent/CN110923482B/zh
Publication of CN110923482A publication Critical patent/CN110923482A/zh
Application granted granted Critical
Publication of CN110923482B publication Critical patent/CN110923482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种优质高钨高钴镍合金及其制备方法。合金组成包括:25~45wt.%的钨,15~30wt.%的钴,0.01~0.10wt.%的碳,0.005~0.20wt.%的金属锆,余量的镍和不可避免的杂质。采用真空感应炉熔炼方法制备,制备流程为:配料→装料→熔化→精炼→微调成分→浇铸。真空感应炉真空室抽真空至真空度<40Pa,送电化料,期间保持真空度<40Pa;全熔后进入精炼期,真空度<1Pa,精炼10~90min;精炼结束后降温至钢水表面结膜,充氩至5000~20000Pa,加入金属锆,搅拌2~10min;调整钢水温度,小功率带电浇铸。采用本发明获得的优质高钨高钴的镍合金铸锭,其氧含量≤30ppm,铸态组织细化,室温静态拉伸延伸率可达46%,抗拉强度可达595.2MPa,在5000s‑1时动态压缩真应变可达30%,动态压缩屈服强度可达674MPa。

Description

一种优质高钨高钴镍合金材料及其制备方法
技术领域
本发明属于金属材料技术领域,涉及一种优质高钨高钴镍合金材料及其制备方法。
背景技术
药型罩是聚能装药结构中形成射流或弹丸的主要元件。在聚能装药结构工作过程中,爆炸药产生的聚能效应使衬在聚能装药结构凹窝内的药型罩被压缩成为柱状的高速金属射流,聚能射流具有能量密度高和方向性强的特点,可以侵彻装甲、岩石等坚硬目标。药型罩材料对射流的长度、速度和连续稳定性以及最终侵彻性能至关重要,而形成优质射流的关键控制因素则是药型罩材料的塑性性能。
镍主要以面心立方结构存在,具有优异的组织稳定性,可以与多种元素复合成稳定的单相合金。2011年,美国US7921778B2专利公布了一种高钨高钴的镍合金,其成分为痕量至90%的钴、10%~50%的钨、余量的镍和不可避免的杂质。高钨高钴的镍合金具有较高的密度、适中的成本,是一种非常有前景的新型药型罩材料。但是铸态合金在热变形过程中容易开裂,室温拉伸的伸长率只有21%。高钨高钴的镍合金具有高钨、钴含量、余量的镍及不可避免的残余元素,其中残余元素包括:硫、磷、氢、氧、氮等。一般情况下,通过优选原材料,可以控制合金最终硫、磷的含量。但是,由于氧元素极为活泼,由于原材料含氧、坩埚增氧等原因,熔炼后残留在合金中的氧含量较为显著。且值得注意的是,氧在高钨高钴的镍合金有两种存在形态:固溶态与氧化物夹杂。固溶在高钨高钴的镍合金中会增加合金脆性,而形成氧化物夹杂后则成为裂纹的萌生源与扩展通道。所以,氧在高钨高钴的镍合金中是一种非常有害的杂质元素,尤其是在极高速变形情况下,氧含量更是衡量材料性能优劣的关键指标,因此降低氧含量对于提高高钨高钴的镍合金塑性性能和药型罩的侵彻性能有重要意义。
真空感应冶炼(Vacuum induction melting,简称VIM)是一种在真空条件下利用电磁感应加热原理来熔炼金属的工艺过程。通常情况下,采用真空感应熔炼的方式,相对于大气下冶炼或电弧熔炼具有很好的脱氧效果。但采用真空感应熔炼的方式,高钨高钴的镍合金中的氧含量仍在70ppm以上,最终的塑性性能无法满足药型罩高速变形下的塑性要求。
美国US7921778B2专利未就合金的脱氧方法和动态压缩性能进行研究和报道;至今国内尚未发现任何有关高钨高钴镍合金的研究,更未发现关于脱氧方法和动态压缩性能的研究结果。
发明内容
本发明的目的在于提供一种优质高钨高钴镍合金及其制备方法。
实现本发明的技术方案:
一种优质高钨高钴镍合金材料,合金化学成分组成为:25~45wt.%的钨,15~30wt.%的钴,0.01~0.10wt.%的碳,0.005~0.20wt.%的金属锆,余量的镍和不可避免的杂质。
进一步地,一种优质高钨高钴镍合金材料,合金化学成分组成为:25~45wt.%的钨,15~25wt.%的钴,0.01~0.03wt.%的碳,0.005~0.10wt.%的金属锆,硫含量≤0.002wt.%,氧含量≤0.003wt.%,余量的镍和不可避免的杂质
本发明所述优质高钨高钴的镍合金各元素的作用:
镍的密度为8.91g/cm3,且与铜一样都是塑性优良的材料,但是镍的声速较高(4.9km/s),这使镍药型罩可以形成具有更高头部速度的连续长射流。同时镍具有优异的组织稳定性,可以与多种元素复合成稳定的单相合金。钨的密度为19.3g/cm3,为了可形成穿透射流或爆炸成型弹丸的药型罩材料的有效使用,必须有足够的钨实现提高合金密度。钴的密度8.9g/cm3,具有改善合金热加工行的作用。碳在真空冶炼过程中具有优异的脱氧能力,并且脱氧产物通过挥发去除,没有残余产物。锆是一种强效脱氧剂,在钢水中与氧结合会生成细小的氧化锆颗粒,在钢液凝固过程中作为形核质点,可以细化铸态组织。
如上所述优质高钨高钴镍合金的制备方法,采用真空感应熔炼的方式制备,包括以下步骤:
1)按照高钨高钴的镍合金的元素配比称取一定量的冶炼原材料;
2)将步骤1)得到的镍、钨、钴原材料及碳装入真空感应炉坩埚中;
3)合上真空感应炉真空室,抽真空后送电化料,保持一定真空度直至原料全部熔化;
4)全熔后进入精炼期,抽高真空开始精炼,控制精炼温度;
5)精炼结束后停止抽真空,降温至钢液结膜,充氩后加入强脱氧剂金属锆,搅拌一段时间;
6)调整钢水温度小功率带电浇铸。
进一步地,步骤1)所述金属原材料应选用纯净度较高的纯金属料或合金料,并且原材料表面应无明显氧化、油污,否则需对原材料进行清理后方可使用。
进一步地,步骤2)所述真空感应炉坩埚的材质,选用氧化镁、氧化钙、氧化铝或氧化锆。
进一步地,步骤3)所述熔化过程控制真空度<40Pa,熔化过程如果放气过于激烈,导致沸腾严重,可以适当调整功率,降低熔化速率,控制全熔温度1500℃~1560℃。
进一步地,步骤4)所述精炼期控制真空度<1Pa,精炼温度1530℃~1560℃,精炼时间10min~90min。
进一步地,步骤5)所述精炼结束后停止抽真空,降温至钢液结膜,充氩至5000~20000Pa,加入强脱氧剂金属锆,搅拌2~10min。
进一步地,步骤6)所述调整钢水温度至1500℃~1580℃,小功率带电浇铸。
本发明提供了一种优质高钨高钴镍合金及其制备方法,利用镍优异的固溶特性,加入高密度的钨(19.3g/cm3)、改善合金热加工性的钴(8.9g/cm3)及少量的能起到脱氧、改善组织作用的有益元素碳与锆,研发出优质的高钨高钴镍基合金。采用本发明获得的优质高钨高钴的镍合金铸锭,密度(10.0~13.0g/cm3),其氧含量≤30ppm,铸态组织细化,室温静态拉伸延伸率可达46%,抗拉强度可达595.2MPa,在5000s-1时动态压缩真应变可达30%,动态压缩屈服强度可达674MPa。不仅明显降低氧含量从而大幅提高铸锭的塑性性能,而且在提高动态压缩塑性和强度方面也具有意想不到的效果。
本发明和现有技术相比所具有的有益效果在于:
1)本发明提供了一种具有高密度、高塑性、高动态力学性能的优质高钨高钴镍合金及其制备方法,制备的合金具有单相组织,如图1所示;
2)通过使用高品质原材料,并进行材料表面处理,降低了原材料带入的氧;
3)熔化期控制熔化速度与真空度,可保证气体缓慢充分的释放;
4)在精炼期利用少量碳脱氧,可以防止碳残留和形成硬而脆的碳化钨颗粒;由于高真空度下的碳氧反应[C]+[O]=CO↑且一氧化碳具有挥发性,在高真空度下,反应产物迅速挥发,不会有脱氧产物残留在钢液,同时随着脱氧反应不断进行,钢液中的少量碳不断被消耗,最终残余量非常少,可保证钢水最终的纯净度;
5)采用强脱氧剂锆,可以补充用少量碳脱氧存在的脱氧能力不足,进一步降低钢水的氧含量,实现了对高钨高钴的镍合金强效脱氧,最终氧含量≤30ppm;
6)脱氧产物氧化锆尺寸细小,在钢液凝固过程中可以作为形核质点,可以起到细化晶粒的作用;
7)延伸率可达43%,比美国专利公布数据高出95%;
8)抗拉强度可达583.6MPa,比美国专利公布数据高出22%;
9)在5000s-1时动态压缩真应变可达29%;
10)在5000s-1时动态压缩屈服强度可达665MPa。
附图说明
图1优质高钨高钴的镍合金的XRD图谱。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述。
实施例1
1)一个示例性的优质高钨高钴的镍合金,以质量百分比计,含有:35%钨和20%的钴和余量的镍;
2)按照步骤1)所述合金的元素配比称取原材料,包括:金属钨条、金属钴板及金属镍板;
3)按照质量百分比0.015wt.%称取碳,按照质量百分比0.01wt.%称取金属锆;
4)将步骤2)得到的原材料及步骤3)得到的碳装入真空感应熔炼炉氧化铝坩埚中;
5)合上真空感应炉真空室,抽真空至真空度<40Pa后送电化料,熔化期控制真空度<40Pa,全熔后测量温度1534℃;
5)精炼期控制真空度0.1~1Pa,精炼温度1550℃,精炼时间60min;
6)精炼结束后,停电降温至钢液表面结膜,真空感应炉充氩至8000Pa,加入金属锆,搅拌3min;
7)钢水温度调整至1550℃,小功率带电浇铸成铸锭。
8)采用辉光放电质谱法测得铸锭头尾氧含量分别为23ppm和22ppm;
9)延伸率为46%,抗拉强度为595.2MPa。
10)在5000s-1时动态压缩真应变为30%,屈服强度为674MPa。
综上所述,本发明实施例提供了一种优质高钨高钴镍合金及其制备方法,制备的铸锭氧含量≤30ppm,尤其是在5000s-1时动态压缩真应变可达30%,屈服强度可达674MPa。
以上所述,仅为本发明较佳的具体实施方案,但本发明的保护范围并不局限于此,凡是利用本发明所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种高钨高钴镍合金材料,其特征在于:所述合金化学成分组成为:25~45wt.%的钨,15~30wt.%的钴,0.01~0.10wt.%的碳,0.005~0.20wt.%的金属锆,硫含量≤0.002wt.%,氧含量≤0.003wt.%,余量的镍和不可避免的杂质;
所述高钨高钴镍合金材料的性能为:密度10.0~13.0g/cm3,其氧含量≤30ppm,铸态组织细化,室温静态拉伸延伸率为43%~46%,抗拉强度为583.6~595.2MPa,在5000s-1时动态压缩真应变为29%~30%,动态压缩屈服强度为665~674MPa。
2.根据权利要求1所述的高钨高钴镍合金材料,其特征在于:所述合金化学成分组成为:25~45wt.%的钨,15~25wt.%的钴,0.01~0.03wt.%的碳,0.005~0.10wt.%的金属锆,硫含量≤0.002wt.%,氧含量≤0.003wt.%,余量的镍和不可避免的杂质。
3.一种如权利要求1或2所述的高钨高钴镍合金材料的制备方法,其特征在于采用真空感应熔炼的方式制备,包括以下步骤:
1)按照高钨高钴的镍合金的元素配比称取一定量的冶炼原材料;
2)将步骤1)得到的镍、钨、钴原材料及碳装入真空感应炉坩埚中;
3)合上真空感应炉真空室,抽真空后送电化料,保持一定真空度直至原料全部熔化;
4)全熔后进入精炼期,抽高真空开始精炼,控制精炼温度;
5)精炼结束后停止抽真空,降温至钢液结膜,充氩后加入强脱氧剂金属锆,搅拌一段时间;
6)调整钢水温度小功率带电浇铸。
4.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤1)所述金属原材料应选用纯净度较高的纯金属料或合金料,并且原材料表面应无明显氧化、油污,否则需对原材料进行清理后方可使用。
5.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤2)所述真空感应炉坩埚的材质,选用氧化镁、氧化钙、氧化铝或氧化锆。
6.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤3)所述熔化过程控制真空度<40Pa,熔化过程如果放气过于激烈,导致沸腾严重,则适当调整功率,降低熔化速率,控制全熔温度1500℃~1560℃。
7.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤4)所述精炼期控制真空度<1Pa,精炼温度1530℃~1560℃,精炼时间10min~90min。
8.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤5)所述精炼结束后停止抽真空,降温至钢液结膜,充氩气至5000~20000Pa,加入强脱氧剂金属锆,搅拌2~10min。
9.根据权利要求3所述高钨高钴的镍合金材料的制备方法,其特征在于:步骤6)所述调整钢水温度至1500℃~1580℃,小功率带电浇铸。
CN201911164747.XA 2019-11-25 2019-11-25 一种优质高钨高钴镍合金材料及其制备方法 Active CN110923482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911164747.XA CN110923482B (zh) 2019-11-25 2019-11-25 一种优质高钨高钴镍合金材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911164747.XA CN110923482B (zh) 2019-11-25 2019-11-25 一种优质高钨高钴镍合金材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110923482A CN110923482A (zh) 2020-03-27
CN110923482B true CN110923482B (zh) 2021-01-15

Family

ID=69851723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911164747.XA Active CN110923482B (zh) 2019-11-25 2019-11-25 一种优质高钨高钴镍合金材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110923482B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763869A (zh) * 2020-09-01 2020-10-13 北京科技大学 钨钴镍合金及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616645A (en) * 1979-07-16 1981-02-17 Nippon Parkerizing Co Ltd Material having corrosion resistance to molten zinc
US7360488B2 (en) * 2004-04-30 2008-04-22 Aerojet - General Corporation Single phase tungsten alloy
CN106244854B (zh) * 2016-07-29 2018-02-16 上海屹禾合金材料科技有限公司 具有高耐磨性能的镍基合金及其制造方法
CN107190158B (zh) * 2017-05-19 2019-01-11 江苏隆达超合金航材有限公司 降低镍基高温合金中o、n、s含量的真空感应熔炼工艺
CN110438371A (zh) * 2019-08-06 2019-11-12 北京科技大学 一种高钨高钴铸态镍合金的低偏析控制及塑性提升方法

Also Published As

Publication number Publication date
CN110923482A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110760718B (zh) 一种高钨高钴的镍合金高纯净度细晶棒料的制备方法
CN111378848B (zh) 提高gh4169合金返回料纯净度的电渣重熔用预熔渣及制备方法
CN113444891B (zh) 一种采用稀土氧化物生产含稀土高温合金的方法
CN109161697B (zh) 一种控制粉末冶金高温合金母合金中非金属夹杂物的方法
CN103122431B (zh) 一种长周期结构相增强的镁锂合金的制备方法
KR102616983B1 (ko) 저질소, 본질적으로 질화물을 함유하지 않는 크롬 및 크롬과 니오븀-함유 니켈계 합금의 제조 방법 및 수득된 크롬 및 니켈계 합금
CN102719682B (zh) Gh901合金的冶炼方法
CN103146943B (zh) 一种紫杂铜精炼剂及其制备方法
CN115852267B (zh) 一种高强高导电率低膨胀铁镍钼合金丝材及其生产方法
CN114058888A (zh) 一种FeCrCoNiAl高熵合金的冶炼方法
CN110983081B (zh) 一种采用真空熔炼设备制备超低氧白铜的方法
JP4181416B2 (ja) Cr−Ti−V系水素吸蔵合金の製造法
CN110923482B (zh) 一种优质高钨高钴镍合金材料及其制备方法
CN115094263A (zh) 铜铬锆系合金用变质剂合金、其制备方法及应用
CN113355587B (zh) 一种高速钢及其镁和稀土微合金化和增加凝固压力综合改善铸态组织的方法
CN112877568B (zh) 一种超高应变速率下具有高延伸率的高密度镍合金及其制备方法和应用
CN112410573B (zh) 用于冶炼含Ce的Fe-Ni软磁合金的渣系及其使用方法
CN102864368B (zh) 一种孕育铸铁及其制备方法
CN117127036A (zh) 一种通过添加稀土元素Ce强韧化NCu30-4-2-1合金的制备方法
CN106011567A (zh) 一种镁合金铸件及其制备方法
CN116254452A (zh) 降低含Ti、Al铁镍基合金中气体含量的冶炼方法
CN115216637A (zh) 精密可伐合金箔材用合金锭的制备方法
CN114672716A (zh) 一种热处理态下高强韧性的CoCrNi2(V2B)x共晶高熵合金及其制备方法
CN112795836A (zh) 一种钛处理降低低密度钢中氮化铝夹杂物的方法
CN102002649B (zh) 高强韧镁基块体金属玻璃复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Zheng Lei

Inventor after: Zhao Xin

Inventor after: Liu Hui

Inventor after: Liu Hongliang

Inventor after: Lv Jinjuan

Inventor before: Zheng Lei

Inventor before: Zhao Xin

Inventor before: Liu Hui

Inventor before: Liu Hongliang

Inventor before: Lv Jinjuan

CB03 Change of inventor or designer information