CN1108801A - 电子束发生装置,图像显示装置和驱动这些装置的方法 - Google Patents

电子束发生装置,图像显示装置和驱动这些装置的方法 Download PDF

Info

Publication number
CN1108801A
CN1108801A CN94119231A CN94119231A CN1108801A CN 1108801 A CN1108801 A CN 1108801A CN 94119231 A CN94119231 A CN 94119231A CN 94119231 A CN94119231 A CN 94119231A CN 1108801 A CN1108801 A CN 1108801A
Authority
CN
China
Prior art keywords
electron emission
surface conductive
current
conductive electron
measurement mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN94119231A
Other languages
English (en)
Other versions
CN1066571C (zh
Inventor
处处泰之
鲈英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP32377393A external-priority patent/JPH07181911A/ja
Priority claimed from JP30478294A external-priority patent/JP3280176B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1108801A publication Critical patent/CN1108801A/zh
Application granted granted Critical
Publication of CN1066571C publication Critical patent/CN1066571C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Details Of Television Scanning (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Lasers (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

具有形成于基片上的表面传导电子发射器件的 电子束源的电子束发生装置,包括测量流过每个表面 传导电子发射器件的器件电流的测量单元,存储测量 单元测得的数据的器件电流存储单元,把测得的最新 数据与器件电流存储单元中的数据相比较的比较单 元,存储校正要加到每个表面传导电子发射器件的驱 动信号的校正值的校正值存储单元,和调节校正值存 储单元中的校正值的调节单元。

Description

本发明涉及一种包括电子发生器件的电子束发生装置,利用该电子束发生装置的图象显示装置,以及驱动这些装置的方法。
热阴极和冷阴极通常称为电子发射器件。对于冷阴极,场发射器件(简称为PE器件),金属/绝缘/金属发射器件(简称为MIM器件),表面导电电子发射器件是已知的。
PE器件已知的例子为W.P.Dyke  &  W.W.Dolan,的“Field  emission”,载于Advance  in  Electron  Physics,8,89(1956)及C.A.Spindt的Physical  properties  of  thin-film  field  emission  cathodes  with  molybdeniun  cones”,J.Appl.Phys.,47,5248(1976)。
MIM器件的一个已知的例子为C.A.Mead的Operation  of  tunnel-emission  devices,J.appl.Phys.,32,646(1961)。
至于表面传导电子发射器件,M.I.Elinson的Radio  Eng.Electron  Phys.,10,1290(1965)和后面所述的其它的器件是已知的。
表面传导电子发射器件利用了这样一种现象,即当在一个基片上形成一个小的区域的薄膜上通过平行于该薄膜表面的电流,即可引起电子发射。在表面传导电子发射器件中,除了前面所述的Elinson等人的使用SnO2薄膜的器件以外,还报道了另外的器件,如使用了Au薄膜的器件[G.Dittmer:“Thin solid Films”9,217(1972)],使用In2O3/SnO2薄膜的器件[M.Hartwell和C.G.Fonstad:“IEEE Trans.ED Conf.”,519(1975)],及使用碳薄膜的器件[Hisashi Arake等人:Vacuum,Vol.26,No.1,22(1983)]。
图23为显示前面所述的M.Hartwell的器件的平面图,作为表面传导电子发射器件的器件结构的典型的例子。参见图23,标号3001代表基片,3004代表通过溅射形成的金属氧化物的导电薄膜。如图23所示,导电薄膜3004具有一个H形平面形状。在导电薄膜3004上,通过称为“加电形成”(后面还要描述)的电处理,形成有电子发射区3005。在图23中距离L设置为0.5-1[mm],W被设置为0.1[mm]。注意在图23中,为方便起见电子发射区3005被显示为在导电薄膜3004的中央的矩形区,但是这只是该部分的示例。也就是说,实际上的电子发射区的位置和形状并不完全如图23中所示。
在上面的由M.Hartwell等人的器件为代表的表面传导电子发射器件中,通常是在引起电子发射之前,通过对薄膜电膜3004进行称为加电形成(energizarion  forming)的电处理形成电子发射区3005。加电形成是这样一个处理过程,在该过程中,一个恒定的直流电压或以例如1伏/分缓慢上升的直流电压跨接在导电薄膜3004上进行局部破坏,变形,或改变导电薄膜3004,从而,形成高电阻状态的电子发射区3005。注意在导电薄膜3004的一个区上形成了一个局部破坏的,变形的,或改变的裂隙。在加电形成之后,根据向导电薄膜3004所加的适当的电压,即可在该裂隙附近进行电子发射。
上面所述的表面传导电子发射器件结构简单且易于制造。其优点是可以在较大的区域内形成较多数目的器件。因此,进行了有关驱动这些器件的阵列的研究,如由本申请人申请的日本专利延迟公开No.64-31332中所述。
至于表面传导电子发射器件的应用,已经进行了对例如成象装置,如图象显示装置和图象记录装置和充电束源的研究。
更具体地说,在图象显示装置中的表面传导电子发射器件的应用方面,已经研究了利用电子束辐射而发光的器件和荧光体的结合的图象显示装置,如美国专利U.S.P.No.5,066,883或本申请人申请的日本专利延迟公开No.2-257551所述。这些利用表面传导电子发射器件和荧光体的结合的图象显示装置预期可取得比传统的其它类型的图象显示装置更好的特性。例如,由于该种图象显示装置本身可以发光并具有一个较广的视角所以不需要背衬光,可以胜过近年来流行的液晶显示器。
本发明人曾经尝试了各种材料制造方法,和结构的表面传导电子发射器件的制造,包括上面所述的传统结构的器件。而且,本发明人对排列大量的表面传导电子发射器件的多电子束源,及应用这种多电子束源的图象显示装置也进行了细致的研究。
例如,本发明人曾经根据图22中所示的电子布线方法制作多电子束源。在该多电子束源中,多个表面传导电子发射器件按图22所示以阵列方式二维排列并连接。
在图22中,标号4001代表示意性表示的表面传导电子发射器件;4002代表行方向的线,4003代表列方向的线。实际上,行和列方向线4002和4003具有固定的电阻值。在图22中,这些电阻被表示为线电阻4004和4005。这种布线的方法称为简单阵列布线。
为示例方便,图22中显示的是6×6阵列,但是阵列的规模并不限于此。在用于图象显示装置的多电子束源的情况,要排列和连接足以进行所需图象显示器件。
在利用简单阵列布线连接的表面传导电子发射器件的多电子束源中,适当的电信号被加到行方向线4002,和列方向线4003以输出所需的电子束。例如,为了驱动阵列中给定的行的表面传导电子发射器件,一个选定的电压Vs被加到选定的行的行方向线4002。与这些加压操作同步,用于输出电子束的驱动电压Ve被加到列方向线4003。在该方法中,忽略了因线电阻4004和4005引起的电压的降落,一个Ve-Vs的电压被加到选定的表面传导电子发射器件。所预期的结果是,如果Ve,Vs和Vns分别被设定为合适的电压时,则只从选定的行的表面传导电子发射器件输出所需强度的电子束,如果不同的驱动电压Ve被加到具体的列方向线时,则从选定的行中的器件输出不同强度的电子束。另外,由于表面传导电子发射器件的响应速度较高,可以期望通过改变驱动电压Ve的加压时间长度来改变电子束的输出时间。
因此,利用简单阵列布线连接表面传导电子发射器件生产的多电子束源来说,各种应用都是可行的。例如,通过施加适当的对应于图象信息的电信号,这种类型的多电子束源可以用作图象显示装置的电子源。
但是,利用采用简单阵列连接的表面传导电子发射器件的多电子束源的图象显示装置被发现具有以下问题。
当加上电视或计算机端子时,图象显示装置必须具有高分辨率,大显示屏,大量的象素,长使用寿命的特性。为了实现这种特性,该多电子束源必须具有较大规模的简单阵列,其可以高到排列几百到几千行和列。此外,还希望这种表面传导电子发射器件的电子发射特性是一致的,并可以保持较长的时间。
如上所述的大规模多电子束源还具有表面传导电子发射器件的电子发射特性中的制造差异的问题。
因形成具体表面传导电子发射器件的电极或导电膜的膜形成步骤或图形化步骤中的尺寸形状,或材料组成而引起误差时,即可造成这种制造差异。
此外,当利用简单阵列布线制造的多电子束源被长时间使用时,表面传导电子发射器件的电子发射特性发生变化,不幸的是,这种变化的程度因下列原因,每个器件各不相同。当多电子束源被加到一个图象显示装置时,每个表面传导电子发射器件都按照要显示的图象被驱动。结果,总的驱动时间在各个器件之间是不同的。因为这个原因,已经发现每个表面传导电子发射器件的时间的变化具有不同的程度。
如果如前所述,表面传导电子发射器件在器件特性上具有制造差异或具有随时间变化的不一致性,即可造成从多电子束源发射的电子束的强度的变化,造成显示的图象的色平衡中亮度的变化或不稳定。结果,显示图象的质量下降。
本发明就是在考虑了上述问题之后作出的,本发明的目的就是为了校正多电子束源因制造产生的特性的差异而造成的输出差异,或随时间变化的非一致性,从而,图象显示质量的劣化。
本发明的基本构思是测量和存储表面传导电子发射器件的原始特性根据存储的内容校正每个表面传导电子发射器件的驱动条件。此外,本发明的基本构思还在于检测每个表面传导电子发射器件的随时间的变化,利用表面传导电子发射器件的内在特性,调整每个表面传导电子发射器件的驱动条件的校正量。这里介绍的表面传导电子发射器件的内在特性是一种流经器件的电流(称为器件电流)和从器件发射的电子束的强度之间的紧密关系。因此,在电子束输出特性随时间的改变可以通过测量器件电流随时间的改变而确定。
根据本发明的第一方面,提供了一种包括形成于一个基片上的表面传导电子发射器件的电子束源的电子束发生装置,包括测量装置,用于测量流经每个表面传导电子发射器件的器件电流,器件电流存储装置,用于存储由测量装置测量的数据,比较装置,用于将测量装置测量的最新数据与存储在器件电流存储装置中存储的数据相比较,校正值存储装置,用于存储用于校正要加到每个表面传导电子发射器件的驱动信号的校正值,调整装置,用于调整存储在校正值存储装置中的校正值。
根据本发明的第二个方面,提供了一种如本发明第一方面所述的电子束发生装置,其中,测量装置通过向表面传导电子发射器件施加一个低于其电子发射门限电压的电压来测量器件电流。
根据本发明的第三个方面,提供了根据本发明第一方面的电子束发生装置,其中表面传导电子发射器件以行方向线和列方向线的阵列方式连接,加到表面传导电子发射器件的驱动信号包括一个从行方向线提供的扫描信号,和一个从列方向线提供的调制信号,经调制的信号被存储在校正值存储装置中的校正值校正。
根据本发明的第四个方面,提供了一种包括形成于一个基片上的表面传导电子发射器件和当辐射电子束时发出可见光的荧光体的图象显示装置,包括测量装置,用于测量流经每个表面传导电子发射器件的器件电流,器件电流存储装置,用于存储由测量装置测量的数据,比较装置,用于将测量装置测量的最新数据与存储在器件电流存储装置中存储的数据相比较,校正值存储装置,用于存储用于校正要加到每个表面传导电子发射器件的驱动信号的校正值,调整装置,用于调整存储在校正存储装置中的校正值。
根据本发明的第五个方面,提供了根据本发明第四方面的图象显示装置,其中,测量装置通过施加一个低于表面传导电子发射器件的电子发射门限电压的电压来测量器件电流。
根据本发明的第六个方面,在第四个方面的图象显示装置中,其中表面传导电子发射器件以行方向线和列方向线的阵列方式连接,加到表面传导电子发射器件的驱动信号包括一个从行方向线提供的扫描信号,和一个从列方向线提供的调制信号,经调制的信号被存储在校正值在存储装置的校正值校正。
根据本发明的第七个方面,提供了一种驱动图象显示装置的方法,该图象显示装置包括形成于一个基片上的表面导电子发射器件和当辐射电子束时发出可见光的荧光体,测量装置用于测量流经每个表面传导电子发射器件的器件电流,器件电流存储装置,用于存储由测量装置测量的数据,比较装置,用于将测量装置测量的最新数据与存储在器件电流存储装置中的存储的数据相比较,校正值存储装置,用于存储用于校正要加到每个表面传导电子发射器件的驱动信号的校正值,调整装置,用于调整存储在校正存储装置中的校正值,该方法包括使器件电流存储装置存储表面传导电子发射器件制造之后的第一阶段存储测量的器件电流的步骤,使校正值存储装置存储在表面传导电子发射器件的初始器件电流的测量值基础上确定的校正值作为初始值的步骤,使器件电流测量装置在一个图象被显示一个任意时间段后,测量器件电流的步骤,使比较装置将驱动一个任意时间段后由器件电流测量装置测量的最新数据与存储在器件电流存储装置中的数据相比较的步骤,如果比较结果超过预定值范围,使调整装置调整存储在校正值存储装置中的校正值的步骤。
根据本发明的第八个方面,提供了一种驱动图象显示装置的方法,该图象显示装置包括形成于一个基片上的表面传导电子发射器件和当辐射电子束时发出可见光的荧光体,测量装置用于测量流经每个表面传导电子发射器件的器件电流,器件电流存储装置,用于存储由测量装置测量的数据,比较装置,用于将测量装置测量的最新数据与存储在器件电流存储装置中存储的数据相比较,校正值存储装置,用于存储用于校正要加到每个表面传导电子发射器件的驱动信号的校正值,调整装置,用于调整存储在校正存储装置中的校正值,该方法包括使器件电流存储装置在表面传导电子发射器件制造之后的第一阶段存储测量的器件电流的步骤,使校正值存储装置存储在每个表面传导电子发射器件的初始电子束(发射电流)的测量值基础上确定的校正值作为初始值的步骤,使器件电流测量装置在一个图象被显示一个任意时间段后,测量器件电流的步骤,使比较装置将驱动一个任意时间段后由器件电流测量装置测量的最新数据与存储在器件电流存储装置中的数据相比较的步骤,如果比较结果超过预定值范围,使调整装置调整存储在校正值存储装置中的校正值的步骤。
根据本发明的第九个方面,提供了一种驱动图象显示装置的方法,该图象显示装置包括形成于一个基片上的表面传导电子发射器件和当辐射电子束时发出可见光的荧光体,测量装置用于测量流经每个表面传导电子发射器件的器件电流,器件电流存储装置,用于存储由测量装置测量的数据,比较装置,用于将测量装置测量的最新数据与存储在器件电流存储装置中存储的数据相比较,校正值存储装置,用于存储用于校正要加到每个表面传导电子发射器件的驱动信号的校正值,调整装置,用于调整存储在校正存储装置中的校正值,该方法包括使器件电流以存储装置在表面传导电子发射器件制造之后的第一阶段存储测量的器件电流的步骤,使校正值存储装置存储在每个表面传导电子发射器件向荧光体发射电子束时得到的亮度的测量值基础上确定的校正值作为初始值的步骤,使器件电流测量装置在一个图象被显示一个任意时间段后,测量器件电流的步骤,使比较装置将驱动一个任意时间段后由器件电流测量装置测得的最新数据与存储在器件电流存储装置中的数据相比较的步骤,如果比较结果超过预定值范围,使调整装置调整存储在校正值存储装置中的校正值的步骤。
通过下面结合附图的详细描述,本发明的其它特征和优点将更为明显,在所有附图中,相同的标号代表相同的部件。
图1为第一实施例的电子束发生装置的电路方框图;
图2为在第一实施例中显示在初始特性检测方式中,操作过程的流程图;
图3为在第一实施例中显示在特性改变检查方式中,操作过程的流程图;
图4为第二实施例的图象显示装置的电路方框图;
图5为在第二实施例中显示在初始特性检查方式中,操作过程的流程图;
图6为通过测量发射电流用于确定驱动条件的校正值(初始值)的电路方框图;
图7为通过测量亮度用于确定驱动条件校正值(初始值)的电路方框图;
图8为在第二实施例中显示在特性改变检查方式中,操作过程的流程图;
图9为显示表面传导电子发射器件的特性的变化的曲线;
图10为根据本发明的第二个实施例的图象显示装置的透视图,其中显示板被部分切去;
图11A和11B为显示在显示板的面板上的荧光体阵列的例子;
图12A和12B分别为实施例中所使用的平面传导电子发射器件的平面和截面图;
图13A到13E为一个截面图,显示平面型表面传导电子发射器件的制造步骤;
图14为在加电形成处理中所施加的电压的波形图;
图15A和15B为在加电处理中所施加的电压和发射电流中的改变,le,的波形图;
图16为实施例中所采用的阶梯型表面传导电子发射器件的截面图;
图17A到17F为显示阶梯型表面传导电子发射器件的制造步骤的截面图;
图18为显示实施例中使用的表面传导电子发射器件的典型特性的曲线;
图19为实施例中使用的多电子束源的基片的平面图;
图20为实施例中使用的多电子束源的基片的一部分的截面图;
图21为根据本发明的第三个实施例多功能图象显示装置的方框图;
图22为解释本发明所采用的电子发射器件布线方法的示意图;
图23为传统的表面传导电子发射器件的平面图。
下面描述电子束发生装置,图象显示装置,和驱动这些装置的方法的最佳实施例。
为了描述方便,在第一和第二实施例解释完以后,将详细描述最佳的表面传导电子发射器件的结构,制造方法和特性及最佳的图象显示装置的显示板的结构和制造方法。
下面参照图1-图3描述根据本发明的电子束发生装置的实施例。
图1为显示电子束发生装置的结构的电路方框图。在图1中,标号1表示一个多电子束源;标号2表示一个扫描信号发生器;标号3表示器件电流测量电路;标号4表示一个时序控制器;标号5表示调制信号发生器;标号6表示一个串行/并行转换器,标号7表示一个运算单元;标号8存储校正值的存储器,标号9表示一个存储器控制CPU;标号10表示一个比较器;标号11表示存储器件电流初始值的存储器;标号12表示一个开关电路;标号13表示一个测试图形发生器;标号14表示一个操作方式控制CPU。
在多电子束源1中,大量的表面传导电子发射器件被形成在一个基片上,并以一个阵列的方式以行和列线相连接。后面还将参照图19和20详细描述多电子束源1的结构。
扫描信号发生器2和调制信号发生器5是用于驱动多电子束源1的电路。从扫描信号发生器2输出的信号被加到多电子束源1的行方向线。从调制信号发生器5输出的信号被加到多电子束源1的列方向线。扫描信号发生器2按顺序地从大量的以阵列方式形成的表面传导电子发射器件的行中选择要被驱动的行。调制信号发生器5对从表面传导电子发射器件发射的电子束进行调制。调制方案为例如,脉宽调制或压幅调制。
器件电流测量电路3测量流经多电子束源1的每个表面传导电子发射器件的电流(器件电流)。
定序控制器4产生一个时序控制信号,用于协调各个电路的工作时间。
串行/并行转换器6逐行地将串行输入驱动数据(在校正之后)转换成并行信号。
运算单元7根据存储在存储器8中的校正值外部校正输入驱动数据。
存储器8存储多电子束源1的每个表面传导电子发射器件的驱动条件的校正值。这些校正值是根据表面传导电子发射器件的特性的变化的基础上确定的。
存储器11存储在制造之后的第一阶段多电子束源1的每个表面传导电子发射器件的器件电流(初始值)。
存储器控制CPU9控制校正值向存储器8的写和读的操作并控制器件电流(初始值)向存储器11的写和读的操作。
比较器10将由器件电流测量电路3测量的最新的器件电流与存储在存储器11中的器件电流(初始值)相比较。
测试图形发生器13为一个信号发生器,用于产生一个检测驱动信号,用于检查多电子束源1的每个表面传导电子发射器件的特性。
开关电路12或者选择一个从外部信号源提供的驱动信号,或者选择一个由该测试图形发生器13产生的检测驱动信号。
操作方式控制CPU14控制装置的操作方式。更加具体地说,操作方式控制CPU14通过选择三种操作方式,即初始特性检查方式,正常驱动方式,特性改变检查方式,来控制装置。
下面描述图1中所示的装置的操作原理。该装置以上述的三种操作方式工作,即初始特性检查方式,正常驱动方式,特性改变检查方式,所以,下面按顺序地描述该三种操作方式。
初始特性检查方式是这样一种操作方式,在该方式中,多电子束源1的每个表面传导电子发射器件的初始特性在制造完成以后被检查和存储,对应于每个器件的驱动校正值被检测和存储。更具体地说,每个表面传导电子发射器件的器件电流(初始值)被器件电流测量电路3测量并存储在存储器11中。此外,根据测量结果和存储在存储器8中的值,每个表面传导电子发射器件的驱动校正值被确定。
下面参照图2的流程图描述操作过程。
(S21):首先,开关电路12的内部开关被闭合到测试图形发生器13的一侧。更具体地说,操作方式控制CPU14通过向开关电路12输出一个控制信号Sel来执行该步骤。
(S22):接下来,测试图形发生器13输出一个用于检查的驱动信号。当操作方式控制CPU14向测试图形发生器13输出一个控制信号Test时,该步骤开始。
(S23):然后,器件电流被测量并存储在存储器11中。在该步骤中,操作方式控制CPU14向存储器控制CPU9输出一个指示向存储器11写入的指令Mc。在存储器控制CPU9的控制下,向存储器11的写入被完成。更具体地说,时序控制器4根据从测试图形发生器13输出的同步信号输出各种时序控制信号,从而调整S/P转换器6的操作时序,调制信号发生器5,扫描信号发生器2,及存储器控制CPU9的操作时序。从测试图形发生器13输出的检测驱动数据被输入到运算单元7。在该阶段,没有校正值被设置在存储器8中。因此,驱动数据被直接加到S/P转换器6。根据由S/P转换器6转换成并行数据的检查驱动数据,调制信号发生器5输出一个调制信号。同时,器件电流测量电路3测量流经每个表面传导电子发射器件的器件电流。每个测量结果被存储在存储器11中作为器件电流(初始值)。
(S24):接下来,存储器控制CPU9从存储器11中读出器件电流(初始值)并根据读出的结果,计算用于驱动条件的校正值。在该步骤中,操作方式控制CPU14向存储器控制CPU9输出指示计算驱动条件校正值的指令Mc。
在计算驱动条件校正值时,可以使用各种计算方法。一个最佳的方法是利用从存储器11中读出的测量值去除一个预定的设计值。即,当器件电流的设计值为3.3[mA]而一个确定的表面传导电子发射器件的测量值为3.0[mA],计算的校正值为1.1。
(S25):在(S24)中计算出来的驱动条件校正值被存储在存储器8中。通过向存储器控制CPU9输出一个指示向存储器8存储该校正值的指令Mc,由操作方式控制CPU14执行该操作。
在上面描述的操作过程之后,执行初始特性检查方式。
正常驱动模式。
下一步描述正常驱动方式。在该方式中,通过由外部信号源提供驱动数据,多电子束源1被驱动输出电子束。下面描述该方式的操作过程。
在该模式中,开关电路12的内部开关被连接到外部信号源。通常,外部信号源分别地提供驱动数据和同步信号。如果驱动数据和同步信号以复合信号形式提供的话,可由译码器(未示出)在处理之前分离。时序控制器4根据从外部信号源提供的同步信号,产生各种时序信号,从而调整S/P转换器6,调制信号发生器5,扫描信号发生器2,和存储器控制CPU9的操作的时序。更具体地说,时序控制器4向S/P转换器6输出一个时钟信号Tsft,用于将一行的驱动信号转换成并行信号,向调制信号发生器5输出一个控制信号Tmod,用于控制调制信号产生时序,向扫描信号发生器2输出一个控制信号Tscan,用于执行行顺序扫描,向存储器控制CPU9输出一个控制信号Tmry,用于调整校正值被从存储器8读出的时序。
从外部信号源提供的驱动信号被输入到运算单元7,运算单元7通过利用从存储器8读出的校正值校正数据。(不同说,与表面传导电子发射器件相关的在对应于驱动数据的位置的校正值是在存储器控制CPU9的控制下读出的)。作为校正方法,各种计算方法都是可行的。一个最佳的方法是用校正值乘以驱动数据。被校正的驱动数据被加到S/P转换器6。根据由S/P转换器6转换成并行数据的驱动数据,调制信号发生器5同时输出一行调制的信号。与该输出同步,扫描信号发生器2输出一个扫描信号,用于选择要被驱动的行。
通过一系列上面的操作,多电子束源1按照驱动数据输出电子束。由于加到表面传导电子发射器件的信号已经根据器件的各自的特性进行了校正,可以相对于从外部信号源提供的驱动数据,真实地输出电子束。
在上述步骤之后,执行正常驱动方式。注意在该方式中,存储器11,比较器10,测试图形发生器13都无需工作。
特性改变检查方式
下面描述特性改变检查方式。在该方式中,每个表面传导电子发射器件的电子发射特性随时间的改变被检测,如果需要,存储在存储器8中的驱动条件的校正值根据检测结果被调整。更具体地说,对于每个器件,通过将由器件电流测量电路3测量最新的结果与存储在存储器11中的器件电流(初始值)比较,来检查特性是否随时间变化发生。
下面参照图3描述操作过程。
(S31):首先,开关电路12的内部开关被闭合到测试图形发生器13一侧。更具体地说,操作方式控制CPU14通过向开关电路12输出一个控制信号Sel来执行该步骤。
(S32):接下来,测试图形发生器13输出一个用于检查的驱动信号。当操作方式控制CPU14向测试图形发生器13输出一个控制信号Test时,该步骤开始。
(S33):对测量值和初始值进行比较。
为进行这一点,由器件电流测量电路3测量器件电流,并输出到比较器10。更具体地说,在该步骤中,时序控制器4根据从测试图形发生器13提供的同步信号,产生各种时序信号,从而调整S/P转换器6,调制信号发生器5,扫描信号发生器2,和存储器控制CPU9的操作时序。从测试图形发生器13输出的输出检测驱动数据被输入到运算单元7。在该阶段,存储器控制CPU9执行控制,使得没有校正值从存储器8中被读出,驱动数据被直接输入到S/P转换器6。根据由S/P转换器6转换成并行数据的检查驱动数据,调制信号发生器5产生一个调制信号。同时,驱动电流测量电路3测量流经每个表面传导电子发射器件的器件电流。
同时,器件电流(初始值)被从存储器11中读出并被输出到比较器10。在该阶段中,操作方式控制CPU14向存储器控制CPU9输出指示从存储器11读取的指令Mc。结果,在存储器控制CPU9的控制下,对存储器11的读取完成。
比较器10将测量值与初始值进行比较。如果确定没有随时间的变化,则特性改变检查方式结束。另一方面,如果确定没有随时间的改变,流程进至(S34)。可以使用各种方法来确定是否存在随时间的改变。比较好的一个方法是,当测量值和初始值之间的差超过预定的范围时,即可测出存在随时间的改变,另一个方法是如果测量值与初始值的比率超过预定范围时,即可检测到随时间的改变。在该实施例中,采用的是前一个方法,如果测量值和初始值之间的差超过0.1[mA],即可确定存在随时间的改变。
(S34):对于随时间变化的表面传导电子发射器件,存储器控制CPU9计算随时间变化后的驱动状态的校正值。在计算驱动条件校正值时各种计算方法都可采用。一个优选方法是,将预定设计值除以随时间变化后的测量值。即,其器件电流的设计值为3.3[mA]的表面传导电子发射器件随时间变化后,其测量值为2.7[mA],所计算的校正值约为1.2。
(S35):此后,调整随时间变化的装置的驱动条件校正值。即,用发生随时间的变化后的(S34)中计算的驱动条件校正值重写存储器8的内容。
在上述步骤之后,执行特性变化检查方式。
上面说明的是图1所示电子束发生装置的三个运行方式的内容。下面将说明执行这些运行方式的时序。
制造电子束发生器件时,首行执行初始特性检查方式。这后,该装置在正常驱动方式下运行,在适当的间隔后,由来自运行方式控制CPU14的指令执行特性变化检查方式。一个所希望的方法是累计在正常驱动方式下的运行时间,当过去一预定时间(例如,100小时)时,执行特性变化检查方式。在某些情况下,每当电子束发生器件的电源接通或关断时,也可能执行特性变化检查方式。
上面已经描述了作为本发明一个实施例的电子束发生器件。
注意,下面将在描述表面传导电子束发射器件的特性,说明在测量初始特性检查方式和特性变化检查方式下的器件电流时所用的所希望的检查电压。
在上面的实施例中,在初始特性检查方式下写入器件电流的初始值后,存储器11用作只读存储器。然而,在执行特性变化检查方式后,基于这种情况,最新器件电流测量值也能写入存储器11中。在这些情况下,可以检查在最后一次执行特性变化检查方式后和这次执行之前,是否出现另外的随时间的变化。根据本发明的构思,要点在于,通过检测器件的器件电流的变化,就能检测表面传导电子发射器件的电子发射特性的变化,从而正确地校正器件的驱动条件。(第二实施例)下面将参照图4至8介绍根据本发明的图象显示装置的一个实施例。
图4为一电路框图,表示图象显示装置的配置。在图4中,标号41表示显示板;42表示扫描信号发生器;43表示器件电流测量电路;44表示时序控制器;45表示调制信号发生器;46表示串行/并行转换器;47表示运算单元;48表示存储器储存校正值;49表示存储器控制CPU;50表示比较器;51表示存储器件电流初始值的存储器;52表示开关电路;53表示测试图形发生器;54表示运行方式控制CPU;55表示解码器;56表示电压源。
显示板41包括一多电子束源和一荧光体。在多电子束源中,在一基片上形成有若干表面传导电子发射器件,并按行线和列线排成的阵列的方式连接。当随电子束辐射时,荧光体发射可见光。稍后将参照图10介绍显示板41的详细结构。
扫描信号发生器42和调制信号发生器45是用于驱动显示板41中的多电子束源的电路。扫描信号发生器42的输出加到多电子束源的行线上。调制信号发生器45的输出加到多电子束源的列线上。扫描信号发生器42依次从以阵列方式形成的表面传导电子发射器件的行中选择将被驱动的行。调制信号发生器45调制每一表面传导电子发射器件发射的电子束。调制方法例如可为脉宽调制或电压幅值调制。
器件电流测量电路43测量流径多电子束源的每一表面传导电子发射器件的电流(器件电流)。
时序控制器44发生时序控制信号,用于协调各个电路的运行时序。
串行/并行转换器46将串行输入驱动数据(校正后)转换为并行数据。
运算单元47根据存储在存储器48中的校正值校正外部输入驱动数据。
存储器48存储的校正值用于显示板41中的多电子束源的各表面传导电子发射器件的驱动状态。这些校正值根据表面传导电子发射器件特性的变化来确定。
存储器控制51存储在制造后的起始阶段的显示板41中的多电子束源的各表面传导电子发射器件的器件电流(初始值)。
存储器控制CPU49控制校正值向存储器48的写入和读取操作,并控制器件电流(初始值)向存储器51的写入和读取操作。
比较器50将由器件电流测量电路43测量的最新器件电流与存储在存储器51中的器件电流(初始值)相比较。
测试图形发生器53是一信号发生器,用于产生检查显示板41的多电子束源的每一表面传导电子发射器件的特性的检查驱动信号。
开关电路52选择从解码器55施加的驱动信号或由测试图形发生器53产生的检查驱动信号。
操作方式控制CPU54控制装置的操作方式。更具体地说,操作方式控制CPU54通过在三种操作方式即,初始特性检查方式、正常驱动方式、特性变化检查方式中选择合适的一种,来操作该装置。
解码器55解码以将外加的图象信号分为同步信号和图象数据。
电压源56经端子Hv电连接到显示板41中的荧光体。电压源56输出一例如为5[kv]的直流电压,使荧光体发生足够亮度的光。
下面将说明图4中的装置的操作。该装置以上面三种操作方式,即初始特性检查方式、正常驱动方式和特性变化检查方式运行,因此将依次介绍这三种操作方式。
初始特性检查方式
在初始特性检查方式中,检查并存储制好后的显示板41的多电子束源的各表面传导电子发射器件的初始特性,确定并存储相应于各器件特性的驱动校正值。更具体地说,每一表面传导电子发射器件的器件电流(初始值)由器件电流测量电路43来测量并存储于存储器51中。此外,每一表面传导电子发射器件的驱动校正值根据测量结果确定,并存储于存储器48中。
下面将参照图5中的流程介绍操作步骤。
(S51):首先,将开关电路52的内部开关闭合到测试图形发生器53侧的位置。更具体说,操作方式控制CPU54通过向开关电路52输出一控制信号Sel执行这一步。
(S52):接着,测试图形发生器53输出一驱动信号用于检查。当操作方式控制CPU54向测试图形发生器53输出一控制信号Test时开始这一步。
(S53):而后测量器件电流并存储于存储器51中。在这一步中,操作方式控制CPU54向存储器控制CPU49输出一指令Me,表示向存储器51的写入。在存储器控制CPU49的控制下执行向存储器51的写入。
更具体地,时序控制器44根据测试图形发生器53的输出同步信号产生各时序控制信号,因而调整S/P转换器46、调制信号发生器45、扫描信号发生器42和存储器控制CPU49的操作时序。从测试图形发生器53输出的检查驱动数据被输入运算单元47。然而在这一步,在存储器48中不设置校正值。因此,驱动数据直接加到S/P转换器46。根据由S/P转换器46转换为并行数据的检查驱动数据,调制信号发生器45输出一调制信号。同时,器件电流测量电路43测量流径各表面传导电子发射器件的器件电流。各测量结果作为器件电流(初始值)存储于存储器51中。
(S54):此后,存储器控制CPU49从存储器51中读取器件电流(初始值),并根据读取值计算驱动条件的校正值。在这一步,操作方式控制CPU54向存储器控制CPU49输出指令Mc,表示计算驱动条件的校正值。
在计算驱动条件校正值时可采用多种计算方法。一个优选的方法是用预定设计值除以从存储器51读取的测量值。即,当器件电流的设计值为3.3[mA]而某一表面传导电子发射器件的测量值为3.0[mA]时,计算的校正值为1.1。
(S55):(S54)计算的驱动条件校正值被储存于存储器48。操作方式控制CPU54通过向存储器控制CPU49输出一表示将校正值存入存储器48的指令Mc执行这一步。
在上述操作步骤之后,执行初始特性检查方式。
注意,在本实施例的(S54)步,根据器件电流(初始值)的测量值计算各表面传导电子发射器件的驱动条件校正值,然而,也可用其它计算方法。
例如,如图6所示,与电压源56串连的电子束计60可连到存储器控制CPU49。在这种情况下,驱动条件的校正值可根据各表面传导电子发射器件的发射电流(初始值)的测量值计算。
可选择地,如图7所示,用于测量显示板的各象素亮度的亮度计70可连到存储器控制CPU49。此时,可以根据荧光体的亮度(初始值)计算驱动条件的校正值。
关键是仅需能直接或间接测量各表面传导电子发射器件的初始电子发射特性,并根据测量值计算驱动条件校正值。
正常驱动方式
下面将介绍正常驱动方式。在该方式下,由一图象信号,如从外部信号源施加的电视信号驱动晃示板41,以显示图象。下面将介绍该方式的操作步骤。
在该方式下,开关电路52的内部开关连到解码器55侧的位置。一种复合信号,如电视信号由解码器55被解码,分为同步信号和图象数据。
时序控制器44根据来自解码器55的同步信号,产生多种时序控制信号,因而调整S/P转换器46、调制信号发生器45、扫描信号发生器42、和存储器控制CPU49的操作时序。更具体地,时序控制器44向S/P转换器46输出一时钟信号Tsft,用于将一单线驱动数据转换为并行数据,向调制信号发生器45输出一控制信号Tmod,用于控制调制信号产生时序,向扫描信号发生器42输出一控制信号Tscan,用于执行行序扫描,向存储器控制CPU49输出一控制信号Tmry,用于调整从存储器48读取校正值的时序。
来自解码器55的图象数据输入到运算单元47,运算单元47利用从存储器48读取的校正值校正该数据。在存储器控制CPU49的控制下读取与相对于驱动数据(图象数据)的位置处的表面传导电子发射器件有关的校正值。各种计算方法都可以作校正方式。一个优选方法是用校正值乘以该图象数据。校正后的图象数据加到S/P转换器46。根据由S/P转换器46转换为并行数据的图象数据,调制信号发生器45同时输出单线的调制信号。与该输出同步,扫描信号发生器42输出一扫描信号,用于选择将被驱动的线。
通过一系列上述操作,显示板41内的多电子束源按照图象数据输出电子束。由于加到表面传导电子发射器件的驱动信号已经按各器件的特性校正,对于从外部信号源加的图象数据能可靠地输出电子束。即,可用对图象信号可靠的亮度进行图象显示。
在上述步骤之后,执行正常驱动方式。注意,在该方式下,无需操作存储器51、比较器50和测试图形发生器53。
特性变化检查方式
下面将介绍特性变化检查方式。在该方式下,检查各表面传导电子发射器件的电子发射特性随时间的变化,并根据必要的检查结果调整存储在存储器48中的驱动状态校正值。更具体地,通过比较由器件电流测量电路43测出的最新结果和存储于存储器51中的器件电流(初始值)检查各器件是否随时间变化。
下面将参照图8中的流程介绍操作步骤。
(S81):首先,开关电路52的内部开关设到测试模式发生器53侧的位置。更具体地,操作方式控制CPU54径向开关电路52输出一控制信号Sel执行这一步。
(S82):之后,测试图形发生器53产生一驱动信号用于检查。当操作方式控制CPU54向测试图形发生器53输出一控制信号Test时开始这一步。
(S83):比较测量和初始值。
首先,由器件电流测量电路43测量器件电流并输出到比较器50、更具体地,在这一步,时序控制器44根据来自测试图形发生器53的输出同步信号产生各种时序控制信号,因而调整S/P转换器46、调制信号发生器45、扫描信号发生器42和存储器控制CPU49的操作时序。来自测试图形发生器53的输出检查驱动数据输入到运算单元47。由于在该步骤存储器控制CPU49执行的控制使得无校正值从存储器48读取,驱动数据直接输入到S/P转换器46。根据由S/P转换器46转换为并行数据的检查驱动数据,调制信号发生器45产生一调制信号。同时,器件电流测量电路43测量流径各表面传导电子发射器件的器件电流。
同时,从存储器51读取器件电流(初始值)并输出到比较器50。在该步,操作方式控制CPU54向存储器控制CPU49输出表示从存储器51读取的指令Mc。之后,在存储器控制CPU49的控制下进行向存储器51的读取。
比较器50比较测量值和初始值。如果确定没有随时间变化,终止特性变化检查方式。另一方面,如果确定随时间发生了变化,转向(S84)。可用各种方法确定是否随时间发生了变化。在一优选的方法中,若测量值和初始值之差超过一预定范围,检测随时间的变化。在另一方法中,若测量值与初始值之比超过一定范围,检测随时间的变化。在该实施例中,采用了前一种方法,若测量值与初始值之差超过0.1[mA],则确定为随时间发生了变化。
(S84):对于已经发现随时间有变化的表面传导电子发射器件,存储器控制CPU49计算随时间变化后的驱动条件的校正值。计算驱动条件校正值时各种计算方法都可采用。一个优选方法是用预定设计值除以随时间变化后的测量值。即,若其器件电流的设计值为3.3[mA]的表面传导电子发射器件随时间变化后的测量值为2.7[mA],则计算的校正值约为1.2。
(S85):之后,调整随时间有变化的器件的驱动状态校正值。即,随时间发生变化后,用(S84)中计算的驱动状态校正值重写存储器48中的内容。
在上述步骤之后,执行特征变化检查方式。
上面介绍了图4所示图象显示装置三个操作方式的内容。下面将介绍执行这些操作方式的时序。
当制造该图象显示装置时,首先执行初始特性检查方式。而后,在正常驱动方式下操作该装置,根据来自操作方式控制CPU54的指令,在一合适的间隔后执行特征变化检查方式。在一个所希望的方法中,累计正常驱动方式下的操作时间,当过去一预定时间(例如,100小时)时,执行特性变化检查方式。在某些情况下,也可以在每次接通或关断图象显示装置的电源时执行特性变化检查方式。
上面介绍了本发明一个实施例的图象显示装置。
注意,在稍后将在介绍表面传导电子发射器件的特性是,说明测量初始特性检查方式和特性变化检查方式下的装置电流所用的检查电压。
在上面实施例中,在初始特性检查方式下的器件电流的初始值写入后,存储器51用作只读存储器。然而,在执行特性变化检查方式后,根据情况,最新器件电流测量值也可写入存储器51。在这些情况下,也能检查在最后一次执行特性变化检查方式及这次执行之前,是否发生其它随时间的变化。根据本发明的构思,关键在于,仅需要通过检测器件的器件电流的变化,就能检测表面传导电子发射器件的电子发射特性的变化,从而正确地校正器件的驱动条件。
(多电子束源)
下面将介绍第一实施例的电子束发生装置和第二实施例的图象显示装置中所用的多电子束源的制造方法。本发明的图象显示装置中所用的多电子束源仅需是一电子源,其中表面传导电子发射器件被连接为简单的阵列布线。因而,不具体限制表面传导电子发射器件的材料、形状及制造方法。然而,本发明人已发现,由微粒子膜形成的电子发射区或其周边区的表面传导电子发射器件,其电子发射特性优异并易于制作。因此,可以说这种表面传导电子发射器件最适于在高亮度、大屏幕图象显示装置的多电子束源中。因此,在上面的实施例中,采用的表面传导电子发射器件的电子发射区或其外围区由细微粒子膜构成。因此,将首先介绍优选表面传导电子发射器件的基本配置、制造方法及特性。现在将介绍多电子束源的结构,其中,许多这种器件由简单的阵列布线连接。
表面传导型发射器件的优选器件结构和制作方法
平面和阶梯型器件的结构为表面传导电子发射器件的代表结构,其电子发射区或其外围区由细微粒子膜形成。
平面结构型发射器件
下面将介绍平面传导电子发射器件的器件结构和制作方法。
图12A和12B分别为平面和截面图,用来说明平面传导电子发射器件的配置。在图12A和12B中,标号1101表示基片;1102和1103表示器件电极;1104表示薄导电膜;1105表示由加电形成处理形成的电子发射区;1113表示加电激励处理(energization  activation  processing)形成的薄膜。
作为基片1101,可以采用如石英玻璃和钠钙玻璃基片的各种玻璃基片,也可采用如氧化铝基片的各种陶瓷基片,还可采用将由例如SiO2组成的绝缘层覆于任何上述基片上形成的基片。
在基片1101上形成以与基片表面平行的器件电极1102和1103,彼此相对,由导电材料制成。例如,可选择合适的金属,如Ni、Cr、Au、Mo、W、Pt、Ti、Cu、Pd和Ag,这些金属的合金,金属氧化物,如In2O3-SnO2和半导体,如多晶硅。电极可采用膜形成技术(如真空蒸气淀积)和图形技术(如光刻法或腐蚀法)的结合容易地形成。也可用某些其它方法形成这些电极(如印刷法)。
适当设计器件电极1102和1103的形状,以满足电子发射器件的应用目的。一般,通过在从几百埃(A)到几百μm的范围内任选一值来设计电极距离L。为了将该器件应用于显示装置中,优选范围为从几μm到几十μm。器件电极厚度d的合适值通常从几百A到几μm的范围内选取。
用微粒子膜作为薄导电膜1104。此处所说的微粒子膜指一种包含大量微粒子作为组成成分的膜(包括小岛集合)。当用显微镜观察该微粒子膜时,通常可看到,在其结构中各微粒子彼此隔开、彼此相邻、或彼此重叠。
微粒子膜中微粒子的粒子尺寸在几A到几千A之间。最佳粒子尺寸为10至200A。微粒子膜的膜厚要考虑多种情况正确设定;如需很好地将膜电连接到器件电极1102或1103,需成功地进行加电形成(稍后介绍),及需将微粒子膜本身的电阻设为一合适的值的情况。更具体地,膜厚在几A到几千A之间,最好在10A到500A之间。
在形成微粒子膜时可用的材料为金属,如Pd、Pt、Ru、Ag、Au、Ti、In、Cu、Cr、Fe、Zn、Sn、Ta、W和Pb;氧化物,如PdO,SnO2,In2O3,Pbo和Sb2O3;硼化物,如HfB2、ZrB2、LaB6、CeB6、YB4、和GdB4;碳化物,如TiC、ZrC、HfC、TaC、SiC和WC;氮化物,如TiN、ZrN和HfN;半导体,如Si和Ge;和碳。微粒子膜材料从这些材料中选取是合适的。
薄的导电膜1104如上所述用微粒子膜形成。薄导电膜1104的片阻在103到107(Ω/sq)范围内。
注意,薄导电膜1104和器件电极1102和1103局部彼此重叠,因为希望这些区域良好电连接。在图12A和12B所示的配置中,从底部依次重叠基片、器件电极和薄导电膜。在某些情况下,也可能从底部依次叠置基片、薄导电膜和器件电极。
电子发射区1105为形成在一部分薄导电膜1104上的裂纹状区域。电子发射区1105的电阻高于其周围区域的薄导电膜的电阻。通过对薄导电膜1104进行加电形成处理(稍后将介绍)形成裂纹。在某些情况下,在裂纹中有尺寸在几A到几百A的微粒子。注意,由于难于准确且正确地示出实际电子发射区的位置和形状,图12A和12B中仅示意性地说明了该区。
薄膜1113由碳或碳化合物构成,并覆盖电子发射区1105和其周围区域。薄膜1113在加电形成处理后,经加电激励处理形成。
薄膜1113由单晶石墨、多晶石墨、和非晶碳或其混合物组成。薄膜1113的膜厚为500[A]或更小,最好为300[A]或更小。
注意,图12A和12B中示意性地说明了薄膜1113,因为难于准确说明实际薄膜的位置和形状。注意,从图12A的平面图示出的器件上除去了薄膜1113的一部分。
上面介绍了优选器件的基本配置,该实施例中利用了下面的器件。
即,用钠钙玻璃作为基片1101,薄Ni膜作为器件电极1102和1103。器件电极的厚度d为1,000[A],电极距离L为2[μm]。
用Pd或PdO作为微粒子膜的主要材料。微粒子膜的厚度为约100[A],其宽度W为100[μm]。
下面将介绍制作优选平面传导电子发射器件的制造方法。
图13A到13E是截面图,用于说明表面传导电子发射器件的制造步骤。图13A到13E中与图12A和12B中相同的标号表相同部分。
1)首先,如图13A所示,在基片1101上形成器件电极1102和1103。
在这一形成过程中,用清洁剂、蒸馏水、和一种有机溶剂充分清洁基片1101,然后淀积器件电极材料。淀积方法可采用真空膜层形成技术,如蒸汽淀积或溅射。之后,利用光刻和腐蚀技术使淀积的电极材料形成图形,以形成一对器件电极(1102和1103),如图13A所示。
2)此后,形成薄导电膜1104,如图13B所示。
即,在图13A所示的基片上涂覆有机金属溶液并烘干,并用热烧结以形成微粒子膜,然后用光刻法和腐蚀法将膜刻蚀为预定形状。有机金属溶液是一种其主要成分为用在薄导电膜中的微粒子材料的有机金属化合物。更具体地,在本实施例中,用Pd作为主要成分。此外,在本实施例中,涂覆方法采用浸渍法。但也可采用其它方法,如旋涂法或喷涂法。
此外,作为由微粒子膜组成的薄导电膜形成法,有时采用真空蒸汽淀积、溅射或化学汽相淀积法,而不采用本实施例中采用的有机金属溶液涂覆法。
3)接下去,如图13C所示,从形成电源1110引合适的电压加到器件电极1102和1103上,进行加电形成处理,以形成电子发射区1105。
加电形成处理是对微粒子膜形成的薄导电膜1104进行加电,以将膜区破坏、变形或改动到合适的范围,从而将膜变为适于电子发射的结构。在由微粒子膜构成的薄导电膜的一部分(即电子发射区)上形成合适的裂缝,其被变为适于电子发射的结构。注意,在电子发射区1105形成后,电极1102和1103间的测量电阻与形成之前相比,大大提高。
为详细解释加电法,图14中说明了从形成电源1110所施加的电压波形的一个例子。在加电形成由微粒子膜构成的薄导电膜中时,优选为脉冲形电压。在该实施例中,脉宽为T1的三角脉冲以脉冲间隔T2被连续施加。应用时,三角脉冲的峰值Vpf逐渐增大。此外,在三角脉冲之间以合适的间隔插入用于控制电子发射区1105的形成状态的控制脉冲Pm,用安培计1111测量插入后的电流。
在本实施例中,在约10-5[torr]的真空中,脉宽T1设为[ms],脉冲间隔T2设为10[ms],峰值Vpf每个脉冲增加0.1[v]。每加五个三角脉冲,插入一个控制脉冲Pm。为避免对加电形成处理的不利影响,控制脉冲的电压Vpm设为0.1[v]。当器件电极1102和1103间的电阻变为1×106[Ω],即,当插入控制脉冲后,安培计111测得的电流为1×10-7[A]或更小时,加电形成处理的加电停止。
注意,上述方法是用于本实施例的表面传导电子发射器件的优选方法。因此,若改变了表面传导电子发射器件的设计,例如,若微粒子膜的材料或膜厚或器件电极距离L改变,希望按该变化合适地改变加电条件。
4),此后,如图13D所示,通过从激励电源1112向器件电极1102和1103施加适当的电压进行加电激励处理,从而改进电子发射特性。
加电激励处理就是在给定条件下,在由加电形成处理形成的电子发射区1105上加电压,从而在电子发射区1105附近淀积碳或碳化合物。在图13D中,碳或碳化合物的淀积层示意性地表示为1113。注意,加电的激励处理能将发射电流增大,一般为在所加电压相同的情况下,进行该处理之前电流的100倍。
更具体地,在真空度为10-4至10-5[torr]范围内,周期性施加电压脉冲,就淀积从呈现在真空中的有机化合物产生的碳或碳化合物。淀积层1113为单晶石墨、多晶石墨和非晶碳中的一种,或其混合物。淀积层1113的膜厚为500[A]或更小,更好为300[A]或更小。
为详细介绍加电法,图15A中示出了从激励电源1112施加的电压波形的一个例子。在本实施例中通过周期性地施加固定电压的方波,进行加电激励处理。更具体地,方波的电压Vac、脉宽T3、脉冲间隔T4分别为14[V]、1[ms]和10[ms]。注意,上述加电条件是本发明表面传导电子发射器件的优选条件。因此,若改变表面传导电子发射器件的设计,希望按这一改变适当地改变上述条件。
在图13D中,标号1114表示一阳极电极,用于接收来自表面传导电子发射器件的发射电流e。阳极电极1114被连到一DC高压电源1115和安培计1116。注意,显示板的荧光屏在基片1101装入显示板后进行激励处理时作为阴极电极1114。
当激励电源1112施加电压时,通过用安培计1116测量发射电流Ie控制加电激励处理过程,从而控制激励电源1112的运行。图15B示出由安培计1116测出的发射电流Ie的一个例子。当激励电源1112开始施加脉冲电压时,发射电流Ie随时间增大,最终饱合,即,几乎不能增大。当发射电流Ie几乎饱合时,停止从激励电源1112的供电,以结束加电激励处理。
注意,上述电压施加条件为本实施例的表面传导电子发射器件的优选条件。因此,如果表面传导电子发射器件的设计改变,希望其条件也随之改变。
以这一方式,制作图13E所示的平面传导电子发射器件。
阶梯型表面传导型发射器件
下面将介绍表面传导电子发射器件,即阶梯型表面传导电子发射器件的另一种代表性结构,其中,电子发射区或其周围区域由微粒子膜形成。
图16是一示意性截面图,用于说明阶梯型器件的基本配置。在图16中,标号1201表示基片;1202和1203表示器件电极;1206表示阶梯形成件;1204表示用微粒子膜形成的薄导电膜;1205表示通过加电形成处理形成的电子发射区;1213表示通过加电激励处理形成的薄膜。
阶梯型器件与上述平面型器件的差别在于其中一个器件电极形成于阶梯形成部件1206上,而且导电薄膜1204覆盖于阶梯形成部件1206的侧表面。因此,在图12A和12B所示的平面型器件中的器件电极的距离L被设置为阶梯型器件中的阶梯形成部件1206的阶梯高度LS。注意,基片1201、器件电极1202和1203、以及使用微粒子膜的导电薄膜1204可用与上述平面型器件所列举的相同的材料制成。还应注意,电绝缘材料,如SiO2也可用作阶梯形成部件1206。
阶梯型表面传导电子发射器件的制造方法将描述如下。图17A到17F是解释制作步骤的剖示图,其中与图16中相同的标号表示相同的部件。
1)首先,如图17A所示,在基片1201上形成器件电极。
2)接下来,如图17B所示,叠加用于形成阶梯形成部件1206的绝缘层。该绝缘层可通过溅射如SiO2形成。也可使用另一种膜形成方法,如真空蒸气液积或印刷。
3)然后在图17C的绝缘层上构成器件电极1202。
4)如图17D所示,通过例如腐蚀除去绝缘层的一部分,使器件电极1203露出。
5)如图17E所示,使用微粒子膜形成薄的导电膜。例如,可使用如平面型器件形成中的涂层方法等膜形成技术来制作上述结构。
6)接下来,和平面型器件的情况一样,进行加电形成处理,以形成电子发射区。该加电形成处理与图13C中的上述平面型器件一致。
7)最后,以与平面型器件相同的方式进行加电激励处理,在电子发射区附近沉积碳或碳的化合物。该加电激励处理也可与上述图13D中的平面型器件中相同。
如上所述,可制造出图17F中所示的阶梯型表面传导电子发射器件。
用在实施例中的表面传导型发射器件的特性
以上描述了平面和阶梯型表面传导电子发射器件的构造和制造方法。下面描述实施例中使用的该器件的特性。
图18示出了本实施例所用的典型例子中,发射电流Ie与加电压Vf的器件的函数关系特性,以及器件电流If与加上电压Vf的器件的函数关系特性。注意,由于发射电流Ie与器件电流If相比非常小,所以这些电流很难以同样的刻度描绘,而且这些特性随设计参数,如装置的大小或形状的变化而变化,所以图18中绘出了它们各自任意单位的两条曲线。
显示装置中使用的该器件的发射电流Ie有下列三个特性。
第一,当所加的电压等于或大于一定值(称为阈值电压Vth)时,发射电流急剧增加。另一方面,当电压低于该阈值电压Vth时,几乎检测不到发射电流Ie。
即本发明的器件是一个非线性器件,对于发射电流Ie,其具有一个明显的阈值电压Vth。
第二,由于发射电流Ie根据加到该器件上的电压f而变化,所以发射电流Ie的幅值可由电压Vf控制。
第三,该器件的发射电流Ie对加到其上的电压Vf的响应速度很高。因此,该器件发射的电子的电荷量可由所加电压Vf的时间长短来控制。
表面传导电子发射器件的上述特性使之适用显示装置。例如,在具有大量的这种器件的显示设备中提供与显示屏的图象元素的一一对应,图象就可通过顺序扫描显示屏而被显示。即,根据所希望的亮度在要被驱动的这些器件上加上等于或高于阈值电压Vth的给定电压,而对于在未选择状态的器件则加上低于阈值电压Vth的电压。通过顺序开关要驱动的装置,图象就可通过顺序扫描显示屏而被显示。
此外,可进行多级显示,因为亮度是由前述第二或第三特性控制的。
下面将参照图9描述一组表面传导电子发射器件的特性的变化。
图9示出了一组表面传导电子发射器件的特性的各种变化。即,图9说明了在器件则制造好时发生的初始变化,或器件被驱动任意一段时间后随时间的变化。
图9的曲线表示三个器件A、B和C的所加电压Vf对器件电流Ie的特性和所述电压Vf对发射电流Ie的特性。从图9中可以看出在器件电流If和发射电流Ie之间存在强相关;一般说来,具有大器件电流If的器件具有大的发射电流Ie。假定在给定电压V1,这些器件的发射电流Ie的比等于或大于电子发射阈值电压Vth,即为IeA∶IeB∶IeC时,该比率接近于在该电压下器件电流If的比IfA∶IfB∶IfC。在低于电子发射阈值电压Vth的电压时,该比率也基本上等于器件电流的比IfA′∶IfB′∶IfC′
这一特性可以说是表面传导电子发射器件的固有特性;例如,在如FE器件和MIM器件的其它冷和热阴极器件中是没有这一特性的本发明正是利用了表面传导电子发射装置的这一特性。即,如前所述,通过测量第一实施例中的电子束发生装置或第二实施例中的图象显示装置中的器件电流If来检测初始变化或随时间的变化。
如上所述,注意即使在低于电子发射阈值电压的电压下,也可能通过测量器件电流来检测器件特性中的初始变化或随时间的变化。通过在这样的低电压下测量器件电流,可防止电子束发生装置中不必要的电子束的产生,并防止图象显示装置中不必要光的发出。在该检查中所耗的功率也很低。因此,在上述第一和第二实施例中,器件电流If可通过施加低于电子束阈值电压Vth的电压Vtest来测量。注意,如在某些情况下,测量电压Vtest很低,器件电流If的绝结值就变得很小,从而导致测量的精确度下降。因此,Vtest最好定在例如Vth/2<Vtest<Vth的范围内。
具有通过简单的阵列导线连接的一组器件的多个电子束源的结构。
下面将描述其上设有设在基片上并用简单的阵列布线相连的上述表面传导电子发射器件的多电子束源的结构。
图19示出了图10中的显示极中所用的多电子束源的平面图。在基片上设有与图12A和12B中所示相同的表面传导电子发射器件。这些表面传导电子发射器件以简单的阵列方式由行方向导线电极1003和列方向导线电极1004相连接。在行、列方向的导线电极1003和1004的每个交叉处形成有一个极间绝缘层(未示出)以保证电绝缘。
图20示出了图19中沿线A-A’的剖视图。
具有这种结构的多电子束源是如下制成的,在基片形成行方向导线电极1003、列方向导线电极1004、极间绝缘层(未示出)以及每个表面传导电子发射器件的器件电极和薄的导电膜,通过把电能径行、列向导线电极1003和1004加到个个器件上,进行加电形成处理和加电激励处理。
(显示板)的布置和制造方法)
下面将通过具体的例子说明第二实施例中所使用的显示板41的布置和制造方法。
图10是第二实施例中使用的显示板的透视图,其中该板的一部分被切去以示出内部结构。
图10中,标号1005表示后极;1006为侧壁;1005为面板。这些部件1005-1007形成气密舱,以使显示板内部保持真空。装配气密舱时,必需密封以使每个部件的所连接部分保持足够的强度和气密性。该密封是通过涂覆如融合玻璃并在400到500℃的空气和氮气中烧结该结构10分钟或更长的时间来实现的。下面描述抽空气密舱的方法。
基片1001固定在后极1005上,并在其上形成NXM个表面传导电子发射器件1002。(N和M是大于等于2的正整数并根据显示象素所需的数目适当设置。例如在高清晰度电视的显示装置中,需要N=3000或更多,而M=1000或更多。本实施例中,N=3072,M=1024)。NXM个表面传导电子发射器件是由简单的矩阵导线由M个行方连线1003和N个列方向连线1004相连接的。由部件1001~1004所构成的部分称作多电子束源,多电子束源的制造方法和结构已在前面部分详细说明,因此这里将略去。
在显示板中,多电子束源的基片1001固定在气密舱的后极1005上。但是,如果多电子束源的基片1001有足够的强度,其基片1001本身就可用作气密舱的后板。
荧光膜1008形成于面板1007的下表面。由于本实施例为彩色显示装置,所以CRT领域中所用的三原色(如,红,绿,兰)荧光物质是分离地涂覆成荧光膜1008的。如图11A所示,这些三色荧光物质被分离地涂覆成条状,在荧光条之间设有黑导体1010。该黑色导体1010是用于即使在电子束的辐射位置稍有偏移时防止,颜色的错误配准,并通过阻止外部光的偏移来防止显示对比度的下降,以及防止由电子束引起的荧光膜带电。虽然石墨被用作黑色导体的主要成份,但如果可满足上述目的,也可使用其它材料。
三原色荧光物质的涂覆形式不限于图11A中所示条状排布。例如图11B所示的三角形排布或其它排形式也是可以的。
注意,在单色显示板的结构中,不需用任何黑色导体材料,因为只需使用单色荧光材料作成荧光膜1008。
在后板的荧光膜1008的表面,CRT领域中熟知的金属化的屏幕1009被形成。制成金属化的屏幕是用于通过镜面反射一部分由荧光膜1008发出的光来提高光使用效率,并保护荧光膜1008免于遭负离子碰撞的损坏。此外,金属化的屏幕1009也可用作施加电子束加带电压的电极并作为激励荧光膜1008的电子的导电通路。在面板基片1001上形成荧光膜1008后,通过使荧光膜表面平滑并在真空中在该表面上蒸气沉积铝来形成金属化的屏幕1009。注意,应使用低压荧光材料作荧光膜1008时,不需要金属化的屏幕。
虽然本实施例中未使用,但也可在面板基座1007和荧光膜1008之间形成如ITO这样的透明电板,以施加加速电压或提高荧光膜的导电性。
标号Dx1到Dxm,Dy1到Dyn和Hv表示具有气密结构的电连接端,它们提供该显示板到一电路(未示出)的电连接。端子Dx1到Dxm电连接到多电子束源的行方向连线1003上,端子Dy1到Dyn电连接到多电子束源的列方向连线1004上,端子Hv电连接到面板的金属化屏1009上。
为了抽成气密舱,在该舱装配好之后,把排气管和真空泵(未示出)连到气密舱上,并将该舱抽成真空度约为10-7[torr],然后封闭排气管。为保持气密舱的真空度,在封闭前后要形成吸气膜(未示出)。吸气膜是通过使用加热器或RF加热蒸气沉积包含钡的吸气材料制成的。通过该吸气膜的吸气作用,气密舱的内部可保持在1×10-5到1×10-7[torr]的真空度。
以上描述了第二实施例的显示板41的基本排布以及制造方法。
(第三个实施例)
图21给出了使用第二实施例的图象显示装置和能显示由各种图象信息源(如,电视广播)提供的图象信息的多功能显示装置的实施例的框图。
图21中,标号2000表示第二实施例的图象显示装置;2001为显示极驱动器;2102为显示控制器;2103为多路复用器;2104为解码器;2105为I/O接口电路;2106为CPU;2107为图象发生器;2108、2109和2110为图象存储器接口电路;2112和2113为电视接收机;2114为输入单元。
当该显示装置要接收包含视频信息和音频信息(如,电视信号)的信号时,该装置显示图象并同时再现声音。但是,有关电路和用于接收、分离、再现、处理的扬声器以及语音信息的存储的说明将被略去。因为这部分不直接与本发明的特征相关。
下面将跟随图象信号的流程说明各部件的功能。
电视信号接收机2113是用于接收用如天线电波或空间光通信这样的无线电传输系统发送的电视图象信号的电路。要接收电视信号的该系统不是特别限定的。例如可以是NTSC、PAL和SECAM。由比上述系统多的扫描线组成的电视信号(如所谓的高清晰度电视信号,如一个MUSE)是一个适于利用上述显示板的全部特性的信源,上述显示板最好增加屏幕面积和象素数目。电视信号接收机2113接收的信号输出到解码器2104。
电视信号接收机2112是用于接收用如同轴电缆或光纤这样的电缆传输系统发送的电视图象信号的电路。在电视信号接收机2113的情况下,要接收电视信号的系统不是特别限定的。该电路输出的信号也输出到解码器2104。
图象输入接口电路2111接收如电视摄像机或图象读取扫描仪这样的图象输入装置提供的图象信号,所接收的图象信号输出到解码器2104。
图象存储器接口电路2110接收存储在视频磁带录像机(以后缩写为VTR)中的图象信号。所接收的图象信号输出到解码器2104。
图象存储器接口电路2109接收存储在视盘中的图象信号。所接收的信号输出到解码器2104。
图象存储器接口电路2108接收存储静态图象数据的装置,如所谓静态图象盘中的图象信号。所接收的静态图象数据输出到解码器2104。
I/O接口电路2105把该显示装置连接到外部计算机或计算机网络上或如打印机这样的输出设备上。I/O接口电路执行图象数据和字符图形信息的输入/输出。某些情况下,I/O接口电路2105也可执行该显示装置的CPU2106和外部设备之间的控制信号和数字数据的输入/输出。
图象发生器2107产生通过I/O接口电路2105从外部输入的要基于图象数据或字符图形信息显示的图象数据,或要基于CPU2106输出的图象数据或字符图形信息显示的图象数据。图象发生器2107包括产生图象所需的电路,如用于存储图象数据或字符图形信息的可编程存储器,存储于字符码相应的图象类型的只读存储器,和用于进行图象处理的处理器。
由图象发生器2107产生的要显示的图象数据输出到解码器2104。在一些例子,也可通过I/O接口电路2105把数据输出到外部计算机网络或打印机。
CPU2106主要控制该显示装置的操作并执行有关要显示的图象的产生、选择和编辑工作。
例如,CPU2106向多路复用器2103输出控制信号以正确选择和组合要在显示板上显示的图象信号。处理期间,CPU2106也根据要显示的图象信号把控制信号输出到显示板控制器2102,从而适当地控制显示装置的工作条件,如屏幕的显示频率、扫描方式(如,交错或非交错)以及一帧中的扫描线数。
此外,CPU2106直接把图象数据或字符图形信息输出到图象发生器2107,或径I/O接口电路2105访问外部计算机或存储器接收数据或图象信息。
注意,CPU2106当然可参与其它目的工作。例如,CPU2106可直接参与如个人计算机或字处理机中的产生或处理信息的功能。
CPU2106也可如上所述通过I/O接口电路2105连接到外部计算机网络以和外部计算机一起执行数字计算等工作。
输入单元2114由操作员使用以输入命令、程序或数据到CPU2106。也可使用多种输入装置,如键盘、鼠标、操纵杆、条码读取器以及语音识别装置。
解码器2104是用于把图象电路2107-2113的各种输入图象信号解码成三原色信号或亮度信号以及I和Q信号的电路。如图21的虚线所示,需要解码器2104包括内部图象存储器。这是因为要在该装置中处理解码时所需的图象存储器的如MUSE信号这类TV信号。图象存储器也可使静态图象易于显示。使用该图象存储器的另一个优点是图象存储器与图象发生器2107和CPU2106一起使用有利于图象的处理和编辑,如图象的薄化、内插、放大、缩小和合成。
多路复用器2103正确选择基于CPU2106的输入控制信号而显示的图象。即,多路复用器2103从解码器2104解码的输入图象信号中选择所希望的图象信号,并将选中的信号输入到驱动器2101。这种情况下,可通过在一帧的显示时间中切换图象信号,把一帧分成多个区,并在这些区显示不同的图象,如所述的多屏电视系统那样。
显示板控制器2102根据CPU2106的输入控制信号控制驱动器2102的操作。
即,为了控制显示板的基本操作,显示板控制器2102输出到驱动器2101一个信号,用于控制驱动显示板的电源(未示出)的操作顺序。
此外,为控制显示板的驱动方式,显示板控制器2102向驱动器2101输出一个信号,以控制屏幕显示频率或扫描方式(例如,交错或非交错)。
显示板控制器2102还根据情况向驱动器2101输出控制信号,以调节图象质量,如亮度、对比度、音调或显示图象的清晰度。
驱动器2101是用于产生加到显示板2100的驱动信号的电路。驱动器2101根据多路复用器2103的输入图象信号以及显示板控制器2102的输入控制信号进行工作。
以上已描述了各部件的工作。用图21所示的排布,该多功能显示装置可把各图象信息源的输入信息显示在显示板2100。
更具体地说,如电视广播信号这样的各种图象信号由解码器2104解码,由多路复用器2103正确选择,并加到驱动器2101。显示控制器2102产生一控制信号用于根据要显示的图象信号控制驱动器2102的操作。根据图象信号和控制信号,驱动器2101把驱动信号提供给显示板2100。
因此,图象被显示到显示板2100上。这一系列操作都是由CPU2106控制的。
同时,在该多功能显示装置中,解码器2104的内部图象存储器、图象发生器2107、和CPU2106彼此协同工作。这不仅可简单地显示多个图象信息中选中的一个,还可以进行图象处理,如放大、缩小、旋转、移动、边加重、薄化、内插、彩色转换和方位转换,以及图象编辑,如合成、删除、连接、切换和裱糊。此外,虽然在本发明的描述中没有特别涉及到,但也可提供专用于处理和编辑语音信息的电路,以及上述的那些图象处理和图象编辑电路。
因此,该多功能显示装置可仅用作电视广播显示装置、电视会议的终端、用于处理静态和动态图象的图象的编辑装置、计算机的显示装置、如字处理机这类的办公室终端设备和游戏机。即该多功能显示装置可以极广泛的应用领域中用于工业或商业系统。
注意,图21仅示出多功能显示装置的设置的一个具体的例子,当然,该装置不限于此例。例如,不必要的功能的电路可从图21的设置中删去。相反,其它的结构单元也可依据具体应用加进上述设置中。例如,当要把显示装置加到可视电话机上时,最好在上述设置中加上电视摄象机、麦克风、照明器或包括调制解调器的发/收电路。
在该多功能显示装置中,使用表面传导电子发射器件装置作电子束源的显示板可很容易地做得很薄。因此,整个显示板的厚度可以减小。此外,使用表面传导电子发射器件作为电子束源的显示板可容易地增加屏幕大小、具有高亮度和广视角。因此,该显示装置可显示具有高能见度的真实、生动的图象。
根据本发明,如上所述,在包括大量表面传导电子发射器件的电子束发生装置成图象显示装置中,可校准表面传导电子发射器件在制造好后初始状态中电子发射特性的偏差。
此外,注意到表面传导电子发射器件的固有特性,如器件电流和发射电流间的强相关,本发明可检测具有很简单的电路配置的表面传导电子发射器件随时间的变化。即在测量表面传导电子发射器件的器件电流时,与测量显示屏的发射电流或亮度不同本发明既不需安培表也不需要加高压的亮度表。因此,每个器件的特性的变化可很容易地被检测。
本发明中,如检测到随时间的变化,则调节驱动条件的校正值。这使每个表面传导电子发射器件可在很长的时间内输出正确的电子束。因此,电子束发生装置或图象显示装置的性能可在很长的时间内保持稳定。
在不脱离本发明的精神和范围内可做出许多不同的实施例,但应理解,除了所附权利要求外,本发明不受具体实施例的限制。

Claims (9)

1、一个形成在基片上包括表面传导电子发射器件的电子束源的电子束发生装置,包括:
测量装置,用于测量流过每个所述表面传导电子发射器件的器件电流;
器件电流存储装置,用于存储所测量装置测量的数据;
比较装置,用于把所述测量装置测得的最新的数据与存在所述器件电流存储装置中的数据相比较;
校正值存储装置,用于存储校正加到每个表面传导电子发射器件上的驱动信号的校正值;
调节装置,用于调节存储在所述校正值存储装置中的校正值。
2、根据权利要求1所述的装置,其中所述测量装置通过施加一个低于所述表面传导电子发射器件的电子发射阈值电压的电压测量器件电流。
3、根据权利要求1所述的装置,其中
所述表面传导电子发射器件以阵列的形式由行方向导线和列方向导线相连;
要加到所述表面传导电子发射器件上的驱动信号包括一个行方向导线施与加的扫描信号和一个所述列方向导线施加的调制信号;以及
调制信号通过存在所述校正值存储装置中的校正加以校正。
4、包括形成于基片上的表面传导电子发射器件的图象显示装置和当辐射电子束时发射可见光的荧光物质,包括:
测量装置,用于测量流过所述表面传导电子发射器件的器件电流,
器件电流存储装置,用于存储由所述测量装置测得的数据;
比较装置,用于把所述测量装置测出的最新的数据与所述器件电流存储装置存储的数据相比较,
校正值存储装置,用于存储校正加到每个表面传导电子发射器件上的驱动信号的校正值;以及
调节装置,用于调节所述校正值存储装置中存储的校正值。
5、根据权利要求4所述的装置,其中所述测量装置通过施加低于所述表面传导电子发射器件的电子发射阈值电压的电压来测量器件电流。
6、根据权利要求4所述的装置,其中
所述表面传导电子发射器件是以阵列的方式由行方向导线和列方向导线相连,
加到所述表面传导电子发射器件的驱动信号包括所述行方向导线施加的扫描信号和列方向导线施加的调制信号,以及
调制信号是由所述校正值存储装置中存储的校正值进行校正。
7、驱动图象显示装置的方法,该图象显示装置包括形成于基片上的表面传导电子发射器件的当辐射电子束发射可见光的荧光物质,用于测量流过每个所述表面传导电子发射器件的测量装置,存储由所述测量装置测得的数据的器件电流存储装置,把所述测量装置测出的最新数据与所述器件电流存储装置中存储的数据相比较的比较装置,存储校正施加到每个表面传导电子发射器件的驱动信号的校正值的校正值存储装置,和调节所述校正值存储装置的校正值的调节装置,所述方法包括下列步骤:
在所述表面传导电子发射器件造好后、使所述器件电流存储装置存储初始状态测得的器件电流值;
使所述校正值存储装置存储根据每个表面传导电子发射器件的初始器件电流的测量值确定的校正值,作为一个初始值;
在图象显示一般时间后,使所述器件电流测量装置测量器件电流;
使所述比较装置把驱动一段时间后所述器件电流测量装置测得的最新数据与所述器件电流存储装置中的数据相比较;以及
如果比较结果超过一预定的范围,使所述调节装置调节所述校正值存储装置中的校正值。
8、一种驱动图象显示装置的方法,该图象显示装置包括形成于基座上的表面传导电子发射器件,当辐射电子束时发出可见光的荧光物质,测量流过每个所述表面传导电子发射器件的器件电流的测量装置,存储所述测量装置测出的数据的器件电流存储装置,把所述测量装置测得的最新数据与所述器件电流存储装置中的数据相比较的比较装置,存储校正加到每个表面传导电子发射器件上的驱动信号的校正值的校正值存储装置,以及调节所述校正值存储装置中的校正值的调节装置,所述方法包括下列步骤:
在所述表面传导电子发射器件造好后,使所述器件电流存储装置存储初始状态的器件电流的测量值;
使所述校正值存储装置存储根据每个表面传导电子发射器件的初始发射电流的测量值确定的校正值,作为一个初始值;
在图象显示任意一段时间后,使所述器件电流测量装置测量器件电流,
使所述比较装置把驱动任意一段时间后所述器件电流测量装置测出的最新数据与所述器件电流存储装置存储的数据相比较;以及
如果比较结果超出了预定的范围,使所述调节装置调节所述校正值存储装置中存储的校正值。
9、一种驱动图象显示装置的方法,该图象显示装置包括形成于基片上的表面传导电子发射器件,辐射电子束时发出可见光的荧光物质,测量流过每个所述表面传导电子发射器件的器件电流的测量装置,存储所述测量装置测出的数据的器件电流存储装置,把所述测量装置测得的最新数据与所述器件电流存储装置中的数据相比较的比较装置,存储校正加到每个表面传导电子发射器件上的驱动信号的校正值的校正值存储装置,以及调节所述校正值存储装置中的校正值的调节装置,所述方法包括下列步骤:
在所述表面传导电子发射器件造好后,使所述器件电流存储装置存储初始状态的器件电流的测量值;
使所述校正值存储装置存储根据当每个表面传导电子发射器件把电子束发射到所述荧光物质上时获得的亮度的测量值确定的校正值,作为一个初始值;
在图象显示任意一段时间后,使所述器件电流测量装置测量器件电流,
使所述比较装置把驱动任意一段时间后所述器件电流测量装置测出的最新数据与所述器件电流存储装置存储的数据相比较;以及
如果比较结果超出了预定的范围,使所述调节装置调节所述校正值存储装置中存储的校正值。
CN94119231A 1993-12-22 1994-12-22 电子束发生装置和驱动该装置的方法 Expired - Fee Related CN1066571C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP323773/1993 1993-12-22
JP323773/93 1993-12-22
JP32377393A JPH07181911A (ja) 1993-12-22 1993-12-22 マルチ電子ビーム源とその駆動方法及びそれを用いた画像形成装置
JP30478294A JP3280176B2 (ja) 1994-12-08 1994-12-08 電子ビーム発生装置,画像表示装置並びにそれら装置の駆動方法
JP304782/1994 1994-12-08
JP304782/94 1994-12-08

Publications (2)

Publication Number Publication Date
CN1108801A true CN1108801A (zh) 1995-09-20
CN1066571C CN1066571C (zh) 2001-05-30

Family

ID=26564046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94119231A Expired - Fee Related CN1066571C (zh) 1993-12-22 1994-12-22 电子束发生装置和驱动该装置的方法

Country Status (7)

Country Link
US (1) US5659328A (zh)
EP (1) EP0661726B1 (zh)
KR (1) KR0172195B1 (zh)
CN (1) CN1066571C (zh)
AT (1) ATE177560T1 (zh)
CA (1) CA2138363C (zh)
DE (1) DE69416988T2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353392C (zh) * 2003-10-01 2007-12-05 三星Sdi株式会社 电子发射器件及其驱动方法
CN100452154C (zh) * 2004-07-14 2009-01-14 株式会社半导体能源研究所 显示装置
CN100483494C (zh) * 2001-06-15 2009-04-29 佳能株式会社 驱动电路和显示装置
US7542016B2 (en) 2004-06-30 2009-06-02 Samsung Sdi Co., Ltd. Electron emission device (EED) with low background-brightness
CN108364619A (zh) * 2013-01-18 2018-08-03 辛纳普蒂克斯日本合同会社 显示面板驱动器、显示装置和调整装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672586B2 (ja) * 1994-03-24 2005-07-20 株式会社半導体エネルギー研究所 補正システムおよびその動作方法
JP3311201B2 (ja) 1994-06-08 2002-08-05 キヤノン株式会社 画像形成装置
JP3062990B2 (ja) * 1994-07-12 2000-07-12 キヤノン株式会社 電子放出素子及びそれを用いた電子源並びに画像形成装置の製造方法と、電子放出素子の活性化装置
JP3299096B2 (ja) 1995-01-13 2002-07-08 キヤノン株式会社 電子源及び画像形成装置の製造方法、並びに電子源の活性化処理方法
KR100220133B1 (ko) * 1995-03-13 1999-09-01 미따라이 하지메 전자 방출 소자, 전자원 및 화상 형성 장치와 그 제조방법
JP3219185B2 (ja) 1995-08-23 2001-10-15 キヤノン株式会社 電子発生装置、画像表示装置およびそれらの駆動回路、駆動方法
JP3376220B2 (ja) 1995-10-03 2003-02-10 キヤノン株式会社 画像形成装置とその製造方法
EP0866489A1 (en) 1997-03-21 1998-09-23 Canon Kabushiki Kaisha Image-forming apparatus
US6097356A (en) * 1997-07-01 2000-08-01 Fan; Nongqiang Methods of improving display uniformity of thin CRT displays by calibrating individual cathode
US6147664A (en) * 1997-08-29 2000-11-14 Candescent Technologies Corporation Controlling the brightness of an FED device using PWM on the row side and AM on the column side
JP3305283B2 (ja) 1998-05-01 2002-07-22 キヤノン株式会社 画像表示装置及び前記装置の制御方法
US6133893A (en) * 1998-08-31 2000-10-17 Candescent Technologies, Inc. System and method for improving emitter life in flat panel field emission displays
WO2000014710A1 (en) * 1998-09-04 2000-03-16 Nongqiang Fan Methods of improving display uniformity of thin crt displays by calibrating individual cathode
JP2000155555A (ja) * 1998-09-16 2000-06-06 Canon Inc 電子放出素子の駆動方法及び、該電子放出素子を用いた電子源の駆動方法、並びに該電子源を用いた画像形成装置の駆動方法
JP3131782B2 (ja) * 1998-12-08 2001-02-05 キヤノン株式会社 電子放出素子、電子源並びに画像形成装置
JP2000242214A (ja) * 1999-02-17 2000-09-08 Futaba Corp 電界放出型画像表示装置
JP2001092413A (ja) * 1999-09-24 2001-04-06 Semiconductor Energy Lab Co Ltd El表示装置および電子装置
TWI234134B (en) * 2000-04-14 2005-06-11 Koninkl Philips Electronics Nv Display driver with double calibration means
US6774578B2 (en) 2000-09-19 2004-08-10 Semiconductor Energy Laboratory Co., Ltd. Self light emitting device and method of driving thereof
TWI248319B (en) 2001-02-08 2006-01-21 Semiconductor Energy Lab Light emitting device and electronic equipment using the same
JP3673761B2 (ja) * 2001-02-09 2005-07-20 キヤノン株式会社 電子源の特性調整方法及び電子源の製造方法及び画像表示装置の特性調整方法及び画像表示装置の製造方法
US7088052B2 (en) * 2001-09-07 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of driving the same
JP2003173163A (ja) * 2001-09-27 2003-06-20 Sharp Corp 表示装置
JP5022547B2 (ja) * 2001-09-28 2012-09-12 キヤノン株式会社 画像形成装置の特性調整方法、画像形成装置の製造方法、画像形成装置及び特性調整装置
US7158102B2 (en) * 2002-04-26 2007-01-02 Candescent Technologies Corporation System and method for recalibrating flat panel field emission displays
JP2003334986A (ja) * 2002-05-22 2003-11-25 Dainippon Printing Co Ltd 印刷システム
JP2005004117A (ja) * 2003-06-16 2005-01-06 Hitachi Ltd 表示装置
KR100972620B1 (ko) * 2003-10-21 2010-07-27 삼성에스디아이 주식회사 전계 방출 표시 장치 및 전계 방출 표시 장치의 검사 방법
DE10354820A1 (de) * 2003-11-24 2005-06-02 Ingenieurbüro Kienhöfer GmbH Verfahren und Vorrichtung zum Betrieb eines verschleißbehafteten Displays
JP2005257791A (ja) * 2004-03-09 2005-09-22 Canon Inc 画像表示装置及び画像表示装置の駆動方法
FR2880173B1 (fr) * 2004-12-28 2007-05-11 Commissariat Energie Atomique Procede de commande d'un ecran de visualisation matriciel
US8085282B2 (en) 2006-12-13 2011-12-27 Canon Kabushiki Kaisha Image display apparatus and driving method of image display apparatus
JP2009210600A (ja) * 2008-02-29 2009-09-17 Canon Inc 画像表示装置とその補正回路、および、画像表示装置の駆動方法
JP2009210599A (ja) * 2008-02-29 2009-09-17 Canon Inc 画像表示装置とその補正回路、および、画像表示装置の駆動方法
JP2015185800A (ja) * 2014-03-26 2015-10-22 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置、情報処理装置、パターン検査装置及び荷電粒子ビーム描画方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441097A (en) * 1979-01-29 1984-04-03 Antroy Enterprises, Inc. Device for controlling a circuit
JPS61502151A (ja) * 1984-05-11 1986-09-25 エス・ア−ル・アイ・インタ−ナシヨナル 列状に配列された一連の電界放出陰極を有する平担パネル型ディスプレイ
US5025196A (en) * 1986-06-02 1991-06-18 Canon Kabushiki Kaisha Image forming device with beam current control
JPS63950A (ja) * 1986-06-19 1988-01-05 Canon Inc 電子放出装置
JPH0799665B2 (ja) * 1986-08-20 1995-10-25 キヤノン株式会社 電子線発生装置及びそれを用いた画像表示装置
JP2599591B2 (ja) * 1987-04-28 1997-04-09 キヤノン株式会社 電子放出素子特性測定装置
EP0299461B1 (en) * 1987-07-15 1995-05-10 Canon Kabushiki Kaisha Electron-emitting device
US4956578A (en) * 1987-07-28 1990-09-11 Canon Kabushiki Kaisha Surface conduction electron-emitting device
JP2622842B2 (ja) * 1987-10-12 1997-06-25 キヤノン株式会社 電子線画像表示装置および電子線画像表示装置の偏向方法
US5136212A (en) * 1988-02-18 1992-08-04 Canon Kabushiki Kaisha Electron emitting device, electron generator employing said electron emitting device, and method for driving said generator
JP2630988B2 (ja) * 1988-05-26 1997-07-16 キヤノン株式会社 電子線発生装置
JP2981751B2 (ja) * 1989-03-23 1999-11-22 キヤノン株式会社 電子線発生装置及びこれを用いた画像形成装置、並びに電子線発生装置の製造方法
JPH02257551A (ja) * 1989-03-30 1990-10-18 Canon Inc 画像形成装置
JPH04137431A (ja) * 1990-09-28 1992-05-12 Hitachi Ltd 平板形陰極線管
US5262698A (en) * 1991-10-31 1993-11-16 Raytheon Company Compensation for field emission display irregularities

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483494C (zh) * 2001-06-15 2009-04-29 佳能株式会社 驱动电路和显示装置
CN100353392C (zh) * 2003-10-01 2007-12-05 三星Sdi株式会社 电子发射器件及其驱动方法
US7542016B2 (en) 2004-06-30 2009-06-02 Samsung Sdi Co., Ltd. Electron emission device (EED) with low background-brightness
CN100452154C (zh) * 2004-07-14 2009-01-14 株式会社半导体能源研究所 显示装置
CN108364619A (zh) * 2013-01-18 2018-08-03 辛纳普蒂克斯日本合同会社 显示面板驱动器、显示装置和调整装置

Also Published As

Publication number Publication date
DE69416988T2 (de) 1999-08-19
US5659328A (en) 1997-08-19
EP0661726B1 (en) 1999-03-10
DE69416988D1 (de) 1999-04-15
EP0661726A1 (en) 1995-07-05
AU681724B2 (en) 1997-09-04
AU8162494A (en) 1995-07-13
KR950020901A (ko) 1995-07-26
ATE177560T1 (de) 1999-03-15
KR0172195B1 (ko) 1999-02-01
CA2138363A1 (en) 1995-06-23
CA2138363C (en) 1999-06-22
CN1066571C (zh) 2001-05-30

Similar Documents

Publication Publication Date Title
CN1066571C (zh) 电子束发生装置和驱动该装置的方法
CN1115709C (zh) 电子束发生装置及驱动该装置的方法
CN1106631C (zh) 电子产生器件及其驱动电路和驱动方法
CN1173381C (zh) 成象装置和方法
CN1086508C (zh) 电子束发生装置、其驱动方法及图象形成装置
CN1086057C (zh) 用于制造电子源和成像设备的方法和设备
CN1143357C (zh) 图象形成装置及其制造方法
CN1123048C (zh) 成象装置
CN1115710C (zh) 电子束设备与成像设备
CN1052337C (zh) 电子发射器件的制作方法以及电子源和图象形成设备
CN1106657C (zh) 电子发射装置与图象形成装置
CN1106662C (zh) 电子发生装置,成像装置,及制造该电子发生装置的方法
CN1083615C (zh) 图像形成装置
CN1072838C (zh) 电子束发生装置和使用电子束发生装置的图象形成装置
CN1131756A (zh) 制造电子发射器件、电子源和图像形成装置的方法
CN1101166A (zh) 电子源和图像形成装置及其驱动方法
CN1096132A (zh) 电子源和成像装置
CN1108622C (zh) 电子束设备及驱动该设备的方法
CN1363944A (zh) 驱动电子发射装置、电子源和成像装置的方法和电路
CN1123037C (zh) 电子源、采用它的成象器及其制造方法
CN1118844C (zh) 成像装置和生产及调整该成像装置的方法
CN1075240C (zh) 电子束源和使用它的成像设备的制造方法及激活处理方法
CN1106658C (zh) 电子发射装置及其制造方法和使用该装置的图象形成装置
CN1124582C (zh) 驱动装置和驱动方法以及成象装置
CN1060881C (zh) 电子源和成象装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee