CN110846618A - 一种用于铝压铸模表面防护的高熵合金复合涂层 - Google Patents

一种用于铝压铸模表面防护的高熵合金复合涂层 Download PDF

Info

Publication number
CN110846618A
CN110846618A CN201911096497.0A CN201911096497A CN110846618A CN 110846618 A CN110846618 A CN 110846618A CN 201911096497 A CN201911096497 A CN 201911096497A CN 110846618 A CN110846618 A CN 110846618A
Authority
CN
China
Prior art keywords
die
layer
aluminum alloy
casting die
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911096497.0A
Other languages
English (en)
Other versions
CN110846618B (zh
Inventor
黄志宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjin Coating Wenzhou Co ltd
Original Assignee
Wenzhou Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Polytechnic filed Critical Wenzhou Polytechnic
Priority to CN201911096497.0A priority Critical patent/CN110846618B/zh
Publication of CN110846618A publication Critical patent/CN110846618A/zh
Application granted granted Critical
Publication of CN110846618B publication Critical patent/CN110846618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于铝压铸模表面防护的高熵合金复合涂层,其技术方案要点是包括依次沉积于铝合金压铸模具表面的Ti打底层、CrAlN阻挡层、梯度结构的CrAlNbN‑CrAlSiN支撑层以及CrAlNbSiON功能层;所述梯度结构的CrAlNbN‑CrAlSiN支撑层是以CrAlNb层到CrAlSi层为一个循环周期的多周期涂层,所述梯度结构CrAlNbN‑CrAlSiN支撑层中Nb元素的含量从CrAlN阻挡层到CrAlNbSiON功能层逐渐增加,Si元素含量逐渐减小,本发明中的高熵合金复合涂层组织致密,界面结合良好,涂层不易开裂并剥落,抗裂纹效果较好;Nb高了涂层的硬度外,利于涂层的致密化,进一步提高其韧性、耐高温腐蚀、抗氧化性等性能。

Description

一种用于铝压铸模表面防护的高熵合金复合涂层
技术领域
本发明涉及压铸模具表面防护领域,更具体的说是涉及一种应用于铝合金压铸模具表面的高熵合金复合涂层。
背景技术
在汽车工业的铝合金压铸成形工艺中,铝压铸模具面临着液态合金的腐蚀、高温磨损、热疲劳、氧化等的共同作用。造成高温金属液污染,材料开裂和表面粘连等一系列问题。
高熵氧化物涂层由于具有热力学上的高熵效应以及结晶学上的迟缓扩散效应,在抗高温氧化和耐磨等方面具有突出的优势。
将高熵氧化物涂层应用铝压铸模的表面防护有良好的应用前景。如果将高熵氧化物直接涂敷在铝压铸模,由于涂层于基材弹性模量,膨胀系数以及金属基材与高熵合金氧化物缺乏化学亲合力,会导致膜基结合力差,限制了高熵合金氧化物的防护效果。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种用于铝压铸模表面防护的高熵合金复合涂层,该高熵合金复合涂层组织致密,界面结合良好。
为实现上述目的,本发明提供了如下技术方案:一种应用于铝合金压铸模具表面的高熵合金复合涂层,包括依次沉积于铝合金压铸模具表面的Ti打底层、CrAlN阻挡层、梯度结构的CrAlNbN-CrAlSiN支撑层以及CrAlNbSiON功能层;所述梯度结构的CrAlNbN-CrAlSiN支撑层是以CrAlNb层到CrAlSi层为一个循环周期的多周期涂层。
作为本发明的进一步改进,所述Ti打底层、CrAlN阻挡层、梯度结构的CrAlNbN-CrAlSiN支撑层以及CrAlNbSiON功能层的厚度分别为50~100nm、100~300nm、400~800nm以及1000~2000nm。
作为本发明的进一步改进,所述梯度结构CrAlNbN-CrAlSiN支撑层中Nb元素的含量从CrAlN阻挡层到CrAlNbSiON功能层逐渐增加,Si元素含量逐渐减小。
作为本发明的进一步改进,所述梯度结构的CrAlNbN-CrAlSiN支撑层中Nb原子百分比含量为4~10%,所述Si原子百分比为6~12%。
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,经过喷砂、打磨、抛光、清洗、干燥后待用;
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至440~460℃,充入氮气至真空度为280~320Pa,开启偏压电源400~800V,功率密度为5~10W/cm2,氮化时间为1~3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节氩气流量到20ml/min,开启离子源电流为200A.偏压50~200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为0.5~2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续5~15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续220~260min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压15~40V,电弧电流70~120A,控制氮气通入,真空度为0.8~1.8Pa,负偏压60~120V,占空比40~70%,温度300~480℃,基片转速4~6rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流从40A递增至100A,CrAlSi靶的电流从120A递减至60A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间60~110min,调制周期6~24S;
步骤七:开启CrAlNb合金靶,控制电弧电压20~40V,电弧电流60~90A,占空比30~80%;开启双极脉冲磁控溅射Si,控制电压在300~500V,电流8~12A,占空比60~80%,控制氮气和氧气通入,氮气和氧气的总流量为60~100ml/min,氮气与氧气的流量比为1:4,真空度控制在1.2~2Pa,负偏压-40~-120V,温度250~450℃,制备纳米复合CrAlNbSiON功能层,沉积时间80~120min。
作为本发明的进一步改进,所述步骤一中喷砂磨料选为刚玉砂,砂砾大小为320~400目,喷砂气压为2~4Bar。
作为本发明的进一步改进,所述步骤一中打磨具体过程为依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨。
作为本发明的进一步改进,所述步骤一中抛光的具体过程为用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度0.5~1μm。
作为本发明的进一步改进,所述步骤一中抛光的清洗的方式为选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗10~20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于80~86℃的碱液中并进行超声波清洗5~10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于30~5℃的纯水中并进行超声波清洗5~10min;再将漂洗后的铝合金压铸模具进行烘干。
本发明的有益效果:本发明中的高熵合金复合涂层组织致密,界面结合良好。Ti打底层可以降低减小残余应力,增大涂层与铝合金压铸模具之间的结合强度;CrAlN阻挡层与Ti打底层亲和力好,且充当了氧元素扩散的阻挡层;梯度结构的CrAlNbN-CrAlSiN支撑层与未形成纳米梯度结构的CrAlNbSiN涂层相比,该涂层缓解了涂层内部应力,阻止裂纹扩展,虽然晶体结构上存在一些空位,但这些空位给后续高温氧化的氧化体积膨胀提供了缓冲空间,涂层不会因为高温氧化而出现裂纹,腐蚀介质不会沿裂纹侵入基体,起到保护基体的目的;
优选地,Nb元素在梯度涂层中沿涂层的厚度方向由内向外递增,实现了Nb元素在CrAlNbN-CrAlSiN支撑层的梯度分布,改善结构和性能上的匹配性,增大涂层之间的结合力,同时,Nb高温时形成硬度较高的NNb,使得支撑层的整个硬度较高,且涂层沿横切面的硬度变化小;
CrAlNbSiON功能层中,Al具有抗氧化性和抗腐蚀性能,Cr可以提高抗氧化性和抗腐蚀性;Si有良好的高温性能;Al与Cr、Si合用,可显著提高耐高温腐蚀的能力,Nb提高了功能层的硬度外,在与Al、Cr、Si的协同作用下,在冷热交替的过程中,涂层不易开裂并剥落,抗裂纹效果较好;其次,Nb入射原子能量高,加了成膜时对膜层表面轰击的力度,使得表面原子的迁移率、扩散增加,利于涂层的致密化,进一步提高其韧性、耐高温腐蚀、抗氧化性等性能。
具体实施方式
实施例1
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为320目的刚玉砂,在2Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度0.5μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗10min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于80℃的碱液中并进行超声波清洗5min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于30℃的纯水中并进行超声波清洗5min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至440℃,充入氮气至真空度为280Pa,开启偏压电源400V,功率密度为5W/cm2,氮化时间为1h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压50V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为0.5h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续5min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续220min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压15V,电弧电流70A,控制氮气通入,真空度为0.8Pa,负偏压60V,占空比40%,温度300℃,基片转速4rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流从40A递增至100A,CrAlSi靶的电流从120A递减至60A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间60min,调制周期24s;
步骤七:开启CrAlNb合金靶,控制电弧电压20V,电弧电流60A,占空比30%;开启双极脉冲磁控溅射Si,控制电压在300V,电流8A,占空比60%,控制氮气和氧气通入,氮气和氧气的总流量为60ml/min,氮气与氧气的流量比为1:4,真空度控制在1.2Pa,负偏压-40V,温度250℃,制备纳米复合CrAlNbSiON功能层,沉积时间80~120min。
实施例2
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为400目的刚玉砂,在4Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度1μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于86℃的碱液中并进行超声波清洗10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于35℃的纯水中并进行超声波清洗10min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至460℃,充入氮气至真空度为320Pa,开启偏压电源800V,功率密度为10W/cm2,氮化时间为3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续260min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压40V,电弧电流120A,控制氮气通入,真空度为1Pa,负偏压120V,占空比70%,温度480℃,基片转速4rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流从40A递增至100A,CrAlSi靶的电流从120A递减至60A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间100min,调制周期6s;
步骤七:开启CrAlNb合金靶,控制电弧电压40V,电弧电流90A,占空比80%;开启双极脉冲磁控溅射Si,控制电压在500V,电流12A,占空比80%,控制氮气和氧气通入,氮气和氧气的总流量为100ml/min,氮气与氧气的流量比为1:4,真空度控制在2Pa,负偏压-120V,温度450℃,制备纳米复合CrAlNbSiON功能层,沉积时间120min。
对比例1
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为400目的刚玉砂,在4Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度1μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于86℃的碱液中并进行超声波清洗10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于35℃的纯水中并进行超声波清洗10min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至460℃,充入氮气至真空度为320Pa,开启偏压电源800V,功率密度为10W/cm2,氮化时间为3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续260min,在Ti底层表面沉积形成CrAlN涂层;
对比例2
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为400目的刚玉砂,在4Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度1μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于86℃的碱液中并进行超声波清洗10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于35℃的纯水中并进行超声波清洗10min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至460℃,充入氮气至真空度为320Pa,开启偏压电源800V,功率密度为10W/cm2,氮化时间为3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续260min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压40V,电弧电流120A,控制氮气通入,真空度为1Pa,负偏压120V,占空比70%,温度480℃,基片转速4rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流从40A递增至100A,CrAlSi靶的电流从120A递减至60A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间100min,调制周期6s。
对比例3
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为400目的刚玉砂,在4Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度1μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于86℃的碱液中并进行超声波清洗10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于35℃的纯水中并进行超声波清洗10min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至460℃,充入氮气至真空度为320Pa,开启偏压电源800V,功率密度为10W/cm2,氮化时间为3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续260min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压40V,电弧电流120A,控制氮气通入,真空度为1Pa,负偏压120V,占空比70%,温度480℃,基片转速4rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流为40A,CrAlSi靶的电流为120A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间100min,调制周期6s;
步骤七:开启CrAlNb合金靶,控制电弧电压40V,电弧电流90A,占空比80%;开启双极脉冲磁控溅射Si,控制电压在500V,电流12A,占空比80%,控制氮气和氧气通入,氮气和氧气的总流量为100ml/min,氮气与氧气的流量比为1:4,真空度控制在2Pa,负偏压-120V,温度450℃,制备纳米复合CrAlNbSiON功能层,沉积时间120min。
对比例4
一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,选择砂砾大小为400目的刚玉砂,在4Bar的气压下对铝合金压铸模具进行喷砂处理,以除去表面的钝化层;再依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨;再用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度1μm;选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于86℃的碱液中并进行超声波清洗10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于35℃的纯水中并进行超声波清洗10min;再将漂洗后的铝合金压铸模具进行烘干。
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至460℃,充入氮气至真空度为320Pa,开启偏压电源800V,功率密度为10W/cm2,氮化时间为3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节Ar流量到20ml/min,开启离子源电流为200A.偏压200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为2h。
(一)硬度测试
采用HXD-1000Knoop显微硬度仪测试实施例1-2和对比例1-4所制的样品的涂层硬度,载荷25g,加载停留15s,测试10个点,求平均值。
硬度(HV<sub>0.025</sub>)
实施例1 3540
实施例2 3563
对比例1 3300
对比例2 3445
对比例3 3485
对比例4 3358
(二)高温氧化性测试
将实施例1-2和对比例1-4所制的样品放入箱式电阻炉中在900℃下进行高温氧化试验。分别在20小时、40小时、60小时、80小时和100小时取出测试样品,空冷,然后使用分析天平称重,计算单位面积、单位时间的氧化增重量,每次试验同一测试对象放置5个件,取每种试样的氧化增重量值的平均值作为测试结果。
氧化增重量(10<sup>-8</sup>g/cm<sup>2</sup>·h)
实施例1 0.75
实施例2 0.73
对比例1 3.45
对比例2 1.9
对比例3 1.12
对比例4 4.37
(三)耐腐蚀性测试
选择摩尔浓度为1mol/L的硫酸溶液,摩尔浓度为1mol/L的氢氧化钠溶液,质量百分含量为3.5wt.%的氯化钠溶液作为测试溶液,将试样浸泡100h,利用排水法测量计算样品的密度,根据公式(1)来计算金属的腐蚀速率v。
Figure BDA0002268493490000131
其中,K=8.76×104(mm/y),W为腐蚀前后的质量损失(g),A为金属浸蚀的面积(cm2),T为浸入时间(h),D为金属的密度(g/cm3)。
Figure BDA0002268493490000132
(四)抗裂痕测试
将实施例1-2和对比例1-4所制的样品加热至1000℃,保温0.5h,迅速放入20℃的冷水中,对涂层进行热震冲击,重复试验直至开始出现肉眼可见的裂纹则停止实验,记录次数。
次数
实施例1 157
实施例2 160
对比例1 85
对比例2 113
对比例3 136
对比例4 60
通过上述工艺制备的高熵合金复合涂层组织致密,界面结合良好。Ti打底层可以降低减小残余应力,增大涂层与铝合金压铸模具之间的结合强度;CrAlN阻挡层与Ti打底层亲和力好,且充当了氧元素扩散的阻挡层;梯度结构的CrAlNbN-CrAlSiN支撑层与未形成纳米梯度结构的CrAlNbSiN涂层相比,该涂层缓解了涂层内部应力,阻止裂纹扩展,虽然晶体结构上存在一些空位,但这些空位给后续高温氧化的氧化体积膨胀提供了缓冲空间,涂层不会因为高温氧化而出现裂纹,腐蚀介质不会沿裂纹侵入基体,起到保护基体的目的;
优选地,Nb元素在梯度涂层中沿涂层的厚度方向由内向外递增,实现了Nb元素在CrAlNbN-CrAlSiN支撑层的梯度分布,改善结构和性能上的匹配性,增大涂层之间的结合力,同时,Nb高温时形成硬度较高的NNb,使得支撑层的整个硬度较高,且涂层沿横切面的硬度变化小;
CrAlNbSiON功能层中,Al具有抗氧化性和抗腐蚀性能,Cr可以提高抗氧化性和抗腐蚀性;Si有良好的高温性能;Al与Cr、Si合用,可显著提高耐高温腐蚀的能力,Nb提高了功能层的硬度外,在与Al、Cr、Si的协同作用下,在冷热交替的过程中,涂层不易开裂并剥落,抗裂纹效果较好;其次,Nb入射原子能量高,加了成膜时对膜层表面轰击的力度,使得表面原子的迁移率、扩散增加,利于涂层的致密化,进一步提高其韧性、耐高温腐蚀、抗氧化性等性能。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种用于铝压铸模表面防护的高熵合金复合涂层,其特征在于:包括依次沉积于铝合金压铸模具表面的Ti打底层、CrAlN阻挡层、梯度结构的CrAlNbN-CrAlSiN支撑层以及CrAlNbSiON功能层;所述梯度结构的CrAlNbN-CrAlSiN支撑层是以CrAlNb层到CrAlSi层为一个循环周期的多周期涂层。
2.根据权利要求1所述的一种用于铝压铸模表面防护的高熵合金复合涂层,其特征在于:所述Ti打底层、CrAlN阻挡层、梯度结构的CrAlNbN-CrAlSiN支撑层以及CrAlNbSiON功能层的厚度分别为50~100nm、100~300nm、400~800nm以及1000~2000nm。
3.根据权利要求1所述的一种用于铝压铸模表面防护的高熵合金复合涂层,其特征在于:所述梯度结构CrAlNbN-CrAlSiN支撑层中Nb元素的含量从CrAlN阻挡层到CrAlNbSiON功能层逐渐增加,Si元素含量逐渐减小。
4.根据权利要求4所述的一种用于铝压铸模表面防护的高熵合金复合涂层,其特征在于:所述梯度结构的CrAlNbN-CrAlSiN支撑层中Nb原子百分比含量为4~10%,所述Si原子百分比为6~12%。
5.根据权利要求4所述的一种用于铝压铸模表面防护的高熵合金复合涂层的制备方法,其特征在于:包括如下制备步骤:
步骤一:选择铝合金压铸模具作为基体材料,经过喷砂、打磨、抛光、清洗、干燥后待用;
步骤二:采用气体离子源的方法对铝合金压铸模具进行氮化,将上述的铝合金压铸模具挂在镀膜室内,关上镀膜室;打开抽真空系统,抽真空至0.01Pa,同时打开加热电源,将基体预热至至440~460℃,充入氮气至真空度为280~320Pa,开启偏压电源400~800V,功率密度为5~10W/cm2,氮化时间为1~3h;
步骤三:关闭氮气,从离子源中充入氩气至真空度为0.2Pa,调节氩气流量到20ml/min,开启离子源电流为200A.偏压50~200V,对铝合金压铸模具的表面进行氩离子刻蚀,刻蚀时间为0.5~2h;
步骤四:铝合金压铸模具刻蚀完成后,调节氩气流量到30ml/min,将抽真空至0.3Pa,打开Ti靶电弧电源,弧电流为100A,调整偏压到-200V,持续5~15min,在样品表面制备得到Ti打底层;
步骤五:打底层制备完成后,将偏压调整为-80V,关闭氩气,充入氮气,调整氮气流量使真空室气压为0.8Pa,将Ti靶关闭,将CrAl靶打开,电流为80A,持续220~260min,在Ti底层表面沉积形成CrAlN涂层;
步骤六:开启CrAlNb和CrAlSi合金靶,控制电弧电压15~40V,电弧电流70~120A,控制氮气通入,真空度为0.8~1.8Pa,负偏压60~120V,占空比40~70%,温度300~480℃,基片转速4~6rpm,采用电弧靶在沉积时间的电流渐变模式,CrAlNb靶电流从40A递增至100A,CrAlSi靶的电流从120A递减至60A,制备梯度结构纳米的CrAlNbN-CrAlSiN支撑层,沉积时间60~110min,调制周期6~24s;
步骤七:开启CrAlNb合金靶,控制电弧电压20~40V,电弧电流60~90A,占空比30~80%;开启双极脉冲磁控溅射Si,控制电压在300~500V,电流8~12A,占空比60~80%,控制氮气和氧气通入,氮气和氧气的总流量为60~100ml/min,氮气与氧气的流量比为1:4,真空度控制在1.2~2Pa,负偏压-40~-120V,温度250~450℃,制备纳米复合CrAlNbSiON功能层,沉积时间80~120min。
6.根据权利要求5所述的一种用于铝压铸模表面防护的高熵合金复合涂层及其制备方法,其特征在于:所述步骤一中喷砂磨料选为刚玉砂,砂砾大小为320~400目,喷砂气压为2~4Bar。
7.根据权利要求5所述的一种用于铝压铸模表面防护的高熵合金复合涂层及其制备方法,其特征在于:所述步骤一中打磨具体过程为依次选用号数为300、400、600、800的砂纸对铝合金压铸模具进行打磨。
8.根据权利要求5所述的一种用于铝压铸模表面防护的高熵合金复合涂层及其制备方法,其特征在于:所述步骤一中抛光的具体过程为用抛光布轮混合钻石研磨粉和研钻石粉橄榄油进行研磨精抛,所述钻石粉为粒度0.5~1μm。
9.根据权利要求5所述的一种用于铝压铸模表面防护的高熵合金复合涂层及其制备方法,其特征在于:所述步骤一中抛光的清洗的方式为选用自动超声波清洗,具体过程为将碱液对铝合金压铸模具进行喷淋清洗10~20min,淋洗时的压力为3kg/cm2,再将淋洗后的铝合金压铸模具置于80~86℃的碱液中并进行超声波清洗5~10min;取出铝合金压铸模具并用纯水冲洗;再将淋洗后的铝合金压铸模具置于30~35℃的纯水中并进行超声波清洗5~10min;再将漂洗后的铝合金压铸模具进行烘干。
CN201911096497.0A 2019-11-11 2019-11-11 一种用于铝压铸模表面防护的高熵合金复合涂层 Active CN110846618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911096497.0A CN110846618B (zh) 2019-11-11 2019-11-11 一种用于铝压铸模表面防护的高熵合金复合涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911096497.0A CN110846618B (zh) 2019-11-11 2019-11-11 一种用于铝压铸模表面防护的高熵合金复合涂层

Publications (2)

Publication Number Publication Date
CN110846618A true CN110846618A (zh) 2020-02-28
CN110846618B CN110846618B (zh) 2022-04-19

Family

ID=69601136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911096497.0A Active CN110846618B (zh) 2019-11-11 2019-11-11 一种用于铝压铸模表面防护的高熵合金复合涂层

Country Status (1)

Country Link
CN (1) CN110846618B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270203A (zh) * 2020-03-05 2020-06-12 武汉大学 一种用于压铸模具的AlCrNbSiTiCN高熵合金纳米复合涂层及其制备方法
CN111560582A (zh) * 2020-05-18 2020-08-21 中国科学院力学研究所 一种在合金刀具上制作超硬高熵合金氮化物涂层的方法
CN112549848A (zh) * 2020-11-26 2021-03-26 江苏珀然股份有限公司 一种高熵合金增强铝基梯度材料的轮毂及其制造方法
CN113025966A (zh) * 2021-02-26 2021-06-25 赵中里 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
CN113549876A (zh) * 2021-07-22 2021-10-26 中国科学院力学研究所 一种铝合金压铸基体的阻隔涂层
CN115679264A (zh) * 2022-12-27 2023-02-03 爱柯迪股份有限公司 压铸模具金属-陶瓷复合抗冲击高熵涂层及制备方法
CN117418191A (zh) * 2023-12-15 2024-01-19 苏州瑞德智慧精密科技股份有限公司 一种铝压铸模具的表面pvd涂层加工工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099137A (zh) * 2008-07-14 2011-06-15 Osg株式会社 硬质被膜及硬质被膜被覆工具
CN102149844A (zh) * 2008-07-09 2011-08-10 欧瑞康贸易股份公司(特吕巴赫) 涂覆体系、涂覆的工件及其生产方法
JP5315533B2 (ja) * 2011-02-16 2013-10-16 住友電工ハードメタル株式会社 表面被覆切削工具
CN106676470A (zh) * 2017-01-09 2017-05-17 福建工程学院 一种AlTiON热作模具钢复合梯度涂层及其制备方法
CN106702331A (zh) * 2016-12-07 2017-05-24 广东工业大学 一种高温耐磨CrAlSiON基纳米复合涂层及其制备方法和应用
CN107815638A (zh) * 2017-11-07 2018-03-20 福建工程学院 一种含有多层结构的AlTiCrCN纳米硬质涂层及其制备方法
CN108396292A (zh) * 2018-03-12 2018-08-14 中国科学院力学研究所 一种压铸模具用复合涂层及其制备方法
CN108642449A (zh) * 2018-05-29 2018-10-12 武汉大学 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
CN108642445A (zh) * 2018-05-30 2018-10-12 上海电机学院 一种AlCrTaTiZr高熵合金氮化物薄膜及其制备方法
CN108950480A (zh) * 2018-08-22 2018-12-07 中国科学院力学研究所 一种高韧耐磨复合涂层及将其沉积在热作凸模具上的方法
WO2019025106A1 (en) * 2017-07-31 2019-02-07 Walter Ag COATED CUTTING TOOL AND PROCESS FOR PRODUCING THE SAME

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149844A (zh) * 2008-07-09 2011-08-10 欧瑞康贸易股份公司(特吕巴赫) 涂覆体系、涂覆的工件及其生产方法
CN102099137A (zh) * 2008-07-14 2011-06-15 Osg株式会社 硬质被膜及硬质被膜被覆工具
JP5315533B2 (ja) * 2011-02-16 2013-10-16 住友電工ハードメタル株式会社 表面被覆切削工具
CN106702331A (zh) * 2016-12-07 2017-05-24 广东工业大学 一种高温耐磨CrAlSiON基纳米复合涂层及其制备方法和应用
CN106676470A (zh) * 2017-01-09 2017-05-17 福建工程学院 一种AlTiON热作模具钢复合梯度涂层及其制备方法
WO2019025106A1 (en) * 2017-07-31 2019-02-07 Walter Ag COATED CUTTING TOOL AND PROCESS FOR PRODUCING THE SAME
CN107815638A (zh) * 2017-11-07 2018-03-20 福建工程学院 一种含有多层结构的AlTiCrCN纳米硬质涂层及其制备方法
CN108396292A (zh) * 2018-03-12 2018-08-14 中国科学院力学研究所 一种压铸模具用复合涂层及其制备方法
CN108642449A (zh) * 2018-05-29 2018-10-12 武汉大学 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
CN108642445A (zh) * 2018-05-30 2018-10-12 上海电机学院 一种AlCrTaTiZr高熵合金氮化物薄膜及其制备方法
CN108950480A (zh) * 2018-08-22 2018-12-07 中国科学院力学研究所 一种高韧耐磨复合涂层及将其沉积在热作凸模具上的方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270203A (zh) * 2020-03-05 2020-06-12 武汉大学 一种用于压铸模具的AlCrNbSiTiCN高熵合金纳米复合涂层及其制备方法
CN111270203B (zh) * 2020-03-05 2020-11-17 武汉大学 一种用于压铸模具的AlCrNbSiTiCN高熵合金纳米复合涂层及其制备方法
CN111560582A (zh) * 2020-05-18 2020-08-21 中国科学院力学研究所 一种在合金刀具上制作超硬高熵合金氮化物涂层的方法
CN112549848A (zh) * 2020-11-26 2021-03-26 江苏珀然股份有限公司 一种高熵合金增强铝基梯度材料的轮毂及其制造方法
WO2022110001A1 (zh) * 2020-11-26 2022-06-02 江苏珀然股份有限公司 一种高熵合金增强铝基梯度材料的轮毂及其制造方法
CN113025966A (zh) * 2021-02-26 2021-06-25 赵中里 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
CN113025966B (zh) * 2021-02-26 2022-05-17 何阳轩 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
CN113549876A (zh) * 2021-07-22 2021-10-26 中国科学院力学研究所 一种铝合金压铸基体的阻隔涂层
CN115679264A (zh) * 2022-12-27 2023-02-03 爱柯迪股份有限公司 压铸模具金属-陶瓷复合抗冲击高熵涂层及制备方法
CN115679264B (zh) * 2022-12-27 2023-03-31 爱柯迪股份有限公司 压铸模具金属-陶瓷复合抗冲击高熵涂层及制备方法
CN117418191A (zh) * 2023-12-15 2024-01-19 苏州瑞德智慧精密科技股份有限公司 一种铝压铸模具的表面pvd涂层加工工艺
CN117418191B (zh) * 2023-12-15 2024-04-16 苏州瑞德智慧精密科技股份有限公司 一种铝压铸模具的表面pvd涂层加工工艺

Also Published As

Publication number Publication date
CN110846618B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN110846618B (zh) 一种用于铝压铸模表面防护的高熵合金复合涂层
CN106702329A (zh) 一种钛合金表面基于多弧离子镀铝的微弧氧化陶瓷涂层及其制备方法
WO2020207155A1 (zh) 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
CN113652659B (zh) 一种与基体冶金结合的高熵合金氮化物涂层的制备方法
CN113073293B (zh) 一种改善e690钢摩擦学性能的结构及方法
CN109913796A (zh) 一种钛合金表面的TiAlN复合涂层及其制备方法
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN109402590A (zh) 一种磁控溅射制备高熵合金涂层的方法
CN101310969B (zh) 一种用于Ti-Al合金的Al/Al2O3/MCrAlY复合涂层及制备方法
CN111485197A (zh) 一种γ-TiAl基合金表面抗高温腐蚀冲蚀涂层及其制备方法
CN110158035B (zh) 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备
CN106893991A (zh) 一种Zr‑B‑O‑N纳米复合涂层制备工艺
CN110983257A (zh) 提高钛合金表面耐腐蚀及防冰性能的表面处理方法
CN107513690A (zh) 一种类金刚石/立方氮化硼多层复合涂层及其制备方法
US20080187773A1 (en) Method for the Protection of Titanium Alloys Against High Temperatures and Material Produced
CN108070817B (zh) 一种金属模具钢表面复合双重处理方法
CN109136850A (zh) 一种NiCrAlYSc涂层及其制备工艺
CN109957756A (zh) 一种铝/氧化铝复合阻氢涂层
CN104478399A (zh) 一种钢基表面含铬耐磨陶瓷涂料层及其制备方法
US20200199734A1 (en) Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN113463096B (zh) 一种绳轮表面TD-Cr/PVD-CrN耐磨涂层及其制备方法
CN105463382A (zh) 一种提高TiAl合金氧化抗力的涂层及其制备方法
CN111304661A (zh) 铝硅镁镀层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230508

Address after: 325000 No. 99, Jinyang Road, nanbaixiang street, Ouhai District, Wenzhou City, Zhejiang Province

Patentee after: Zhenjin coating (Wenzhou) Co.,Ltd.

Address before: 325036 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai District, Wenzhou, Zhejiang

Patentee before: WENZHOU VOCATIONAL & TECHNICAL College