WO2022110001A1 - 一种高熵合金增强铝基梯度材料的轮毂及其制造方法 - Google Patents

一种高熵合金增强铝基梯度材料的轮毂及其制造方法 Download PDF

Info

Publication number
WO2022110001A1
WO2022110001A1 PCT/CN2020/132192 CN2020132192W WO2022110001A1 WO 2022110001 A1 WO2022110001 A1 WO 2022110001A1 CN 2020132192 W CN2020132192 W CN 2020132192W WO 2022110001 A1 WO2022110001 A1 WO 2022110001A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
rim
block
spoke
wheel hub
Prior art date
Application number
PCT/CN2020/132192
Other languages
English (en)
French (fr)
Inventor
万金华
彭桂云
王飞
茆文
夏程强
张彤
周金凤
黄宁宁
董琦
彭亚珍
Original Assignee
江苏珀然股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏珀然股份有限公司 filed Critical 江苏珀然股份有限公司
Publication of WO2022110001A1 publication Critical patent/WO2022110001A1/zh
Priority to ZA2022/08989A priority Critical patent/ZA202208989B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/06Disc wheels, i.e. wheels with load-supporting disc body formed by casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/04Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/02Disc wheels, i.e. wheels with load-supporting disc body with a single disc body integral with rim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the invention relates to the technical field of automobile wheel hubs, in particular to a wheel hub of a high-entropy alloy reinforced aluminum-based gradient material and a manufacturing method thereof.
  • the wheel hub plays a very important role in the normal driving of the vehicle.
  • the quality of its performance not only affects the driving safety, handling and comfort, but also affects the vehicle's performance in different environments. Adaptability, therefore, improving the performance of the wheel hub has certain significance for the vehicle.
  • the wheel hub has also further developed in terms of high strength, high toughness, and low weight.
  • it is unrealistic to achieve all performance improvements at the same time; to greatly increase the overall performance of the wheel hub requires a lot of expensive materials, which cannot guarantee its economy; the use of combined wheels requires a certain degree of reduction of its performance stability. sex.
  • one purpose of the present invention is to propose a high-entropy alloy reinforced aluminum-based gradient material wheel hub, which can achieve the above technical purpose due to the adoption of the following technical features, and brings many other technical effect;
  • Another object of the present invention is to provide a method for manufacturing a wheel hub having the above-mentioned high-entropy alloy reinforced aluminum-based gradient material.
  • a high-entropy alloy reinforced aluminum-based gradient material wheel hub includes a 6061 aluminum alloy wheel hub
  • the hub is provided with AlNiFeCrCoTi high-entropy alloy powder particle strengthening phase, and the addition amount of the strengthening phase is gradually reduced from the bolt hole of the hub and the connection between the rim and the spoke to each other along the radial direction. It gradually decreases outward in the radial direction from the junction of the rim and the spoke.
  • the area from the bolt hole of the wheel hub to the connection between the rim and the spoke is divided into a plurality of first blocks in turn in the radial direction, and the reinforcing phase is added in each first block.
  • the amount of the strengthening phase is the same, and the addition amount of the strengthening phase gradually decreases from the first block at the inner and outer ends to the first block in the middle;
  • the bolt hole of the hub and the connection between the rim and the spoke are located in the first blocks at the inner and outer ends, respectively.
  • the range of the first block where the bolt holes of the hub are located is within 0 to 0.25 times the radius D of the hub.
  • the first block where the connection between the rim and the spoke is located is within 0.65-0.75 times the radius D of the hub.
  • the addition amount of the strengthening phase in the first block located at the bolt hole of the wheel hub is 25-30 vol%.
  • the addition amount of the strengthening phase in the first block at the connection between the rim and the spoke is 20-30 vol%.
  • a plurality of second blocks are arranged along the radial direction from the connection between the rim and the spoke outward to the direction of the rim, and the addition amount of the reinforcing phase in each second block is the same, and the reinforcing phase
  • the addition amount of the rim gradually decreases from the second block near the junction of the rim and the spoke to the second block far from the junction of the rim and the spoke.
  • a method for manufacturing a wheel hub of a high-entropy alloy reinforced aluminum-based gradient material comprising the following steps:
  • the preset gradient distribution is as follows: the addition amount of AlNiFeCrCoTi high-entropy alloy powder particles is gradually reduced from the bolt hole of the hub and the connection between the rim and the spoke to each other along the radial direction. The junction with the spokes gradually decreases outward in the radial direction.
  • the area from the bolt hole of the wheel hub to the connection between the rim and the spoke is divided into a plurality of first blocks in turn in the radial direction, and the reinforcing phase is added in each first block.
  • the amount of the strengthening phase is the same, and the addition amount of the strengthening phase gradually decreases from the first block at the inner and outer ends to the first block in the middle;
  • the bolt hole of the hub and the connection between the rim and the spoke are located in the first blocks at the inner and outer ends, respectively.
  • the range of the first block where the bolt holes of the hub are located is within 0 to 0.25 times the radius D of the hub.
  • a high-entropy alloy-reinforced aluminum-based gradient material wheel hub of the present invention has the following technical effects:
  • AlNiFeCrCoTi high-entropy alloy particles to 6061 aluminum alloy for strengthening not only improves the comprehensive mechanical properties of the alloy material, but also retains its good plastic and toughness advantages.
  • AlNiFeCrCoTi high-entropy alloy is more compatible with 6061 aluminum alloy.
  • the AlNiFeCrCoTi high-entropy alloy itself has good thermal stability and will not change in the later heat treatment, so it does not affect the normal applicable heat treatment process of the 6061 alloy.
  • the use of gradient materials to prepare the hub can keep or improve the plastic toughness of the corresponding position of the blank as much as possible to reduce the processing difficulty in the parts that do not need to be strengthened but need to be processed in multiple processes to ensure its size and accuracy.
  • Fig. 1 is a schematic diagram of the distribution of strengthening phase inside an aluminum alloy wheel bar bar according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the distribution change of strengthening phase during the forging forming process of the aluminum alloy wheel hub bar according to the embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of the distribution of reinforcement phases in a finished wheel hub according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the comparison of the microstructure and performance of the gradient material, the homogeneous reinforcement material, and the composite material according to an embodiment of the present invention.
  • hub 100 AlNiFeCrCoTi high-entropy alloy powder particles 110; spokes 10; bolt holes 11; rim 20;
  • a high-entropy alloy reinforced aluminum-based gradient material wheel hub 100 includes a 6061 aluminum alloy wheel hub,
  • the hub is provided with AlNiFeCrCoTi high-entropy alloy powder particles 110 strengthening phase, and the addition amount of the strengthening phase is gradually increased from the bolt hole 11 of the hub and the connection 21 of the rim and the spoke to each other along the radial direction. Lowering, at the same time gradually lowering outwards in the radial direction from the junction 21 of the rim and the spoke.
  • the content or addition amount of the strengthening phase of the AlNiFeCrCoTi high-entropy alloy powder particles 110 gradually decreases from the bolt hole 11 outward along the radial direction; the addition amount of the strengthening phase of the AlNiFeCrCoTi high-entropy alloy powder particles 110 is determined by the connection between the rim and the spoke. The point 21 is lowered simultaneously inward and outward along the radial direction;
  • the bolt holes 11 are located at the center position of the hub and circumferential positions surrounding the center position and arranged at circumferential intervals.
  • the reinforcing phase in each first block is divided into a plurality of first blocks in turn.
  • the addition amount is the same, and the addition amount of the strengthening phase gradually decreases from the first block at the inner and outer ends to the first block in the middle;
  • the bolt hole 11 of the hub and the connection 21 of the rim and the spoke are located in the first block of the inner and outer ends respectively;
  • a hub with functional gradient characteristics can be formed, and it can also facilitate the high entropy of AlNiFeCrCoTi. Addition of alloy powder particles 110 .
  • the first block can be a concentric circle structure with the bolt hole 11 at the center as the center, that is, the area between two adjacent concentric circles forms the first block; it is worth noting that the first block is in the
  • the interval size in the radial direction can be equal or different, depending on the structural force of the hub, that is to say, the concentric circle structures can be arranged at equal intervals, or they can be arranged at unequal intervals.
  • the range of the first block where the bolt holes 11 of the wheel hub are located is 0 to 0.25 times the radius D of the wheel hub 100 .
  • the range of the first block where the connection point 21 of the rim and the spoke is located is 0.65-0.75 times the radius D of the wheel hub 100 .
  • the addition amount of the strengthening phase in the first block located at the bolt hole 11 of the wheel hub is 25-30 vol%.
  • the addition amount of the reinforcing phase in the first block located at the junction 21 of the rim and the spoke is 20-30 vol%.
  • a plurality of second blocks are arranged along the radial direction from the junction 21 of the rim and the spoke outward to the direction of the rim, and the addition amount of the reinforcing phase in each second block is the same.
  • the addition amount of the phase gradually decreases from the second block near the junction 21 of the rim and the spoke to the second block far from the junction 21 of the rim and the spoke;
  • the strengthening phase in the second block away from the connection 21 between the rim and the wheel spokes can be reduced to a minimum of 0 vol%; It is necessary to carry out spinning and machining processes to finalize the rim, and the relative processing amount of the spoke position is relatively small, and the rim is relatively less loaded. Therefore, in the second block near the periphery of the hub, strengthen the The phase distribution is gradually reduced to 0 vol%, which can provide better plasticity and toughness for processing.
  • the second block takes the circular structure of the junction 21 between the rim and the spoke as the initial circle of the concentric circle structure and extends outward in turn, that is, the area between two adjacent concentric circles forms the second block; it is worth explaining Yes, the interval size of the second block in the radial direction can be equal or different, depending on the structural force of the hub, that is to say, the concentric circle structures can be arranged at equal intervals or at unequal intervals .
  • a method for manufacturing a wheel hub 100 of a high-entropy alloy reinforced aluminum-based gradient material includes the following steps:
  • AlNiFeCrCoTi high-entropy alloy powder particles 110 are used as the strengthening phase, and they are gradually added to the molten 6061 alloy, so that the aluminum alloy hub bar formed by centrifugal casting has functional gradient characteristics; it is worth noting Yes, the general distribution of the AlNiFeCrCoTi high-entropy alloy powder particles 110 added to the aluminum alloy hub bar here is that the center position gradually decreases outward along the radial direction; The radial direction gradually decreases inward and outward at the same time; it should be pointed out that the center position here is the position of the bolt hole 11 after the finished wheel hub is formed, and the position close to the edge is the connection point 21 between the rim and the spoke after the finished wheel hub is formed. .
  • the preset gradient distribution is: the addition amount of AlNiFeCrCoTi high-entropy alloy powder particles 110 is gradually reduced from the bolt hole 11 of the hub and the connection 21 of the rim and the spoke to each other along the radial direction, At the same time, the joints 21 of the rim and the spokes gradually decrease outward along the radial direction.
  • the present invention selects 6061 aluminum alloy as the matrix material, and AlNiFeCrCoTi high-entropy alloy is the strengthening phase.
  • the 6061 aluminum alloy has good strength and plastic toughness, and is not easily deformed after processing, and has high density and no defects, which is very suitable for the wheel hub forging molding process.
  • AlNiFeCrCoTi high-entropy alloy particles can improve the comprehensive mechanical properties of 6061 aluminum alloy as a strengthening phase, and its ductility and toughness decrease relatively little.
  • the AlNiFeCrCoTi high-entropy alloy material itself has good thermal stability. Its theoretical melting point is about 1511 °C, and its theoretical phase transition point is about 780 °C. It will not change during centrifugal casting and post-heat treatment, and the formed hub can also be processed normally. T6 processing.
  • the distribution order of the strengthening phase AlNiFeCrCoTi high-entropy alloy particles is mainly determined by the normal working stress state of the hub. Because the stress at the bolt hole 11 at the center of the hub and the connection between the rim and the spoke is relatively large, and the overall force of the spoke is greater than that of the rim, as shown in Figure 2, the reinforcing phase is distributed in the aluminum alloy hub bar material, and its strengthening The phase addition amount is 25 to 30 vol%, and gradually decreases toward the periphery in the radial direction of the extension, and each block decreases by 5 to 10 vol%. When approaching the outer ring, the distribution of the strengthening phase increases to 20 to 30 vol%, and then decreases again, and finally decreases. to 0vol%.
  • the distribution of the strengthening phase is different from that of the aluminum alloy wheel hub bar.
  • the area with the most intensive distribution of the strengthening phase is the area from the center of the circle outwards.
  • the distribution of the strengthening phase after the final processing of the hub 100 satisfies the maximum distribution at the position of the center bolt hole 11 and the connection position of the rim and spokes, while the outer ring of the rim has a larger distribution. less distribution.
  • a high-entropy alloy-reinforced aluminum-based gradient material wheel hub of the present invention has the following technical effects:
  • AlNiFeCrCoTi high-entropy alloy particles to 6061 aluminum alloy for strengthening not only improves the comprehensive mechanical properties of the alloy material, but also retains its good plastic and toughness advantages.
  • AlNiFeCrCoTi high-entropy alloy is more compatible with 6061 aluminum alloy.
  • the AlNiFeCrCoTi high-entropy alloy itself has good thermal stability and will not change in the later heat treatment, so it does not affect the normal applicable heat treatment process of the 6061 alloy.
  • the use of gradient materials to prepare the hub can keep or improve the plastic toughness of the corresponding position of the blank as much as possible to reduce the processing difficulty in the parts that do not need to be strengthened but need to be processed in multiple processes to ensure its size and accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种高熵合金增强铝基梯度材料的轮毂(100)及其制造方法,所述轮毂(100)包括6061铝合金轮毂(100),所述轮毂(100)上设有AlNiFeCrCoTi高熵合金粉末颗粒(110)强化相,且所述强化相的添加量由轮毂(100)的螺栓孔(11)处、轮辋(20)与轮辐(10)的连接处(21)沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋(20)与轮辐(10)的连接处(21)沿着径向方向向外逐步降低。该轮毂(100)各部位强化相分别按照预设定的梯度分布,使得轮毂(100)各部分的性能也呈现梯度变化,强化了轮毂(100)的实际综合力学性能。

Description

一种高熵合金增强铝基梯度材料的轮毂及其制造方法 技术领域
本发明涉及汽车轮毂技术领域,尤其涉及一种高熵合金增强铝基梯度材料的轮毂及其制造方法。
背景技术
轮毂作为车轮的重要组成部分,其在车辆正常行驶的过程中起到非常重要的作用,其性能的好坏不仅影响到了行驶的安全性、操控性和舒适性,更影响了车辆对于不同环境的适应性,因此,提升轮毂的性能对于车辆具有一定的意义。近年来,随着复合材料的发展与应用,轮毂也进一步的向高强度、高韧性、低重量等方面发展。然而要同时实现所有性能的提升显得不切实际;使轮毂整体的某一性能有大幅增长又需要花费大量贵重材料,无法保证其经济性;使用组合式车轮则需要一定程度上降低其性能的稳定性。与此同时,随着近年来制备工艺的发展,梯度材料的应用逐渐变得广泛,其使用多种不同的材料,通过先进复合技术使得中间材料的组成和结构的连续呈现梯度变化,其材料的性能也随之体现出梯度分布,包括强度、韧性、耐热性、耐磨性等。且与常见的均质合金与复合材料不同,其强化相的分布与合金材料性能的改变可通过科学手段进行控制,最终呈现出均匀合理的变化趋势,兼具了均质合金与复合材料的优势。因此,亟需研发一种既能针对其特殊性能要求进行强化,又能保证其经济性与性能稳定性的新型轮毂。
发明内容
本方案针对上文提出的问题和需求,本发明的一个目的在于提出一种高熵合金增强铝基梯度材料的轮毂,由于采取了如下技术特征而能够实现上述技术目的,并带来其他多项技术效果;
本发明的另一个目的在于提出一种具有上述高熵合金增强铝基梯度材料的 轮毂的制造方法。
根据本发明第一方面的一种高熵合金增强铝基梯度材料的轮毂,包括6061铝合金轮毂,
所述轮毂上设有AlNiFeCrCoTi高熵合金粉末颗粒强化相,且所述强化相的添加量由轮毂的螺栓孔处、轮辋与轮辐的连接处沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处沿着径向方向向外逐步降低。
在本发明的一个示例中,由轮毂的螺栓孔处至轮辋与轮辐的连接处之间沿着径向方向依次分为多个第一区块,且每个第一区块中强化相的添加量相同,强化相的添加量由内外两端的第一区块向中间的第一区块逐渐降低;
其中,轮毂的螺栓孔处、轮辋与轮辐的连接处分别处于内外两端的第一区块内。
在本发明的一个示例中,轮毂的螺栓孔所处的第一区块范围为0~0.25倍的轮毂半径D内。
在本发明的一个示例中,轮辋与轮辐的连接处所处的第一区块范围为0.65~0.75倍的轮毂半径D内。
在本发明的一个示例中,位于轮毂的螺栓孔处的第一区块内强化相添加量为25~30vol%。
在本发明的一个示例中,位于轮辋与轮辐的连接处的第一区块内强化相添加量为20~30vol%。
在本发明的一个示例中,沿着径向方向由轮辋与轮辐的连接处向外至轮辋方向设置多个第二区块,且每个第二区块中强化相的添加量相同,强化相的添加量由靠近轮辋与轮辐的连接处的第二区块向远离轮辋与轮辐的连接处的第二区块逐渐降低。
根据本发明第二方面的一种高熵合金增强铝基梯度材料的轮毂的制造方法,包括如下步骤:
S10:将6061铝合金加热至700~750℃熔融状态并注入离心铸造设备中,然后在离心铸造设备中利用离心力铸造形成铝合金轮毂棒料;
S20:在离心铸造过程中,以AlNiFeCrCoTi高熵合金粉末颗粒为强化相,将其逐次加入至熔融的6061合金中,使得离心铸造所形成的铝合金轮毂棒 料具有功能梯度特征;
S30:将上述步骤中所形成的经过强化相强化后的铝合金轮毂棒料依次进行锻造、旋压和机加工处理形成强化相按照预设定的梯度分布的轮毂成品;
其中,所述预设定的梯度分布为:AlNiFeCrCoTi高熵合金粉末颗粒的添加量由轮毂的螺栓孔处、轮辋与轮辐的连接处沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处沿着径向方向向外逐步降低。
在本发明的一个示例中,由轮毂的螺栓孔处至轮辋与轮辐的连接处之间沿着径向方向依次分为多个第一区块,且每个第一区块中强化相的添加量相同,强化相的添加量由内外两端的第一区块向中间的第一区块逐渐降低;
其中,轮毂的螺栓孔处、轮辋与轮辐的连接处分别处于内外两端的第一区块内。
在本发明的一个示例中,轮毂的螺栓孔处所处的第一区块范围为0~0.25倍的轮毂半径D内。
相较于现有技术中的轮毂,本发明的一种高熵合金增强铝基梯度材料的轮毂具有如下技术效果:
1、在6061铝合金中加入AlNiFeCrCoTi高熵合金颗粒进行强化,既提高了合金材料的综合力学性能,也保留了其较好的塑韧性优势,同时AlNiFeCrCoTi高熵合金与6061铝合金相容性较好,作为强化相能更好的于基体材料相结合。且AlNiFeCrCoTi高熵合金本身热稳定性较好,不会在后期热处理中发生变化,因此不影响6061合金正常适用的热处理工序。
2、使用离心铸造制备具有功能梯度特性的铝合金轮毂棒料,最终制成成品轮毂,成品轮毂在其受力较大的位置具有更好的综合力学性能,其余位置性能和基体材料性能近乎一致,且整体成型使得轮毂的性能更稳定可靠。同时,若更换不同的强化材料,或添加多种强化材料,可使得轮毂呈现不用功能特性的梯度变化,使轮毂不同部分具有不同的性能。
3、通过对梯度铝合金轮毂棒料进行锻压与旋压,使得铝合金轮毂棒料内强化相沿径向的流动与分散近乎一致,因此成品轮毂各部分的力学性能变换均匀,在正常工作保证特殊部位强度特性的同时不会产生受力不均或应力集中等现象。
4、由于强化相分布的控制,使得针对轮毂受力较大的位置可进行重点强化, 而不需使用均质强化合金,因此可降低强化相的添加量,特别对于某些贵重金属强化相,可缩减成本且减轻成品重量。
5、使用梯度材料制备轮毂,可在不需要强化但需要进行多道工序加工以保证其尺寸与精度的部位,尽可能的保留或提高毛坯相应位置的塑韧性,以降低加工难度。
6、使用梯度材料进行局部强化可与各类优化设计方法相结合,设计制造出适合各种场合的特种轮毂,提高车辆其对于各类环境的适应性。
下文中将结合附图对实施本发明的最优实施例进行更加详尽的描述,以便能容易理解本发明的特征和优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下文中将对本发明实施例的附图进行简单介绍。其中,附图仅仅用于展示本发明的一些实施例,而非将本发明的全部实施例限制于此。
图1为根据本发明实施例的铝合金轮毂棒料内部强化相分布示意图;
图2为根据本发明实施例的铝合金轮毂棒料锻压成型过程中强化相分布变化示意图;
图3为根据本发明实施例的轮毂成品强化相分布的结构示意图;
图4为根据本发明实施例的梯度材料与均质强化材料、复合材料的微观结构及性能对比示意图。
附图标记列表:轮毂100;AlNiFeCrCoTi高熵合金粉末颗粒110;轮辐10;螺栓孔11;轮辋20;连接处21。
具体实施方式
为了使得本发明的技术方案的目的、技术方案和优点更加清楚,下文中将结合本发明具体实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。附图中相同的附图标记代表相同部件。需要说明的是,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不必然表示数量限制。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
根据本发明第一方面的一种高熵合金增强铝基梯度材料的轮毂100,如图3所示,包括6061铝合金轮毂,
所述轮毂上设有AlNiFeCrCoTi高熵合金粉末颗粒110强化相,且所述强化相的添加量由轮毂的螺栓孔11处、轮辋与轮辐的连接处21沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处21沿着径向方向向外逐步降低。
换言之,AlNiFeCrCoTi高熵合金粉末颗粒110强化相的含量或者说添加量沿着径向方向由螺栓孔11处向外逐渐降低;AlNiFeCrCoTi高熵合金粉末颗粒110强化相的添加量由轮辋与轮辐的连接处21沿着径向方向向内和向外同时降低;
也就是说,由于轮毂的螺栓孔11处、轮辋与轮辐的连接处21的应力较大,故而在相应的位置需要添加较多的强化相,使用6061铝合金作为轮毂的基体材料,AlNiFeCrCoTi高熵合金粉末颗粒110作为强化相,经过锻压后使得轮毂各部位强化相分别按照预设定的梯度分布,使得轮毂各部分的性能也呈现梯度变化,强化了轮毂的实际综合力学性能;如图4所示,相较于均质强化材料和复合材料,梯度材料的性能更加可靠。
需要指出的是,螺栓孔11位于轮毂的中心位置以及环绕中心位置且呈环向间隔设置的周向位置。
在本发明的一个示例中,由轮毂的螺栓孔11处至轮辋与轮辐的连接处21 之间沿着径向方向依次分为多个第一区块,且每个第一区块中强化相的添加量相同,强化相的添加量由内外两端的第一区块向中间的第一区块逐渐降低;
其中,轮毂的螺栓孔11处、轮辋与轮辐的连接处21分别处于内外两端的第一区块内;
通过在轮毂的螺栓孔11处至轮辋与轮辐的连接处21之间沿着径向方向依次分为多个第一区块,一方面可以形成具有功能梯度特性的轮毂,还可以便于AlNiFeCrCoTi高熵合金粉末颗粒110的添加。例如,第一区块可以为以中心位置的螺栓孔11为中心的圆心同心圆结构,即相邻两个同心圆之间的区域形成第一区块;值得说明的是,第一区块在径向方向上的间隔尺寸可以相等也可以不同,具体依靠轮毂的结构受力而定,也就是说,同心圆结构可以为等间隔设置,也就可以为不等间隔设置。
在本发明的一个示例中,轮毂的螺栓孔11所处的第一区块范围为0~0.25倍的轮毂100半径D内。
在本发明的一个示例中,轮辋与轮辐的连接处21所处的第一区块范围为0.65~0.75倍的轮毂100半径D内。
在本发明的一个示例中,位于轮毂的螺栓孔11处的第一区块内强化相添加量为25~30vol%。
在本发明的一个示例中,位于轮辋与轮辐的连接处21的第一区块内强化相添加量为20~30vol%。
在本发明的一个示例中,沿着径向方向由轮辋与轮辐的连接处21向外至轮辋方向设置多个第二区块,且每个第二区块中强化相的添加量相同,强化相的添加量由靠近轮辋与轮辐的连接处21的第二区块向远离轮辋与轮辐的连接处21的第二区块逐渐降低;
值得说明的是,由于轮辐的整体受力大于轮辐,故而在远离轮辋与轮辐的连接处21的第二区块内的强化相最低可降低至0vol%;而且考虑到轮毂100在完成初步锻造后需要进行旋压与机加工等工序对轮辋进行最终的完善,而轮辐位置相对加工量较少,且轮辋受载相对较小,因此,在轮毂的靠近外围处的第二区块内内,强化相的分布逐渐减少直至为0vol%,可以提供更好的塑韧性便于加工。
例如,第二区块以轮辋与轮辐的连接处21的圆形结构为同心圆结构的初 始圆依次向外延伸,即相邻两个同心圆之间的区域形成第二区块;值得说明的是,第二区块在径向方向上的间隔尺寸可以相等也可以不同,具体依靠轮毂的结构受力而定,也就是说,同心圆结构可以为等间隔设置,也可以为不等间隔设置。
根据本发明第二方面的一种高熵合金增强铝基梯度材料的轮毂100的制造方法,如图1、图2和图3所示,包括如下步骤:
S10:将6061铝合金加热至700~750℃熔融状态并注入离心铸造设备中,然后在离心铸造设备中利用离心力铸造形成铝合金轮毂棒料;
S20:在离心铸造过程中,以AlNiFeCrCoTi高熵合金粉末颗粒110为强化相,将其逐次加入至熔融的6061合金中,使得离心铸造所形成的铝合金轮毂棒料具有功能梯度特征;值得说明的是,在这里铝合金轮毂棒料所添加的AlNiFeCrCoTi高熵合金粉末颗粒110分布的大致规律为由中心位置沿着径向方向向外逐渐降低;同时由靠近铝合金轮毂棒料边缘的位置沿着径向方向向内和向外同时逐步降低;需要指出的是,这里的中心位置即为形成轮毂成品后的螺栓孔11位置,靠近边缘的位置即为形成轮毂成品后轮辋与轮辐的连接处21。
S30:将上述步骤中所形成的经过强化相强化后的铝合金轮毂棒料依次进行锻造、旋压和机加工处理形成强化相按照预设定的梯度分布的轮毂成品;
其中,所述预设定的梯度分布为:AlNiFeCrCoTi高熵合金粉末颗粒110的添加量由轮毂的螺栓孔11处、轮辋与轮辐的连接处21沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处21沿着径向方向向外逐步降低。
具体地,本发明选用6061铝合金作为基体材料,AlNiFeCrCoTi高熵合金为强化相6061铝合金具有较好的强度及塑韧性,且加工后不易变形、致密度高无缺陷,十分适合轮毂锻造成型工艺。而AlNiFeCrCoTi高熵合金颗粒作为强化相可提高6061铝合金的综合力学性能且其塑韧性降低相对较小。AlNiFeCrCoTi高熵合金材料本身热稳定性较好,其理论熔点约为1511℃,理论相变点约为780℃,不会在离心浇铸与后期热处理中发生变化,成型后的轮毂也可正常的进行T6处理。
使用离心浇铸法制备铝合金轮毂棒料,将6061铝合金加热至700-750℃, 融化后加入设备中,在铝合金离心浇铸的过程中按照设计的强化相分布状态将AlNiFeCrCoTi高熵合金粉末颗粒110逐次添加到熔融的6061铝合金中,使得在离心浇铸铝合金轮毂棒料时形成强化相按设计的梯度分布。
强化相AlNiFeCrCoTi高熵合金颗粒的分布顺序主要由轮毂正常工作的应力状态决定。由于在轮毂中心位置的螺栓孔11处和轮辋与轮辐连接处的应力较大,且轮辐的整体受力大于轮辋,因此如图2所示强化相在铝合金轮毂棒料分布较多,其强化相添加量为25~30vol%,而后延半径方向向外围逐步减少,每一区块减少5~10vol%,在靠近外圈时强化相分布数量增加至20~30vol%,而后再次降低,最终降低至0vol%。
本实施例中,在成品的轮毂100中,强化相的分布较铝合金轮毂棒料有所不同,考虑轮毂100各部位受力状态不同,强化相分布最为密集的区域为从圆心开始向外的0~0.25半径内,以及0.65~0.75半径内,使得强化相的分布在轮毂100最终加工完成后满足在中心螺栓孔11位置与轮辋轮辐连接位置有最多的分布量,而在轮辋外圈有较少的分布量。
相较于现有技术中的轮毂,本发明的一种高熵合金增强铝基梯度材料的轮毂具有如下技术效果:
1、在6061铝合金中加入AlNiFeCrCoTi高熵合金颗粒进行强化,既提高了合金材料的综合力学性能,也保留了其较好的塑韧性优势,同时AlNiFeCrCoTi高熵合金与6061铝合金相容性较好,作为强化相能更好的于基体材料相结合。且AlNiFeCrCoTi高熵合金本身热稳定性较好,不会在后期热处理中发生变化,因此不影响6061合金正常适用的热处理工序。
2、使用离心铸造制备具有功能梯度特性的铝合金轮毂棒料,最终制成成品轮毂,成品轮毂在其受力较大的位置具有更好的综合力学性能,其余位置性能和基体材料性能近乎一致,且整体成型使得轮毂的性能更稳定可靠。同时,若更换不同的强化材料,或添加多种强化材料,可使得轮毂呈现不用功能特性的梯度变化,使轮毂不同部分具有不同的性能。
3、通过对梯度铝合金轮毂棒料进行锻压与旋压,使得铝合金轮毂棒料内强化相沿径向的流动与分散近乎一致,因此成品轮毂各部分的力学性能变换均匀,在正常工作保证特殊部位强度特性的同时不会产生受力不均或应力集中等现象。
4、由于强化相分布的控制,使得针对轮毂受力较大的位置可进行重点强化,而不需使用均质强化合金,因此可降低强化相的添加量,特别对于某些贵重金属强化相,可缩减成本且减轻成品重量。
5、使用梯度材料制备轮毂,可在不需要强化但需要进行多道工序加工以保证其尺寸与精度的部位,尽可能的保留或提高毛坯相应位置的塑韧性,以降低加工难度。
6、使用梯度材料进行局部强化可与各类优化设计方法相结合,设计制造出适合各种场合的特种轮毂,提高车辆其对于各类环境的适应性。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不必然表示数量限制。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
上文中参照优选的实施例详细描述了本发明所提出的高熵合金增强铝基梯度材料的轮毂100的示范性实施方式,然而本领域技术人员可理解的是,在不背离本发明理念的前提下,可以对上述具体实施例做出多种变型和改型,且可以对本发明提出的各种技术特征、结构进行多种组合,而不超出本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种高熵合金增强铝基梯度材料的轮毂,包括6061铝合金轮毂,其特征在于,
    所述轮毂上设有AlNiFeCrCoTi高熵合金粉末颗粒(110)强化相,且所述强化相的添加量由轮毂的螺栓孔(11)处、轮辋与轮辐的连接处(21)沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处(21)沿着径向方向向外逐步降低。
  2. 根据权利要求1所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    由轮毂的螺栓孔(11)处至轮辋与轮辐的连接处(21)之间沿着径向方向依次分为多个第一区块,且每个第一区块中强化相的添加量相同,强化相的添加量由内外两端的第一区块向中间的第一区块逐渐降低;
    其中,轮毂的螺栓孔(11)处、轮辋与轮辐的连接处(21)分别处于内外两端的第一区块内。
  3. 根据权利要求2所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    轮毂的螺栓孔(11)所处的第一区块范围为0~0.25倍的轮毂半径D内。
  4. 根据权利要求2所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    轮辋与轮辐的连接处(21)所处的第一区块范围为0.65~0.75倍的轮毂半径D内。
  5. 根据权利要求2所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    位于轮毂的螺栓孔(11)处的第一区块内强化相添加量为25~30vol%。
  6. 根据权利要求2所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    位于轮辋与轮辐的连接处(21)的第一区块内强化相添加量为20~30vol%。
  7. 根据权利要求1所述的高熵合金增强铝基梯度材料的轮毂,其特征在于,
    沿着径向方向由轮辋与轮辐的连接处(21)向外至轮辋方向设置多个第二区块,且每个第二区块中强化相的添加量相同,强化相的添加量由靠近轮辋与轮辐的连接处(21)的第二区块向远离轮辋与轮辐的连接处(21)的第二区块逐渐降低。
  8. 一种高熵合金增强铝基梯度材料的轮毂的制造方法,其特征在于,包括如下步骤:
    S10:将6061铝合金加热至700~750℃熔融状态并注入离心铸造设备中,然后在离心铸造设备中利用离心力铸造形成铝合金轮毂棒料;
    S20:在离心铸造过程中,以AlNiFeCrCoTi高熵合金粉末颗粒(110)为强化相,将其逐次加入至熔融的6061合金中,使得离心铸造所形成的铝合金轮毂棒料具有功能梯度特征;
    S30:将上述步骤中所形成的经过强化相强化后的铝合金轮毂棒料依次进行锻造、旋压和机加工处理形成强化相按照预设定的梯度分布的轮毂成品;
    其中,所述预设定的梯度分布为:AlNiFeCrCoTi高熵合金粉末颗粒(110)的添加量由轮毂的螺栓孔(11)处、轮辋与轮辐的连接处(21)沿着径向方向向彼此靠近的方向逐步降低,同时由轮辋与轮辐的连接处(21)沿着径向方向向外逐步降低。
  9. 根据权利要求8所述的高熵合金增强铝基梯度材料的轮毂的制造方法,其特征在于,
    由轮毂的螺栓孔(11)处至轮辋与轮辐的连接处(21)之间沿着径向方向依次分为多个第一区块,且每个第一区块中强化相的添加量相同,强化相的添加量由内外两端的第一区块向中间的第一区块逐渐降低;
    其中,轮毂的螺栓孔(11)处、轮辋与轮辐的连接处(21)分别处于内外两端的第一区块内。
  10. 根据权利要求8所述的高熵合金增强铝基梯度材料的轮毂的制造方法,其特征在于,
    轮毂的螺栓孔(11)处所处的第一区块范围为0~0.25倍的轮毂半径D内。
PCT/CN2020/132192 2020-11-26 2020-11-27 一种高熵合金增强铝基梯度材料的轮毂及其制造方法 WO2022110001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/08989A ZA202208989B (en) 2020-11-26 2022-08-11 Wheel hub made of high-entropy alloy strengthened aluminum-based gradient material and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349171.7 2020-11-26
CN202011349171.7A CN112549848B (zh) 2020-11-26 2020-11-26 一种高熵合金增强铝基梯度材料的轮毂及其制造方法

Publications (1)

Publication Number Publication Date
WO2022110001A1 true WO2022110001A1 (zh) 2022-06-02

Family

ID=75046888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132192 WO2022110001A1 (zh) 2020-11-26 2020-11-27 一种高熵合金增强铝基梯度材料的轮毂及其制造方法

Country Status (3)

Country Link
CN (1) CN112549848B (zh)
WO (1) WO2022110001A1 (zh)
ZA (1) ZA202208989B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645180B (zh) * 2022-02-18 2023-03-21 江苏大学 一种双相增强铝合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861887A (zh) * 2016-04-01 2016-08-17 江苏大学 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN206416772U (zh) * 2016-12-20 2017-08-18 陕西南水精密成形技术研究中心 一种新型轮毂
US20170266722A1 (en) * 2014-09-12 2017-09-21 Hitachi Metals, Ltd. Light alloy wheel, method for manufacturing same, and device for manufacturing same
CN209008286U (zh) * 2018-09-04 2019-06-21 邹新娟 一种梯度结构的汽车轮毂
CN110846618A (zh) * 2019-11-11 2020-02-28 温州职业技术学院 一种用于铝压铸模表面防护的高熵合金复合涂层
CN111394667A (zh) * 2020-03-25 2020-07-10 江苏大学 一种调控(FeCoNiCrAlCu)p/2024A1复合材料界面的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294439A (ja) * 1990-04-12 1991-12-25 Kobe Steel Ltd 耐熱性アルミニウム合金材の製造方法
CN1381323A (zh) * 2001-04-13 2002-11-27 中国科学院金属研究所 内外层同时强化的颗粒增强铝基功能梯度复合管及制备法
WO2003020535A2 (en) * 2001-09-04 2003-03-13 Joris Van Raemdonck Reinforced carbon fiber comprising spoke for bicycle wheel
CN101775527B (zh) * 2010-03-11 2012-07-25 湖南大学 陶瓷颗粒增强铝基梯度复合材料及其制备方法和用于制备该材料的喷射沉积装置
CN107253148B (zh) * 2017-04-25 2020-05-01 江苏大学 一种在金属工件表层形成梯度纳米结构的组合方法
CN109136599B (zh) * 2018-10-08 2021-01-29 兰州理工大学 高熵合金孕育亚共晶铝硅合金制备工艺
CN110605403B (zh) * 2019-08-05 2021-06-04 香港理工大学深圳研究院 一种超精密加工技术制备梯度纳米结构金属材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170266722A1 (en) * 2014-09-12 2017-09-21 Hitachi Metals, Ltd. Light alloy wheel, method for manufacturing same, and device for manufacturing same
CN105861887A (zh) * 2016-04-01 2016-08-17 江苏大学 一种重载轮毂用抗疲劳原位铝基复合材料及其制备方法
CN206416772U (zh) * 2016-12-20 2017-08-18 陕西南水精密成形技术研究中心 一种新型轮毂
CN209008286U (zh) * 2018-09-04 2019-06-21 邹新娟 一种梯度结构的汽车轮毂
CN110846618A (zh) * 2019-11-11 2020-02-28 温州职业技术学院 一种用于铝压铸模表面防护的高熵合金复合涂层
CN111394667A (zh) * 2020-03-25 2020-07-10 江苏大学 一种调控(FeCoNiCrAlCu)p/2024A1复合材料界面的方法

Also Published As

Publication number Publication date
CN112549848B (zh) 2022-07-01
ZA202208989B (en) 2022-11-30
CN112549848A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022110001A1 (zh) 一种高熵合金增强铝基梯度材料的轮毂及其制造方法
CN111283173B (zh) 一种大尺寸汽车铝合金轮毂的制造方法
JP4822324B2 (ja) アルミニウム合金製鍛造ロードホイール及びその製造方法
CN106256483B (zh) 一种正反向轮辋制作方法及正反向轮辋
WO2011096178A1 (ja) 鍛造ビレット、軽金属製ホイール及びそれらの製造方法
WO2010026780A1 (ja) 押出しによるホイールの製造方法及びホイール
CN110735082B (zh) 引导轮、履带式行走机构及引导轮的制备方法
WO2011096212A1 (ja) 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法
CN103302454B (zh) 镁合金轮毂复合成形方法
CN102514444B (zh) 高强度铝合金车轮
CN111872208A (zh) 商用车车轮成型工艺
WO2012095940A1 (ja) ホイールとその製造方法
JP2009274135A (ja) 軽合金製鍛造ホイールとその製造方法
CN105695813A (zh) 一种汽车轮毂专用铝合金锭及其制备方法
JPH0978210A (ja) アルミ合金製車両ホイールの製造方法および車両ホイール
CN111231574A (zh) 一种锻造高强度铝合金轮毂及其制备方法
JP2009285671A (ja) 軽合金製鍛造ホイールとその製造方法
JP4453453B2 (ja) アルミホイールの製造方法
TW201800162A (zh) 近淨成形鍛造鎂合金輪圈及其製造方法
CN105937000A (zh) 一种替代qt400船柱的铝合金材料及其离心铸造方法
CN111001993A (zh) 多片式铝合金轮毂锻造工艺
TWI752740B (zh) 鋁合金輪圈與其製造方法
TWI586453B (zh) Method of manufacturing near - round forging of rims
CN104651681A (zh) 一种铝合金汽车轮毂及其制备方法
CN217048112U (zh) 一种新型轮毂及其轮胎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962892

Country of ref document: EP

Kind code of ref document: A1