CN110802281B - 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法 - Google Patents

安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法 Download PDF

Info

Publication number
CN110802281B
CN110802281B CN201911061850.1A CN201911061850A CN110802281B CN 110802281 B CN110802281 B CN 110802281B CN 201911061850 A CN201911061850 A CN 201911061850A CN 110802281 B CN110802281 B CN 110802281B
Authority
CN
China
Prior art keywords
reverse driving
driving surface
wheel
small wheel
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911061850.1A
Other languages
English (en)
Other versions
CN110802281A (zh
Inventor
严宏志
吴顺兴
曹煜明
朱鹏飞
伊伟彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201911061850.1A priority Critical patent/CN110802281B/zh
Publication of CN110802281A publication Critical patent/CN110802281A/zh
Application granted granted Critical
Publication of CN110802281B publication Critical patent/CN110802281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F17/00Special methods or machines for making gear teeth, not covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/002Modifying the theoretical tooth flank form, e.g. crowning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)

Abstract

本发明公开了一种安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,根据采用缓速器制动时螺旋锥齿轮副反驱动面加载接触区的偏移,设计反驱动面的参考点、大对角接触迹线和传动误差曲线。以初始大轮反驱动面作为产形轮展成与初始大轮反驱动面共轭并满足设计的大对角接触迹线和传动误差曲线的小轮反驱动面实现对初始小轮反驱动面的大对角修形。对大对角修形后的小轮反驱动面进行分区,并按照设计的修形曲线进一步修形得到目标小轮反驱动面,最后求解对应目标小轮反驱动面的机床加工参数。本发明解决了安装缓速器后螺旋锥齿轮副反驱动面的加载接触区偏移,产生边缘接触的问题,最终提高了螺旋锥齿轮副的工作寿命。

Description

安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法
技术领域
本发明属于螺旋锥齿轮设计方法,具体涉及一种安装缓速的重载车桥螺旋锥齿轮副反驱动面接触区偏移的齿面修形方法。
背景技术
为了提高重载车辆行驶安全性和经济性,重载车桥加装缓速器进行制动已成为发达国家重载车辆的标配,也已列入我国车辆安全技术的国家标准。但是重载车桥加装缓速器后给车桥螺旋锥齿轮副设计制造方法带来了新的挑战。
采用缓速器制动时,缓速器制动的制动力直接传递到车桥主减速器螺旋锥齿轮副的反驱动面(小轮凸面和大轮凹面),导致小轮沿轴向前移、接触区偏离标准安装位置时的理论接触区,发生边缘接触。同时车辆在行驶过程中,频繁的制动导致螺旋锥齿轮的反驱动面快速磨损与疲劳破坏。根据数据统计,目前我国加装缓速器的车辆后桥主减速器螺旋锥齿轮故障明显增多,主减速器使用寿命降低,无法满足与车辆同寿命的要求。
因此,针对加装缓速器后车桥螺旋锥齿轮副反驱动面出现接触区滑移、产生边缘接触和齿轮副寿命降低的问题,迫切需要新的设计制造方法。
发明内容
本发明解决的技术问题是:提出一种针对安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,以解决加装缓速器导致车桥减速器螺旋锥齿轮副的反驱动面加载接触区偏移、产生边缘接触和寿命降低的问题。
本发明采用如下技术方案实现:
一种安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,包括如下步骤:
第一步,对安装缓速器的重载车桥螺旋锥齿轮副的反驱动面进行有限元加载接触分析,得到反驱动面上的加载接触区位置(即偏移理论接触区);
第二步,根据第一步得到的反驱动面上的加载接触区位置设计小轮反驱动面(即小轮凸面)的参考点、大对角接触迹线和传动误差曲线,以修形前的初始加工参数对应的初始大轮反驱动面(即大轮凹面)作为产形轮,按照啮合坐标系中的坐标转换矩阵将该产形轮展成与初始大轮反驱动面共轭并满足大对角接触迹线和传动误差曲线的小轮反驱动面;
第三步,对第二步得到的小轮反驱动面进行分区,即将小轮反驱动面沿啮合线方向划分为齿面大端、齿面中间接触区和齿面小端三个区域,设计沿啮合线方向的三条修形曲线分别对小轮反驱动面的三个区域进行修形,最终得到修形后的目标小轮反驱动面Σ*
第四步,建立修形后的目标小轮反驱动面Σ*与修形前的初始小轮反驱动面Σ(0)的离散点偏差修正模型,建立离散点偏差修正的非线性方程组,对非线性方程组求解得到对应修形后的目标小轮反驱动面Σ*的机床加工参数。
具体的,所述第一步中,通过三维软件建立螺旋锥齿轮副,轴承和齿轮轴的几何模型,然后导入到有限元软件中进行网格划分并设置材料属性、边界和加载条件对螺旋锥齿轮的反驱动面进行加载接触分析,获得缓速器制动时螺旋锥齿轮副反驱动面的加载接触区。
具体的,所述第二步中,传动误差幅值Δψ21)定义为小轮转过一个角度ψ1时,大轮实际转角ψ2与理论转角(z1/z2)·ψ1的差值,即公式(1):
Figure GDA0002501945300000021
其中,ψ1 (0)为小轮初始转角,ψ2 (0)为大轮初始转角,Z1为小轮齿数,Z2为大轮齿数。
进一步的,所述第二步中,所述传动误差曲线设计为二阶抛物线曲线,其公式为:
Figure GDA0002501945300000022
其中,给定啮合转换点的传动误差幅值和转角值即可求解公式(2)中的系数c,联立第二步中的公式(1)和公式(2)可得到大轮和小轮啮合时满足的运动关系式:
Figure GDA0002501945300000023
进一步的,所述第二步中,所述初始大轮反驱动面的方程r2表示为:
r2=r2(u22) 公式(4),其中,u2和θ2为初始大轮反驱动面的Gauss参数;
建立齿轮副的啮合坐标系,所述啮合坐标系中的坐标转换矩阵M12表示为:
Figure GDA0002501945300000024
其中,Γ为齿轮副的轴交角,E为小轮偏置距;
设计偏离齿面中心位置的小轮反驱动面的参考点坐标和小轮反驱动面上接触迹线与根锥线的夹角,以此得到大对角接触迹线,以初始大轮反驱动面作为产形轮,按照啮合坐标系中的坐标转换矩阵将该产形轮展成与初始大轮反驱动面共轭且满足设计的大对角接触迹线和公式(3)的大小轮的运动关系式的小轮反驱动面,该小轮反驱动面r1可表示为:
r1=M12r2 公式(6)。
具体的,所述第三步中,在第二步中保持u2不变只改变初始大轮的Gauss参数θ2即可得到第二步所述的小轮反驱动面上的啮合线,在接触线上取坐标点C1(L1,R1)和C2(L2,R2),在啮合线上取点C2(L2,R2)和C3(L3,R3),C2(L2,R2)为接触线和啮合线的交点,通过公式(7)计算小轮反驱动面上接触迹线和啮合线的夹角值φ2
Figure GDA0002501945300000031
再根据φ2可得到沿着啮合线方向的齿面离散点到接触迹线的距离,根据该距离的远近对小轮反驱动面进行分区,将小轮反驱动面沿啮合线方向划分为齿面大端、齿面中间接触区和齿面小端三个区域。
进一步的,所述第三步中,沿啮合线方向的三段所述修形曲线的方程表达式为:
Figure GDA0002501945300000032
其中,a为接触区长半轴长度,d0为修形量,e1,e2和e3为曲线II的修形系数;f1,f2和f3为曲线III的修形系数。曲线I,曲线II和曲线III分别为沿啮合线方向对应小轮反驱动面的齿面中间接触区、齿面小端和齿面大端的修形曲线,
要保证三段所述修形曲线连续可导,满足以下约束条件:
Figure GDA0002501945300000033
d3和d4分别为对应齿面小端和齿面大端边界上的修形量,x1和x2为其数值等于沿啮合线方向的齿面中间接触区的长半轴长度,x3和x4分别为齿面小端和齿面大端区域内沿啮合线方向到接触迹线的最远距离,通过公式(9)求解出三段所述修形曲线的修形系数,然后对第二步得到的小轮反驱动面沿着啮合线方向按照设计的三段修形曲线分别对齿面中间接触区、齿面小端和齿面大端进行修形最终获得修形后的目标小轮反驱动面Σ*
具体的,所述第四步中,修形后的目标小轮反驱动面Σ*的离散点的位置矢量rt *表示为:
Figure GDA0002501945300000041
其中,rt (0)和rt *分别表示修形前小轮反驱动面Σ(0)和修形后目标小轮反驱动面Σ*上对应离散点的位置矢量,nt (0)表示修形前小轮反驱动面Σ(0)上对应离散点的单位法矢量,
Figure GDA0002501945300000047
为小轮齿面的Gauss坐标参数和运动参数,ζ为机床加工参数的向量,ht为对应齿面离散点的偏差向量,t(t=1,2,…,m)表示为第t个离散点;
由于小轮反驱动面rt (0)的Gauss坐标参数ut和θt位于齿面的切平面内,联立加工小轮反驱动面rt (0)的啮合方程得到下列方程组:
Figure GDA0002501945300000042
通过公式(11)中的方程组可求解出小轮反驱动面的Gauss坐标参数和运动参数
Figure GDA0002501945300000043
将公式(11)得到的
Figure GDA0002501945300000044
代入到公式(10)中可得齿面偏差ht的公式:
Figure GDA0002501945300000045
以机床加工参数作为设计变量,以ht(ζ)的残余平方和最小为目标建立非线性最小二乘优化模型:
Figure GDA0002501945300000046
采用Levenberg–Marquardt算法对公式(13)进行求解,最终可得到修形后目标小轮反驱动面Σ*的机床加工参数。
本发明采用的修形方法的技术思路是:首先,对安装缓速器的重载车桥螺旋锥齿轮副的反驱动面进行有限元加载接触分析,得到反驱动面上的接触区位置(偏移理论接触区)。其次,根据安装缓速器的螺旋锥齿轮副反驱动面的加载接触区偏移位置设计小轮反驱动面(凸面)的参考点、大对角接触迹线和传动误差曲线,以修形前的初始加工参数对应的初始大轮反驱动面(凹面)作为产形轮,按照啮合坐标系中的坐标转换矩阵将该产形轮展成与初始大轮反驱动面共轭并满足大对角接触迹线和传动误差曲线的小轮反驱动面实现对初始小轮反驱动面的大对角修形;第三,对大对角修形后小轮反驱动面进行分区,即将轮反驱动面沿啮合线方向划分为齿面大端、齿面中间接触区和齿面小端,设计三段修形曲线分别对小轮反驱动面的齿面大端、齿面中间接触区和齿面小端进行修形最终得到修形后的目标小轮反驱动面;最后,建立修形后的目标小轮反驱动面与修形前的小轮反驱动面的离散点偏差修正模型,并离散点偏差修正的非线性方程组,采用Levenberg-Marquardt算法对非线性方程求解得到对应修形后的目标小轮反驱动面的机床加工参数。最终实现对初始小轮反驱动面的修形。
综上所述,本发明特别适用于安装缓速器的重载车桥主减速器螺旋锥齿轮副的反驱动面修形设计,通过设计小轮反驱动面的参考点、大对角接触迹线和分区修形解决了安装缓速器后螺旋锥齿轮副反驱动面加载接触区偏移,产生边缘接触的问题,最终提高了安装缓速器后车辆主减速器的螺旋锥齿轮副的使用寿命。
以下结合附图和具体实施方式对本发明作进一步说明。
附图说明
图1为实施例中安装缓速器的小轮反驱动面加载接触区从偏移理论的齿面中心位置移向齿顶的示意图。
图2为实施例中小轮反驱动面的参考点设计和大对角接触迹线设计示意图。
图3为实施例中二阶抛物线传动误差设计示意图。
图4为实施例中建立的齿轮副啮合坐标系示意图。
图5为实施例中小轮反驱动面上接触迹线与啮合线的夹角示意图。
图6为实施例中的小轮反驱动面上接触迹线两边沿啮合线方向的齿面分区示意图。
图7为实施例中设计的沿啮合线方向对应小轮反驱动面分区的三段修形曲线示意图。
图8为实施例中小轮反驱动面的离散点偏差修正模型示意图。
具体实施方式
实施例
本实施例对普通的重载车桥主减速器的螺旋锥齿轮副的小轮反驱动面进行修形设计。
第一步,通过三维软件建立螺旋锥齿轮副,轴承和齿轮轴的几何模型,然后导入到abaqus中进行网格划分并设置材料属性、边界和加载等条件对螺旋锥齿轮的反驱动面进行加载接触分析以获得缓速器制动时螺旋锥齿轮副反驱动面的加载接触区(如图1所示)。
第二步、如图1所示可知安装缓速器的重载车桥螺旋锥齿轮副的小轮反驱动面的加载接触区偏离理论接触区(齿面的中心位置)并移向大端齿顶处。因此,如图2所示,将小轮反驱动面的齿面参考点设计为偏离齿面中心位置,其中水平偏移量和垂直偏移量分别为dx和dy,并且设计大对角接触迹线,即小轮反驱动面面上接触迹线与根锥线的夹角值为φ1=150°,从而当缓速器制动时,小轮反驱动面的加载接触区移向大端齿顶时刚好移动到齿面中点位置。
传动误差幅值Δψ21)定义为小轮转过一个角度ψ1时,大轮实际转角ψ2与理论转角(z1/z2)·ψ1的差值,即公式(1);
Figure GDA0002501945300000061
其中,ψ1 (0)为小轮初始转角,ψ2 (0)为大轮初始转角,Z1为小轮齿数,Z2为大轮齿数。
二阶抛物线传动误差曲线如图3所示,其通用公式为:
Figure GDA0002501945300000062
其中,给定啮合转换点a的坐标值(π/z1te),其中π/z1为传动误差幅值,δte为转角值,即可求解公式(2)中的系数c。联立第一步中的公式(1)和公式(2)可得到大轮和小轮啮合时满足的运动关系式:
Figure GDA0002501945300000063
初始大轮反驱动面的方程r2表示为:
r2=r2(u22) 公式(4),
其中,u2和θ2为初始大轮反驱动面的Gauss参数。
建立图4中所示的齿轮副啮合坐标系,啮合坐标系中的坐标转换矩阵M12表示为:
Figure GDA0002501945300000064
以初始大轮反驱动面作为产形轮,按照设计的大对角接触迹线和公式(3)的大小轮的运动关系式按照啮合坐标系中的坐标转换矩阵即可展成与初始大轮反驱动面共轭的小轮反驱动面。该小轮反驱动面r1可表示为:
r1=M12r2 公式(6),
第三步、如图5中所示,在第二步中保持u2不变只改变初始大轮的Gauss参数θ2即可得到第二步所述的小轮反驱动面上的啮合线,在接触线上取坐标点C1(L1,R1)和C2(L2,R2),在啮合线上取点C2(L2,R2)和C2(L2,R2),C2(L2,R2)为接触线和啮合线的交点,于是小轮反驱动面上接触迹线和啮合线的夹角值φ2可由一下公式得到:
Figure GDA0002501945300000071
最后根据φ2可得到沿着啮合线方向的齿面离散点到接触迹线的距离,然后,将齿面上的离散点和接触迹线的距离为±7mm区域定义为中间接触区、小于-7mm定义为小端,大于7mm定义为大端,具体的分区如图6所示。设计沿啮合线方向的三条修形曲线分别对小轮反驱动面的三个区域进行修形,沿啮合线方向的三段修形曲线的方程表达式为:
Figure GDA0002501945300000072
式中:a为接触区长半轴长度,d0为修形量,e1,e2和e3为曲线II的修形系数;f1,f2和f3为曲线III的修形系数。
要保证三段曲线连续可导,应该满足以下约束条件:
Figure GDA0002501945300000073
如图7所示:d3和d4分别为对应齿面小端和齿面大端边界上的修形量,曲线I和曲线II交界处的修形量为d1,曲线I和曲线III交界处的修形量为d2,x1和x2为其数值等于沿啮合线方向的齿面中间接触区的长半轴长度,x3和x4分别为齿面小端和齿面大端区域内沿啮合线方向到接触迹线的最远距离。通过公式(9)求解出三段修形曲线的修形系数,然后对第二步得到的小轮反驱动面沿着啮合线方向按照设计的三段修形曲线分别对中间接触区、小端和大端进行修形最终获得修形后的目标小轮反齿面Σ*
第四步、建立初始小轮反驱动面Σ(0)和修形后的目标小轮反驱动面Σ*的离散点偏差修正模型,通过对该修正模型对应的非线性优化方程组进行求解,最终获得对应修形后目标小轮反驱动面Σ*的机床加工参数。
修形前初始小轮反驱动面Σ(0)和修形后目标小轮反驱动面Σ*的齿面上对应离散点的偏差图示意如图8所示。rt (0)和rt *分别表示修形前初始小轮反驱动面Σ(0)和修形后目标小轮反驱动面Σ*上对应离散点的位置矢量,ht为对应齿面离散点的偏差向量,t(t=1,2,…,m)表示为第t个离散点。因此,修形后目标小轮反驱动面Σ*上离散点的位置矢量rt *表示为:
Figure GDA0002501945300000081
Figure GDA0002501945300000082
为齿面的Gauss坐标参数和运动参数,ζ为机床加工参数的向量,ht为对应齿面离散点的偏差向量,nt (0)表示修形前小轮反驱动面Σ(0)上对应离散点的单位法矢量;由于小轮反驱动面rt (0)的Gauss坐标参数ut和θt位于齿面的切平面内,联立加工小轮反驱动面rt (0)的啮合方程得到下列方程组:
Figure GDA0002501945300000083
通过公式(11)中的方程组可求解出小轮反驱动面的Gauss坐标参数和运动参数
Figure GDA0002501945300000084
将公式(11)得到的
Figure GDA0002501945300000085
代入到公式(10)中可得齿面偏差ht的公式:
Figure GDA0002501945300000086
以机床加工参数作为设计变量,以ht(ζ)的残余平方和最小为目标建立非线性最小二乘优化模型:
Figure GDA0002501945300000087
采用Levenberg–Marquardt算法对公式(13)进行求解,最终可得到修形后目标小轮反驱动面Σ*的机床加工参数。
下表为通过上述修行方法计算修形前后重载车桥螺旋锥齿轮副的参数对比,其中,表1为准双曲面齿轮副的主要几何参数,表2为准双曲面齿轮副的初始加工参数,表3为修形后的准双曲面齿轮副的机床加工参数。
表1准双曲面齿轮副的主要几何参数
Figure GDA0002501945300000088
Figure GDA0002501945300000091
表2准双曲面齿轮副的初始机床加工参数
Figure GDA0002501945300000092
表3修形后的准双曲面齿轮副的机床加工参数
Figure GDA0002501945300000093
Figure GDA0002501945300000101
安装缓速器的重载车桥螺旋锥齿轮副的反驱动面经过修形后,避免了缓速器收到缓速器制动时螺旋锥齿轮副反驱动面产生的边缘接触,使得加载接触区刚好移向齿面中部,减小了齿面偏载和接触应力集中,提高了齿轮副的工作寿命。

Claims (8)

1.安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,其特征在于包括如下步骤:
第一步,对安装缓速器的重载车桥螺旋锥齿轮副的反驱动面进行有限元加载接触分析,得到反驱动面上的加载接触区位置;
第二步,根据第一步得到的反驱动面上的加载接触区位置设计小轮反驱动面的参考点、大对角接触迹线和传动误差曲线,以修形前的初始加工参数对应的初始大轮反驱动面作为产形轮,按照啮合坐标系中的坐标转换矩阵将该产形轮展成与初始大轮反驱动面共轭并满足大对角接触迹线和传动误差曲线的小轮反驱动面;
第三步,对第二步得到的小轮反驱动面进行分区,即将小轮反驱动面沿啮合线方向划分为齿面大端、齿面中间接触区和齿面小端三个区域,设计沿啮合线方向的三条修形曲线分别对小轮反驱动面的三个区域进行修形,最终得到修形后的目标小轮反驱动面Σ*
第四步,建立修形后的目标小轮反驱动面Σ*与修形前的初始小轮反驱动面Σ(0)的离散点偏差修正模型,建立离散点偏差修正的非线性方程组,对非线性方程组求解得到对应修形后的目标小轮反驱动面Σ*的机床加工参数。
2.根据权利要求1所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第一步中,通过三维软件建立螺旋锥齿轮副,轴承和齿轮轴的几何模型,然后导入到有限元软件中进行网格划分并设置材料属性、边界和加载条件对螺旋锥齿轮的反驱动面进行加载接触分析,获得缓速器制动时螺旋锥齿轮副反驱动面的加载接触区。
3.根据权利要求2所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第二步中,传动误差幅值Δψ21)定义为小轮转过一个角度ψ1时,大轮实际转角ψ2与理论转角(z1/z2)·ψ1的差值,即公式(1);
Figure FDA0002501945290000011
其中,ψ1 (0)为小轮初始转角,ψ2 (0)为大轮初始转角,Z1为小轮齿数,Z2为大轮齿数。
4.根据权利要求3所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第二步中,所述传动误差曲线设计为二阶抛物线曲线,其公式为:
Figure FDA0002501945290000012
其中,给定啮合转换点的传动误差幅值和转角值即可求解公式(2)中的系数c,联立第二步中的公式(1)和公式(2)可得到大轮和小轮啮合时满足的运动关系式:
Figure FDA0002501945290000021
5.根据权利要求4所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第二步中,所述初始大轮反驱动面的方程r2表示为:
r2=r2(u22) 公式(4),
其中,u2和θ2为初始大轮反驱动面的Gauss参数;
建立齿轮副的啮合坐标系,所述啮合坐标系中的坐标转换矩阵M12表示为:
Figure FDA0002501945290000022
其中,Γ为齿轮副的轴交角,E为小轮偏置距;
设计偏离齿面中心位置的小轮反驱动面的参考点坐标和小轮反驱动面上接触迹线与根锥线的夹角,以此得到大对角接触迹线,以初始大轮反驱动面作为产形轮,按照啮合坐标系中的坐标转换矩阵将该产形轮展成与初始大轮反驱动面共轭且满足设计的大对角接触迹线和公式(3)的大小轮的运动关系式的小轮反驱动面,该小轮反驱动面r1可表示为:
r1=M12r2 公式(6)。
6.根据权利要求5所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第三步中,在第二步中保持u2不变只改变初始大轮的Gauss参数θ2即可得到第二步所述的小轮反驱动面上的啮合线,在接触线上取坐标点C1(L1,R1)和C2(L2,R2),在啮合线上取点C2(L2,R2)和C3(L3,R3),C2(L2,R2)为接触线和啮合线的交点,通过公式(7)计算小轮反驱动面上接触迹线和啮合线的夹角值φ2
Figure FDA0002501945290000023
再根据φ2可得到沿着啮合线方向的齿面离散点到接触迹线的距离,根据该距离的远近对小轮反驱动面进行分区,将小轮反驱动面沿啮合线方向划分为齿面大端、齿面中间接触区和齿面小端三个区域。
7.根据权利要求6所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第三步中,沿啮合线方向的三段所述修形曲线的方程表达式为:
Figure FDA0002501945290000031
其中,a为接触区长半轴长度,d0为修形量,e1、e2和e3为曲线II的修形系数,f1,f2和f3为曲线III的修形系数,曲线I,曲线II和曲线III分别为沿啮合线方向对应小轮反驱动面的齿面中间接触区、齿面小端和齿面大端的修形曲线,
要保证三段所述修形曲线连续可导,满足以下约束条件:
Figure FDA0002501945290000032
d3和d4分别为对应齿面小端和齿面大端边界上的修形量;x1和x2为其数值等于沿啮合线方向的齿面中间接触区的长半轴长度,x3和x4分别为齿面小端和齿面大端区域内沿啮合线方向到接触迹线的最远距离,通过公式(9)求解出三段所述修形曲线的修形系数,然后对第二步得到的小轮反驱动面沿着啮合线方向按照设计的三段修形曲线分别对齿面中间接触区、齿面小端和齿面大端进行修形最终获得修形后的目标小轮反驱动面Σ*
8.根据权利要求7所述的安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法,所述第四步中,修形后的目标小轮反驱动面Σ*的离散点的位置矢量rt *表示为:
Figure FDA0002501945290000033
其中,rt (0)和rt *分别表示修形前小轮反驱动面Σ(0)和修形后目标小轮反驱动面Σ*上对应离散点的位置矢量,nt (0)表示修形前小轮反驱动面Σ(0)上对应离散点的单位法矢量,
Figure FDA0002501945290000034
为小轮齿面的Gauss坐标参数和运动参数,ζ为机床加工参数的向量,ht为对应齿面离散点的偏差向量,t(t=1,2,…,m)表示为第t个离散点;
由于小轮反驱动面rt (0)的Gauss坐标参数ut和θt位于齿面的切平面内,联立加工小轮反驱动面rt (0)的啮合方程得到下列方程组:
Figure FDA0002501945290000041
通过公式(11)中的方程组可求解出小轮反驱动面的Gauss坐标参数和运动参数
Figure FDA0002501945290000042
将公式(11)得到的
Figure FDA0002501945290000043
代入到公式(10)中可得齿面偏差ht的公式:
Figure FDA0002501945290000044
以机床加工参数作为设计变量,以ht(ζ)的残余平方和最小为目标建立非线性最小二乘优化模型:
Figure FDA0002501945290000045
采用Levenberg–Marquardt算法对公式(13)进行求解,最终可得到修形后目标小轮反驱动面Σ*的机床加工参数。
CN201911061850.1A 2019-11-01 2019-11-01 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法 Active CN110802281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911061850.1A CN110802281B (zh) 2019-11-01 2019-11-01 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911061850.1A CN110802281B (zh) 2019-11-01 2019-11-01 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法

Publications (2)

Publication Number Publication Date
CN110802281A CN110802281A (zh) 2020-02-18
CN110802281B true CN110802281B (zh) 2020-09-29

Family

ID=69500936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911061850.1A Active CN110802281B (zh) 2019-11-01 2019-11-01 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法

Country Status (1)

Country Link
CN (1) CN110802281B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309843B (zh) * 2021-06-03 2022-07-26 株洲九方装备驱动技术有限公司 齿轮箱用克林根贝格齿轮及其修形方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378612B2 (en) * 2016-03-08 2019-08-13 GM Global Technology Operations LLC Bevel gear set and method of manufacture
DE102016119717A1 (de) * 2016-10-17 2018-04-19 Klingelnberg Ag Verfahren zum Ermöglichen oder Verbessern der Ziehbarkeit eines Kegelrades, eine entsprechend ausgestattete Vorrichtung und ein entsprechend modifiziertes Getriebe
CN107917176B (zh) * 2017-10-20 2020-06-12 淮阴工学院 一种球面渐开线弧齿锥齿轮的修形方法
CN107992698B (zh) * 2017-12-13 2021-03-16 长安大学 一种螺旋锥齿轮齿面接触分析方法
CN109343466B (zh) * 2018-09-04 2021-01-01 中南大学 螺旋锥齿轮形性协同加工参数混合反调修正方法
CN109482983B (zh) * 2018-11-09 2020-01-31 重庆理工大学 一种展成法摆线齿锥齿轮的磨齿方法

Also Published As

Publication number Publication date
CN110802281A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN107908857B (zh) 齿向修形斜齿轮成形磨削时齿面原理性误差建模方法
CN107081678B (zh) 一种摆线轮成形磨削砂轮修整方法
CN108679196B (zh) 一种球面渐开线直齿锥齿轮副及其齿廓修形方法
CN110899860B (zh) 一种线接触弧齿锥齿轮副数控加工方法
CN108331899B (zh) 一种rv减速器摆线齿轮齿廓修形设计方法及系统
CN107273612B (zh) 螺旋锥齿轮凹模齿面设计方法及螺旋锥齿轮加工方法
CN110802281B (zh) 安装缓速器的重载车桥螺旋锥齿轮副的反驱动面修形方法
CN109993464B (zh) 降低准双曲面齿轮安装误差敏感度的加工参数优化方法
CN108343725B (zh) 一种基于对数的摆线轮齿廓修形方法及摆线轮、rv减速器
CN109446666B (zh) 一种凹凸齿线联轴器的设计方法
CN108775376A (zh) 一种直齿锥齿轮副及其齿向修形方法
CN108730480B (zh) 一种rv减速器的摆线轮及其齿廓逆向主动修形方法
CN110909430A (zh) 一种谐波减速器柔轮摆线齿形设计方法
CN109396567B (zh) 修形摆线齿轮展成磨削中确定蜗杆砂轮廓形的数字包络法
CN111259499A (zh) 一种锥形面齿轮副及设计方法
CN113102842B (zh) 一种强力珩齿用珩磨轮的设计方法
CN110802280B (zh) 一种渐开线螺旋锥齿轮齿面设计方法
CN111219473A (zh) 一种大重合度弧齿锥齿轮设计方法
CN109834551B (zh) 一种圆弧砂轮磨削圆弧直槽的方法
CN115270347A (zh) 一种考虑重合度的渐开线齿轮齿面修形设计方法
CN208634285U (zh) 一种直齿锥齿轮副
CN109033723B (zh) 准双曲面齿轮小轮无偏置滚轧模具设计及制造方法
CN114918494A (zh) 齿轮展成磨削瞬时等效模型及其设计方法
CN110977054B (zh) 一种变传动比齿条插齿加工制造方法
Tsay et al. Novel profile modification methodology for moulded face-gear drives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant