CN110746190A - 一种碳化钽陶瓷的低温快速制备方法 - Google Patents
一种碳化钽陶瓷的低温快速制备方法 Download PDFInfo
- Publication number
- CN110746190A CN110746190A CN201911121523.0A CN201911121523A CN110746190A CN 110746190 A CN110746190 A CN 110746190A CN 201911121523 A CN201911121523 A CN 201911121523A CN 110746190 A CN110746190 A CN 110746190A
- Authority
- CN
- China
- Prior art keywords
- temperature
- tantalum carbide
- carbide ceramic
- low
- tantalum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/549—Particle size related information the particle size being expressed by crystallite size or primary particle size
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种碳化钽陶瓷的低温快速制备方法,其具体步骤如下:1)制备含钽前驱体:将TaCl5和酚醛树脂溶于无水乙醇中,并在60~80℃下恒温搅拌均匀得到含钽凝胶后,随后干燥并研磨得到碳化钽陶瓷前驱体粉末;2)热解:将碳化钽陶瓷前驱体粉末充分研磨后置于低温管式炉中进行热解处理,得到热解产物;3)碳化钽陶瓷反应烧结致密化:将热解产物充分研磨后过筛,装入石墨模具中,然后将石墨模具置于放电等离子体烧结炉中烧结得到碳化钽陶瓷。本发明通过溶胶‑凝胶法制备的前驱体粉末经低温热解后通过碳热还原反应制备的TaC陶瓷粉体晶粒细小、烧结活性高,能够有效的降低TaC的烧结温度。
Description
技术领域
本发明属于特种陶瓷制备领域,具体涉及一种碳化钽陶瓷的制备方法。
背景技术
碳化钽是一种过渡金属碳化物,具有熔点高(>3800℃),弹性模量大(537GPa),硬度高(15-19GPa),抗热震性和化学稳定性优良,且在高温下能够保持较好的力学性等特点,在切削刀具、航空航天、硬质合金等领域有广阔的应用前景。由于Ta、C之间较强的共价键及TaC低的自扩散系数,TaC的致密化烧结十分困难,这种难以烧结的特性大大限制了TaC陶瓷的应用。
目前,研究者们主要通过添加烧结助剂、改进烧结工艺或者精选优质TaC原料粉体来获得较致密的TaC陶瓷。Zhang Xiaohong等研究了在无烧结助剂的情况下,热压烧结TaC的致密化过程。在不添加任何烧结助剂的情况下,烧结温度从1900℃升至2400℃,TaC陶瓷的相对密度从75%增加至96%。当添加0.36wt%的B4C或者0.43wt%的B4C和0.13wt%的C,烧结温度为2200℃时,TaC陶瓷的相对密度达98%。Gu Junfeng等通过特殊设计的模具,采用闪烧技术,在施加压力为80MPa,施加电流为1250A的条件下获得了较致密的TaC陶瓷(相对密度为95.18%)。Feng Lun等以实验室自制的粒径分布在20-80nm范围内的TaC粉体为原料,采用放电等离子烧结,在施加压力为80MPa,烧结温度2200℃的条件下,获得了相对致密度为98%的TaC陶瓷。尽管上述方法在一定程度上提高了TaC陶瓷的致密度,但所需的烧结条件十分苛刻,烧结温度高于2000℃。
发明内容
本发明针对现有技术中存在的不足,提供了一种原位合成、快速烧结制备TaC陶瓷的方法,该方法采用液相前驱体技术获得均匀细小的钽氧化物和纳米活性碳的混合物,原位合成TaC并同步致密化,能有效的降低TaC的烧结温度,在较低的烧结温度下获得致密的TaC陶瓷。
为解决上述技术问题,本发明提供的技术方案为:
提供一种碳化钽陶瓷的低温快速制备方法,其具体步骤如下:
1)制备含钽前驱体:将TaCl5和酚醛树脂溶于无水乙醇中,并在60~80℃下恒温搅拌均匀得到含钽凝胶后,随后干燥并研磨得到碳化钽陶瓷前驱体粉末;
2)热解:将步骤1)所得碳化钽陶瓷前驱体粉末充分研磨后置于低温管式炉中进行热解处理,得到热解产物;
3)碳化钽陶瓷反应烧结致密化:将步骤2)所得热解产物充分研磨后过200目筛,所得粉末装入石墨模具中,然后将石墨模具置于放电等离子体烧结炉中烧结得到碳化钽陶瓷。
按上述方案,步骤1)所述酚醛树脂残碳量为60wt%,以残碳量计,酚醛树脂中的C与TaCl5中的Ta的摩尔比为3.75~4.50:1。
按上述方案,步骤1)将TaCl5和酚醛树脂溶于无水乙醇中,TaCl5与无水乙醇的质量比为1:2.5~4。
按上述方案,步骤1)干燥条件为:80~120℃下真空干燥12~24h。
按上述方案,步骤2)热解处理工艺条件为:以Ar为保护气氛,室温下以1~10℃/min的速率升温至700℃,保温0.5~2h。
按上述方案,步骤3)所述烧结工艺条件为:在真空条件下,从室温以50~200℃/min的速率升温至1500℃,保温5~10min后,施加50~80MPa的压力,再以50~200℃/min的速率升温至1800~1900℃,保温5~10min后卸压冷却。
本发明还包括根据上述方法制备得到的碳化钽陶瓷,所述碳化钽陶瓷为纯相的TaC,微观晶粒尺寸为1~3μm,致密度为89.65~96.42%。
本发明的有益效果在于:1、本发明方法将TaC粉体的合成与烧结步骤合并成一步,缩短工艺流程、节省工艺时间,热解产物在原位反应生成TaC的同时实现致密化。2、与传统的TaC粉体烧结制备TaC陶瓷工艺相比,通过溶胶-凝胶法制备的前驱体粉末经700℃低温热解后得到成分均匀、颗粒细小、无定型的钽的氧化物与纳米活性碳的均匀混合物,其具有很高的化学反应活性,以该粉体为原料,通过碳热还原反应制备的TaC陶瓷粉体晶粒细小、烧结活性高,原位合成TaC并同步致密化,能够有效的降低TaC的烧结温度。3、本发明制备得到的碳化钽陶瓷为纯相的TaC,微观晶粒尺寸小,致密度高(微观晶粒尺寸为1~3μm,致密度达89.65~96.42%)。
附图说明
图1为本发明实施例1-3所制备的TaC陶瓷的XRD图谱;
图2为实施例1所制备的TaC陶瓷断面的SEM图片;
图3为实施例2所制备的TaC陶瓷断面的SEM图片;
图4为实施例3所制备的TaC陶瓷断面的SEM图片。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述,但本发明的内容不仅仅局限于以下实施例。
本发明实施例所用酚醛树脂残碳量为60wt%,所用TaCl5纯度为99.8wt%。
实施例1
一种碳化钽陶瓷的低温快速制备方法,其具体步骤如下:
称取25g TaCl5和5.58g酚醛树脂放入250mL烧杯中,加入65g无水乙醇,并在80℃恒温下进行磁力搅拌处理,磁力搅拌速度为80r/min,磁力搅拌时间为5h,得到含钽凝胶。将含钽凝胶置于80℃真空干燥箱中干燥24h后取出,研磨1h后放入刚玉坩埚中置于低温管式炉中进行热解处理得到热解产物,热解工艺为:室温下以5℃/min的速率升温至700℃,保温1h,保护气氛为高纯Ar,Ar流量为0.5L/min。将热解后的粉末取出,研磨1h过200目筛后取5g粉体装入φ12mm的石墨模具中,置于放电等离子体烧结炉中于真空条件下烧结制备碳化钽陶瓷,烧结条件为:从室温以50℃/min的速率升温至1500℃,保温5min后,施加50MPa的压力,再以50℃/min的速率升温至1800℃,保温5min后卸压冷却。冷却至室温后脱模取样,得到致密的陶瓷块体。
由图1本实施例所制备的陶瓷块体的XRD图谱可知,本实施例的产物为纯相的TaC,图2为本实施例所制备的TaC陶瓷断面的SEM图片,在图2中可以看到TaC陶瓷晶粒细小(晶粒尺寸约为1μm),致密度较高,存在少量的孔洞,测得其相对密度为89.65%。
实施例2
一种碳化钽陶瓷的低温快速制备方法,其具体步骤如下:
称取25g TaCl5和5.93g酚醛树脂放入250mL烧杯中,加入100g无水乙醇,并在80℃恒温下进行磁力搅拌处理得到含钽凝胶。将含钽凝胶置于120℃真空干燥箱中干燥24h后取出,研磨1h后放入刚玉坩埚中置于低温管式炉中进行热解处理得到热解产物。热解工艺为:室温下以10℃/min的速率升温至700℃,保温1h,保护气氛为高纯Ar,Ar流量为0.5L/min。将热解后的粉末取出,研磨1h过200目筛后取5g粉体装入φ12mm的石墨模具中,置于放电等离子体烧结炉中于真空条件下烧结制备碳化钽陶瓷,烧结条件为:从室温以100℃/min的速率升温至1500℃,保温5min后,施加50MPa的压力,再以100℃/min的速率升温至1900℃,保温5min后卸压冷却。冷却至室温后脱模取样,得到致密的陶瓷块体。
由图1本实施例所制备的陶瓷块体的XRD图谱可知,本实施例的产物为纯相的TaC。图3为本实施例所制备的TaC陶瓷断面的SEM图片,由图3可知,TaC陶瓷较实施例1相比,致密度提高但晶粒尺寸发生了一定程度的长大(晶粒尺寸约为3μm左右),测得其相对密度为91.92%。
实施例3
一种碳化钽陶瓷的低温快速制备方法,其具体步骤如下:
称取25g TaCl5和5.93g酚醛树脂放入250mL烧杯中,加入75g无水乙醇,并在80℃恒温下进行磁力搅拌处理得到含钽凝胶。将含钽凝胶置于120℃真空干燥箱中干燥24h后取出,研磨1h后放入刚玉坩埚中置于低温管式炉中进行热解处理得到热解产物。热解工艺为:室温下以5℃/min的速率升温至700℃,保温1h,保护气氛为高纯Ar,Ar流量为0.5L/min。将热解后的粉末取出,研磨1h过200目筛后取5g粉体装入φ12mm的石墨模具中,置于放电等离子体烧结炉中于真空条件下烧结制备碳化钽陶瓷,烧结条件为:从室温以100℃/min的速率升温至1500℃,保温5min后,施加80MPa的压力,再以100℃/min的速率升温至1900℃,保温5min后卸压冷却。冷却至室温后脱模取样,得到致密的陶瓷块体。
由图1本实施例所制备的陶瓷块体的XRD图谱可知,本实施例的产物为纯相的TaC。图4为本实施例所制备的TaC陶瓷断面的SEM图片,由图4可知,TaC晶粒较实施例2几乎没有长大,但样品中的气孔明显减少,致密度大幅度提高,测得其相对密度为96.42%,与实施例2相比,本实施例烧结过程中增加了压力,由50MPa增大至80MPa,外加压力的提高有助于打破烧结初期的团聚,促进颗粒重排,提高致密化速率。
Claims (7)
1.一种碳化钽陶瓷的低温快速制备方法,其特征在于,具体步骤如下:
1)制备含钽前驱体:将TaCl5和酚醛树脂溶于无水乙醇中,并在60~80℃下恒温搅拌均匀得到含钽凝胶后,随后干燥并研磨得到碳化钽陶瓷前驱体粉末;
2)热解:将步骤1)所得碳化钽陶瓷前驱体粉末充分研磨后置于低温管式炉中进行热解处理,得到热解产物;
3)碳化钽陶瓷反应烧结致密化:将步骤2)所得热解产物充分研磨后过200目筛,所得粉末装入石墨模具中,然后将石墨模具置于放电等离子体烧结炉中烧结得到碳化钽陶瓷。
2.根据权利要求1所述的碳化钽陶瓷的低温快速制备方法,其特征在于,步骤1)所述酚醛树脂残碳量为60wt%,以残碳量计,酚醛树脂中的C与TaCl5中的Ta的摩尔比为3.75~4.50:1。
3.根据权利要求1所述的碳化钽陶瓷的低温快速制备方法,其特征在于,步骤1)将TaCl5和酚醛树脂溶于无水乙醇中,TaCl5与无水乙醇的质量比为1:2.5~4。
4.根据权利要求1所述的碳化钽陶瓷的低温快速制备方法,其特征在于,步骤1)干燥条件为:80~120℃下真空干燥12~24h。
5.根据权利要求1所述的碳化钽陶瓷的低温快速制备方法,其特征在于,步骤2)热解处理工艺条件为:以Ar为保护气氛,室温下以1~10℃/min的速率升温至700℃,保温0.5~2h。
6.根据权利要求1所述的碳化钽陶瓷的低温快速制备方法,其特征在于,步骤3)所述烧结工艺条件为:在真空条件下,从室温以50~200℃/min的速率升温至1500℃,保温5~10min后,施加50~80MPa的压力,再以50~200℃/min的速率升温至1800~1900℃,保温5~10min后卸压冷却。
7.根据权利要求1-6任一所述方法制备得到的碳化钽陶瓷,其特征在于,所述碳化钽陶瓷为纯相的TaC,微观晶粒尺寸为1~3μm,致密度为89.65~96.42%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911121523.0A CN110746190A (zh) | 2019-11-15 | 2019-11-15 | 一种碳化钽陶瓷的低温快速制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911121523.0A CN110746190A (zh) | 2019-11-15 | 2019-11-15 | 一种碳化钽陶瓷的低温快速制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110746190A true CN110746190A (zh) | 2020-02-04 |
Family
ID=69283461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911121523.0A Pending CN110746190A (zh) | 2019-11-15 | 2019-11-15 | 一种碳化钽陶瓷的低温快速制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110746190A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112387974A (zh) * | 2020-11-16 | 2021-02-23 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | 一种pvt法氮化铝晶体生长用坩埚材料的制备方法 |
CN112751005A (zh) * | 2021-01-15 | 2021-05-04 | 武汉科技大学 | 一种氧化钽/碳化钽复合材料的制备方法及其产品和应用 |
RU2756759C1 (ru) * | 2020-04-23 | 2021-10-05 | Евгений Григорьевич Ильин | СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ КАРБИДОВ НИОБИЯ И ТАНТАЛА В УГЛЕРОДНОЙ МАТРИЦЕ - NbC/C И TaC/C |
CN115259901A (zh) * | 2022-06-29 | 2022-11-01 | 南京大学 | 一种炭材料表面TaC保护涂层材料的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101723367A (zh) * | 2009-12-23 | 2010-06-09 | 北京科技大学 | 一种纳米碳化钽粉末的制备方法 |
CN102225764A (zh) * | 2011-05-25 | 2011-10-26 | 山东理工大学 | 碳化钽粉体的制备方法 |
CN103253670A (zh) * | 2013-05-17 | 2013-08-21 | 航天材料及工艺研究所 | 一种碳热还原法低温制备TaC粉体的方法 |
US20170113975A1 (en) * | 2014-06-17 | 2017-04-27 | University Of Utah Research Foundation | Methods of sintering dense zeta-phase tantalum carbide |
-
2019
- 2019-11-15 CN CN201911121523.0A patent/CN110746190A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101723367A (zh) * | 2009-12-23 | 2010-06-09 | 北京科技大学 | 一种纳米碳化钽粉末的制备方法 |
CN102225764A (zh) * | 2011-05-25 | 2011-10-26 | 山东理工大学 | 碳化钽粉体的制备方法 |
CN103253670A (zh) * | 2013-05-17 | 2013-08-21 | 航天材料及工艺研究所 | 一种碳热还原法低温制备TaC粉体的方法 |
US20170113975A1 (en) * | 2014-06-17 | 2017-04-27 | University Of Utah Research Foundation | Methods of sintering dense zeta-phase tantalum carbide |
Non-Patent Citations (2)
Title |
---|
AMBREEN NISAR ET AL.: "Densification kinetics and mechanical properties of tantalum carbide", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS》 * |
CHUN LIU ET AL.: "Synthesis of ultra-fine tantalum carbide powders by a combinational method of sol-gel and spark plasma sintering", 《CERAMICS INTERNATIONAL》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2756759C1 (ru) * | 2020-04-23 | 2021-10-05 | Евгений Григорьевич Ильин | СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ КАРБИДОВ НИОБИЯ И ТАНТАЛА В УГЛЕРОДНОЙ МАТРИЦЕ - NbC/C И TaC/C |
CN112387974A (zh) * | 2020-11-16 | 2021-02-23 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | 一种pvt法氮化铝晶体生长用坩埚材料的制备方法 |
CN112751005A (zh) * | 2021-01-15 | 2021-05-04 | 武汉科技大学 | 一种氧化钽/碳化钽复合材料的制备方法及其产品和应用 |
CN115259901A (zh) * | 2022-06-29 | 2022-11-01 | 南京大学 | 一种炭材料表面TaC保护涂层材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110746190A (zh) | 一种碳化钽陶瓷的低温快速制备方法 | |
CN110257684B (zh) | 一种FeCrCoMnNi高熵合金基复合材料的制备工艺 | |
CN109879669B (zh) | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 | |
CN103833370B (zh) | 一种复相陶瓷Si3N4-SiC的近尺寸制备方法 | |
CN109608203B (zh) | 高熵二硅化物及其制备方法 | |
CN103924119B (zh) | 一种超高导热石墨鳞片/铜复合材料及其制备方法 | |
CN109180187B (zh) | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 | |
CN109851367B (zh) | 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法 | |
CN111484331B (zh) | 一种细晶粒富硼碳化硼基复合陶瓷材料及其制备方法 | |
CN108911756A (zh) | 一种电阻可调的碳化硅陶瓷及其制备方法 | |
CN110436928B (zh) | 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法 | |
WO2020186752A1 (zh) | 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法 | |
CN108794013B (zh) | 一种b4c陶瓷块体及其快速制备方法 | |
CN113582700B (zh) | 一种低成本硼化钛陶瓷复合材料的制备方法 | |
CN110304923B (zh) | 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法 | |
CN103979507A (zh) | 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法 | |
CN113416077B (zh) | 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用 | |
CN115010496B (zh) | 一种性能可控的b4c-金刚石复合材料的制备方法 | |
CN108411137B (zh) | 超细晶碳化钨基硬质合金的制备方法 | |
CN104926309A (zh) | 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法 | |
CN111116206A (zh) | 致密MoAlB陶瓷材料的制备方法、其产物及高纯MoAlB陶瓷粉的制备方法 | |
CN112500167A (zh) | 一种致密化碳化钛复合陶瓷的制备方法 | |
CN111848170A (zh) | 一种碳化硼基复合陶瓷材料及其制备方法 | |
CN109665848B (zh) | 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 | |
CN103848625A (zh) | 一种制备具有棒状形貌硼化锆粉体的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200204 |