CN110743608A - 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用 - Google Patents

一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110743608A
CN110743608A CN201910995895.XA CN201910995895A CN110743608A CN 110743608 A CN110743608 A CN 110743608A CN 201910995895 A CN201910995895 A CN 201910995895A CN 110743608 A CN110743608 A CN 110743608A
Authority
CN
China
Prior art keywords
catalyst
molecular sieve
metal
zsm
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910995895.XA
Other languages
English (en)
Other versions
CN110743608B (zh
Inventor
吕鹏梅
李明
杨玲梅
付俊鹰
罗文�
王忠铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201910995895.XA priority Critical patent/CN110743608B/zh
Publication of CN110743608A publication Critical patent/CN110743608A/zh
Application granted granted Critical
Publication of CN110743608B publication Critical patent/CN110743608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/126Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on other metals or derivates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用。该催化剂以内部充满介孔和大孔,表面为微介孔的ZSM‑5分子筛为载体,将金属单质Ni、Pt、Pb或Mo中一种或者多种负载于载体的表面或表层上形成的复合型材料;所述的金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~75%。本发明的催化剂具有表面金属中心和酸性位点共存的异构区和内部只有强L酸的裂解区,可实现裂解和异构过程在催化剂不同区域协同进行,催化油脂高效裂解异构一步向短链异构烷烃的转化,可广泛适用于以动植物油、长链饱和及不饱和脂肪酸、轻油馏分、重油馏分为原料的短链异构烷烃的工业生产。

Description

一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备 方法和应用
技术领域
本发明涉及油脂加氢催化剂技术领域,具体涉及一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用。
背景技术
碳链长度在C8-C16区间的异构烷烃在航空燃料组分中占比为70%-85%,因此将油脂加氢高效转化为短链异构烷烃具有重要的意义。油脂的加氢脱氧过程在金属中心如:镍、铂等,专利CN106635118 B公开了一种颗粒直径为50~100μm的NiO/SiO2-Al2O3催化剂,该类催化剂虽然可以达到脱氧加氢获得烷烃的目的,但是产物中以长链正构烷烃为主,无法满足航空燃料的需要。金属中心主要作用是实现油脂的脱氧和加氢,B/L酸性位点是实现长直链烷烃裂解和异构的关键。专利CN103289824 B公开了一种双活性位点负载型催化剂,该催化剂以SAPO-11,MeAPO-11,ZSM-22,ZSM-23,ZSM-48中的一种或者几种为载体,异构烷烃的选择性大于60wt.%,但是该方法组分产物分布为C11-C24并不适合直接用于航空燃料。CN1351123 A公开了一种涉及ZSM-5的加氢催化剂,但是该催化剂强调用于油脂的加氢裂化,主要涉及酸溶液处理对载体酸性位点的调控,产物组分不局限于烷烃,这与本发明中强调的裂解异构形成短链异构烷烃明显不同。CN101081370 A公开了一种ZSM-5/SAPO-11复合型催化剂,该类催化剂虽然兼顾了ZSM-5的催化裂解活性和SAPO-11的异构活性,但是该类催化剂一般产物组分复杂,均达不到本发明一步获得高纯度短链异构烷烃的效果。
传统的金属负载型ZSM-5催化剂为单一催化界面催化剂,存在很大的局限性。B酸位点的酸性强度相对于L酸位点较强更有利于长链烷烃裂解为短链烷烃,但是强B酸位点往往会引起芳构化反应的发生,从而造成产物中芳烃含量较高而产物附加值降低。如果消除强B酸位点,L酸位点相对于金属中心活性较弱,长链烷烃的裂解会被大大削弱,造成产物中长链烷烃含量过高。这就是油脂一步法加氢制备航空燃料的难点所在。
发明内容
本发明针对现有的催化剂在油脂加氢制备航空燃料过程中裂解与异构相互抑制,进而造成短链异构烷烃(C8-C14)产率低的问题,而提供一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用。该催化剂是具有双协同催化区域的金属负载型分子筛催化剂,能分别在不同活性区域进行裂解和加氢异构以实现油脂到短链(C8-C14)异构烷烃的高效一步转化。
本发明是通过以下技术方案予以实现的:
一种含有双协同催化区域的金属负载型分子筛催化剂,是以内部充满介孔和大孔,表面为微介孔的ZSM-5分子筛为载体,将金属单质Ni、Pt、Pb或Mo中一种或者多种负载于载体的表面或表层上形成的复合型材料;所述的金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~75%。
优选,所述的金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~20%。
本发明的含有双协同催化区域的金属负载型分子筛催化剂的催化原理,为如下:
采用SiO2/Al2O3为5-100的ZSM-5分子筛为载体,该材料同时具有B酸和L酸活性位点是实现裂解和异构的必须活性位点。首先采用合适浓度的碱水溶液对ZSM-5进行离子交换以调控ZSM-5的B酸强度来避免B酸活性太强从而引起芳构化反应。然后,通过水或者醇溶液浸渍将金属盐负载于ZSM-5表面,再经煅烧、还原转化为金属单质负载于ZSM-5表面上。此时,由于ZSM-5属于微孔分子筛,其微孔孔道直径在0.5nm左右,而油脂分子动力学直径通常大于1nm,因此反应进程中油脂分子无法进入催化剂微孔。因此,传统金属负载型ZSM-5催化剂的反应通常集中在催化剂表面。本发明通过用四丙基溴化铵水溶液对ZSM-5进行碱处理,在ZSM-5内部造出介孔和大孔,而在材料表层为微介孔层,其中介孔直径为4nm左右。催化剂结构如图1所示,微介孔分布如图2所示。由于金属粒子直径通常在10nm左右,使得金属颗粒分布于材料表面或者表层,载体内部的介孔和大孔内无金属颗粒,这样就形成了表面金属中心和酸性位点共存的异构区和内部只有强L酸的裂解区。从而实现了裂解和异构过程在催化剂不同区域协同进行,进而实现了油脂一步高效向短链异构烷烃的转化。
本发明的含有双协同催化区域的金属负载型分子筛催化剂是通过以下方法制备得到,包括以下步骤:
(a)将ZSM-5分子筛按1g:5~25mL的混合比例加至碱水溶液中,在25~200℃下进行离子交换,将反应后的分子筛进行离心干燥得到酸性调控的ZSM-5分子筛;
(b)将金属盐和处理后的ZSM-5分子筛混合,溶于水或者乙醇,在25~100℃下搅拌混合均匀,经干燥除去溶剂后,在300~800℃下焙烧1-10小时,冷却至室温后将样品研磨过筛,得到中间样品;
(c)将中间样品按1g:10~50mL的混合比例溶于四丙基溴化铵水溶液中,在100~250℃下反应5~100小时,过滤,干燥得到金属氧化物负载型催化剂;
(d)对金属氧化物负载型催化剂进行还原,即得到含有双协同催化区域的金属负载型分子筛催化剂。
上述步骤(a)中碱水溶液为氢氧化钠、氢氧化钾或氢氧化锂水溶液中的至少一种;所述的碱水溶液的浓度为0.01~0.5mol/L。
步骤(b)中金属盐为Ni、Pt、Pb或Mo的硝酸盐、碳酸盐、硫酸盐、醋酸盐或盐酸盐。如硝酸镍、氯铂酸、碳酸钼等。
步骤(b)中金属盐和ZSM-5分子筛的混合比例是按催化剂中金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~75%确定的。
步骤(c)中四丙基溴化铵水溶液的质量分数为10%-60%。
本发明的含有双协同催化区域的金属负载型分子筛催化剂可应用于催化高效裂解异构一步制备短链异构烷烃。其应用条件为:将一定量的催化剂及油脂加入高压反应釜中反应2~5小时,保持反应器中氢气压力在2~10Mpa,反应温度控制在250~550℃之间,催化剂用量为油脂质量的4%~20%。
本发明的技术效果为:
本发明的催化剂以内部充满介孔和大孔,表面为微介孔的ZSM-5分子筛为载体,将金属单质Ni、Pt、Pb或Mo中一种或者多种负载于载体的表面或表层上形成的复合型材料;由于催化剂表层为微介孔层,而金属颗粒较大无法通过,负载于载体的表面或表层上,因此在催化剂内部形成了充满介孔及大孔的只有酸性位点的活性区域,具体的,使得本发明的催化剂具有表面金属中心和酸性位点共存的异构区和内部只有强L酸的裂解区,可实现裂解和异构过程在催化剂不同区域协同进行,催化油脂高效裂解异构一步向短链异构烷烃的转化,该催化剂很好的解决了油脂向航空燃料转化过程中裂解和异构过程互相竞争抑制从而造成产物中正构烷烃、长链烷烃及芳烃含量高的问题,可以将油脂高效定向转化为附加值更高的短链异构烷烃。本发明催化剂广泛适用于以动植物油、长链饱和及不饱和脂肪酸、轻油馏分、重油馏分为原料的短链异构烷烃的工业生产,产物组分中正异构烷烃转化率高于98%,其中C8-C14组分含量高达90wt.%,总体异构烷烃含量高达80%。
附图说明
图1是本发明催化剂的透射电镜图像。
图2是本发明催化剂的孔隙分布图。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1:Ni-H002NaZSM5催化剂的制备
(a)将15g HZSM-5(SiO2/Al2O3=15)分子筛加入150mL浓度为0.01mol/L的氢氧化钠水溶液中,在60℃下磁力搅拌2小时,用去离子水洗至中性,然后将反应后的分子筛进行离心干燥得到002NaZSM-5;(b)将0.942g的六水硝酸镍和1.92g的002NaZSM-5混合溶于乙醇,在60℃下磁力搅拌2小时,然后升温到80℃干燥除去乙醇,在550℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品2g溶于60mL浓度为25wt.%的四丙基溴化铵水溶液,在170℃反应72小时,然后过滤、干燥得到NiO-H002NaZSM5;(d)在550℃下用30%v/v的氢气(平衡气为氮气)对NiO-H002NaZSM5进行还原2小时,氢气混合气的流量为20mL/min,最终得到Ni-H002NaZSM5,镍的负载量为10wt.%。
上述制得的Ni-H002NaZSM5催化剂的透射电镜图像见图1所示。其孔隙分布见图2所示。
实施例2:Ni-H006LiZSM5催化剂的制备
将10g HZSM-5(SiO2/Al2O3=15)分子筛加入100mL浓度为0.06mol/L的氢氧化锂水溶液中,在80℃下磁力搅拌5小时,用去离子水洗至中性,然后将反应后分子筛进行离心干燥得到006LiZSM-5;(b)将1.963g的六水硝酸镍和5g的006LiZSM-5混合溶于水,在60℃下磁力搅拌2小时,然后升温到100℃干燥除去水,在600℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品5g溶于150mL浓度为30wt.%的四丙基溴化铵水溶液,在180℃反应80小时,然后过滤、干燥得到NiO-H006LiZSM5;(d)在550℃下用30%v/v的氢气(平衡气为氮气)对NiO-H006LiZSM5进行还原3小时,氢气混合气的流量为40mL/min,最终得到Ni-H006LiZSM5,镍的负载量为8wt.%。
实施例3:Ni-H01KZSM5催化剂的制备
将10g HZSM-5(SiO2/Al2O3=15)分子筛加入100mL浓度为0.1mol/L的氢氧化钾水溶液中,在80℃下磁力搅拌3小时,用去离子水洗至中性,然后将反应后分子筛进行离心干燥得到01KZSM-5;(b)将1.472g的六水硝酸镍和5g的01KZSM-5混合溶于水,在60℃下磁力搅拌2小时,然后升温到100℃干燥除去水,在550℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品10g溶于300mL浓度为30wt.%的四丙基溴化铵水溶液,在160℃反应85小时,然后过滤、干燥得到NiO-H01KZSM5;(d)在550℃下用30%v/v的氢气(平衡气为氮气)对NiO-H01KZSM5进行还原3小时,氢气混合气的流量为40mL/min,最终得到Ni-H01KZSM5,镍的负载量为6wt.%。
实施例4:Pt-H004NaZSM5催化剂的制备
将10g HZSM-5(SiO2/Al2O3=15)分子筛加入100mL浓度为0.04mol/L的氢氧化钠水溶液中,在80℃下磁力搅拌3小时,用去离子水洗至中性,然后将反应后分子筛进行离心干燥得到004NaZSM-5;(b)将0.4696g的氯铂酸和4g的004NaZSM-5混合溶于水,在60℃下磁力搅拌2小时,然后升温到120℃干燥除去水,在650℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品4g溶于100mL浓度为50wt.%的四丙基溴化铵水溶液,在160℃反应85小时,然后过滤、干燥得到PtO2-H004NaZSM5;(d)在700℃下用20%v/v的氢气(平衡气为氮气)对PtO2-H004NaZSM5进行还原3小时,氢气混合气的流量为40mL/min,最终得到Pt-H004NaZSM5,铂的负载量为4wt.%。
实施例5:Mo-H008LiZSM5催化剂的制备
将10g HZSM-5(SiO2/Al2O3=15)分子筛加入250mL浓度为0.08mol/L的氢氧化锂水溶液中,在70℃下磁力搅拌5小时,用去离子水洗至中性,然后将反应后分子筛进行离心干燥得到008LiZSM-5;(b)将5.5442g的五水硝酸钼和8g的008LiZSM-5混合溶于水,在60℃下磁力搅拌2小时,然后升温到120℃干燥除去水,在700℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品4g溶于40mL浓度为60wt.%的四丙基溴化铵水溶液,在250℃反应5小时,然后过滤、干燥得到MoO3-H008LiZSM5;(d)在700℃下用25%v/v的氢气(平衡气为氮气)对MoO3-H008LiZSM5进行还原3小时,氢气混合气的流量为40mL/min,最终得到Mo-H008LiZSM5,铂的负载量为15wt.%。
实施例6:Pd-H02NaZSM5催化剂的制备
将10g HZSM-5(SiO2/Al2O3=15)分子筛加入50mL浓度为0.5mol/L的氢氧化钠水溶液中,在80℃下磁力搅拌1小时,用去离子水洗至中性,然后将反应后分子筛进行离心干燥得到02NaZSM-5;(b)将0.6633g(Pd含量为18.09%)硝酸钯硝酸溶液和4g的02NaZSM-5混合溶于乙醇,在60℃下磁力搅拌2小时,然后升温到80℃干燥除去乙醇,在650℃下焙烧3小时,冷却至室温后将样品研磨过筛,得到中间样品;(c)取步骤(b)中得到的中间样品4g溶于200mL浓度为10wt.%的四丙基溴化铵水溶液,在100℃反应100小时,然后过滤、干燥得到PdO-H02NaZSM5;(d)在700℃下用20%v/v的氢气(平衡气为氮气)对PdO-H02NaZSM5进行还原3小时,氢气混合气的流量为40mL/min,最终得到Pd-H02NaZSM5,钯的负载量为3wt.%。
实施例7:Ni-H002NaZSM5催化剂的应用
将0.6g Ni-H002NaZSM5催化剂和10g油酸加入180mL高压反应釜中,充入4Mpa氢气,然后升温至360℃反应5小时。液体产物采用安捷伦7890A和质谱5975C气相色谱-质谱联用仪进行分析。
计算公式为:C8-C14产物含量=(C8-C14产物质量/液体产物总质量)×100%;
异构烷烃的选择性=(产物中异构烷烃物质的量/产物总物质的量)×100%。
结果显示:液体产物中C8-C14产物含量为90wt.%,产物异构烷烃的选择性为80%。
实施例8:Ni-H006LiZSM5催化剂的应用
将0.3g Ni-H006LiZSM5催化剂和5g油酸加入100mL高压反应釜中,充入4Mpa氢气,然后升温至360℃反应5小时。产物分析方法及计算方法与实施例7相同。结果显示:液体产物中C8-C14产物含量为82wt.%,产物异构烷烃的选择性为74%。
实施例9:Ni-H01KZSM5催化剂的应用
将0.3g Ni-H01KZSM5催化剂和5g油酸加入100mL高压反应釜中,充入4Mpa氢气,然后升温至380℃反应4小时。产物分析方法及计算方法与实施例7相同。结果显示:液体产物中C8-C14产物含量为52wt.%,产物异构烷烃的选择性为72%。
实施例10:Pt-H004NaZSM5催化剂的应用
将0.4g Pt-H004NaZSM5催化剂和5g油酸加入100mL高压反应釜中,充入5Mpa氢气,然后升温至360℃反应2小时。产物分析方法及计算方法与实施例7相同。结果显示:液体产物中C8-C14产物含量为82wt.%,产物异构烷烃的选择性为91%。
实施例11:Mo-H008LiZSM5催化剂的应用
将0.5g Mo-H008LiZSM5催化剂和5g油酸加入100mL高压反应釜中,充入4.5Mpa氢气,然后升温至380℃反应4小时。产物分析方法及计算方法与实施例7相同。结果显示:液体产物中C8-C14产物含量为78wt.%,产物异构烷烃的选择性为88%。
实施例12:Pd-H02NaZSM5催化剂的应用
将0.4g Pd-H02NaZSM5催化剂和5g油酸加入100mL高压反应釜中,充入3.5Mpa氢气,然后升温至370℃反应5小时。产物分析方法及计算方法与实施例7相同。结果显示:液体产物中C8-C14产物含量为56wt.%,产物异构烷烃的选择性为74%。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种含有双协同催化区域的金属负载型分子筛催化剂,其特征在于,所述的催化剂以内部充满介孔和大孔,表面为微介孔的ZSM-5分子筛为载体,将金属单质Ni、Pt、Pb或Mo中一种或者多种负载于载体的表面或表层上形成的复合型材料;所述的金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~75%。
2.根据权利要求1所述的催化剂,其特征在于,所述的金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~20%。
3.一种制备权利要求1或2所述的催化剂的方法,其特征在于,包括以下步骤:
(a)将ZSM-5分子筛按1g:5~25mL的混合比例加至碱水溶液中,在25~200℃下进行离子交换,将反应后的分子筛进行离心干燥得到酸性调控的ZSM-5分子筛;
(b)将金属盐和处理后的ZSM-5分子筛混合,溶于水或者乙醇,在25~100℃下搅拌混合均匀,经干燥除去溶剂后,在300~800℃下焙烧1-10小时,冷却至室温后将样品研磨过筛,得到中间样品;
(c)将中间样品按1g:10~50mL的混合比例溶于四丙基溴化铵水溶液中,在100~250℃下反应5~100小时,过滤,干燥得到金属氧化物负载型催化剂;
(d)对金属氧化物负载型催化剂进行还原,即得到含有双协同催化区域的金属负载型分子筛催化剂。
4.根据权利要求3所述的制备方法,其特征在于,步骤(a)中碱水溶液为氢氧化钠、氢氧化钾或氢氧化锂水溶液中的至少一种;所述的碱水溶液的浓度为0.01~0.5mol/L。
5.根据权利要求3所述的制备方法,其特征在于,步骤(b)中金属盐为Ni、Pt、Pb或Mo的硝酸盐、碳酸盐、硫酸盐、醋酸盐或盐酸盐。
6.根据权利要求3或5所述的制备方法,其特征在于,步骤(b)中金属盐和ZSM-5分子筛的混合比例是按催化剂中金属单质Ni、Pt、Pb或Mo占催化剂总重量的2%~75%确定的。
7.根据权利要求3所述的制备方法,其特征在于,步骤(c)中四丙基溴化铵水溶液的质量分数为10%-60%。
8.权利要求1或2所述的催化剂在催化高效裂解异构一步制备短链异构烷烃中的应用。
9.根据权利要求8所述的应用,其特征在于,其应用条件为:将一定量的催化剂及油脂加入高压反应釜中反应2~5小时,保持反应器中氢气压力在2~10Mpa,反应温度控制在250~550℃之间,催化剂用量为油脂质量的4%~20%。
CN201910995895.XA 2019-10-18 2019-10-18 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用 Active CN110743608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910995895.XA CN110743608B (zh) 2019-10-18 2019-10-18 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910995895.XA CN110743608B (zh) 2019-10-18 2019-10-18 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110743608A true CN110743608A (zh) 2020-02-04
CN110743608B CN110743608B (zh) 2022-08-05

Family

ID=69278990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910995895.XA Active CN110743608B (zh) 2019-10-18 2019-10-18 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110743608B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250152A (zh) * 2020-03-31 2020-06-09 中国科学院过程工程研究所 一种Ni@ZSM-5双功能催化剂的封装方法
CN112958147A (zh) * 2021-02-23 2021-06-15 华南理工大学 双功能催化剂及其制备方法、硬脂酸制备异构烷烃的方法
CN115301234A (zh) * 2022-08-26 2022-11-08 厦门大学 表面活性剂诱导合金制备催化剂及用于油脂一步加氢异构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818925A (zh) * 2014-03-17 2014-05-28 中国石油大学(华东) 酸碱耦合制备等级孔zsm-5分子筛的方法
CN105237319A (zh) * 2015-10-15 2016-01-13 浙江大学 一种以不饱和脂肪酸为原料零氢耗制备长链烷烃的方法
CN106540737A (zh) * 2016-10-28 2017-03-29 中国科学院山西煤炭化学研究所 一种中空微球分子筛及其制备方法和在甲醇制芳烃中的应用
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法
CN109368655A (zh) * 2018-10-15 2019-02-22 沈阳化工大学 一种高结晶度的多级孔分子筛制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818925A (zh) * 2014-03-17 2014-05-28 中国石油大学(华东) 酸碱耦合制备等级孔zsm-5分子筛的方法
CN105237319A (zh) * 2015-10-15 2016-01-13 浙江大学 一种以不饱和脂肪酸为原料零氢耗制备长链烷烃的方法
CN106540737A (zh) * 2016-10-28 2017-03-29 中国科学院山西煤炭化学研究所 一种中空微球分子筛及其制备方法和在甲醇制芳烃中的应用
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法
CN109368655A (zh) * 2018-10-15 2019-02-22 沈阳化工大学 一种高结晶度的多级孔分子筛制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI MING ET AL.: ""Nickel-loaded ZSM-5 catalysed hydrogenation of oleic acid: The game between acid sites and metal centres"", 《APPLIED CATALYSIS A, GENERAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250152A (zh) * 2020-03-31 2020-06-09 中国科学院过程工程研究所 一种Ni@ZSM-5双功能催化剂的封装方法
CN111250152B (zh) * 2020-03-31 2021-05-28 中国科学院过程工程研究所 一种Ni@ZSM-5双功能催化剂的封装方法
CN112958147A (zh) * 2021-02-23 2021-06-15 华南理工大学 双功能催化剂及其制备方法、硬脂酸制备异构烷烃的方法
CN115301234A (zh) * 2022-08-26 2022-11-08 厦门大学 表面活性剂诱导合金制备催化剂及用于油脂一步加氢异构
CN115301234B (zh) * 2022-08-26 2024-05-03 厦门大学 表面活性剂诱导合金制备催化剂及用于油脂一步加氢异构

Also Published As

Publication number Publication date
CN110743608B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN110743608B (zh) 一种高效裂解异构一步制备短链异构烷烃的催化剂及其制备方法和应用
CN101485994B (zh) 一种合成对二甲苯的纳米分子筛催化剂及其制备方法
Jia et al. Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein
WO2009099111A1 (ja) 水素化異性化触媒及びその製造方法、炭化水素油の脱蝋方法、並びに潤滑油基油の製造方法
CN101596462B (zh) 一种加氢异构催化剂及其制备方法
WO2018221691A1 (ja) 機能性構造体及び機能性構造体の製造方法
DE102007047434A1 (de) Sinterstabiler Katalysator für die Hydrierung und Dehydrierungen und Verfahren zu dessen Herstellung
Azkaar et al. Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite
CN111135859B (zh) 一种长链正构烷烃临氢异构化催化剂及其制备方法
CN102500409A (zh) 一种汽油芳构化异构化改质催化剂、其制备方法及应用
WO2018221700A1 (ja) フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
CN107398294B (zh) 一种改性无粘结剂zsm-11分子筛催化剂的制备方法和应用
WO2016202076A1 (zh) 用于合成气选择性合成高品质煤油馏分的载体及其催化剂和制备方法
CN106925339B (zh) 用于碳八芳烃中二甲苯异构化反应的多级孔分子筛催化剂的制备方法
DE19600709A1 (de) Verfahren zur Herstellung von Epoxiden aus Olefinen, Wasserstoff und Sauerstoff
CN101618334B (zh) 一种原位型分子筛加氢裂化催化剂及其制备方法
CN110028079A (zh) 一种富含介孔的BaKL沸石及其制备方法
EP2978528A1 (de) Passivierung eines zeolith-katalysators in einer wirbelschicht
CN110551893B (zh) 稀释剂及其制备方法
CN111233726B (zh) 一种制备全反式维生素a醋酸酯的方法
CN109833906A (zh) 一种制取低凝点生物柴油的双功能催化剂及其制备方法与应用
JP2019034879A (ja) Mfi型ゼオライト
CN107344117B (zh) 加氢裂化催化剂及其制法
CN107344120B (zh) 加氢裂化催化剂载体及其制法
CN108993575A (zh) 用于正构烷烃异构化贵金属催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant