CN110723965A - 一种无助熔剂ltcc微波陶瓷材料及其制备方法 - Google Patents

一种无助熔剂ltcc微波陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110723965A
CN110723965A CN201911139445.7A CN201911139445A CN110723965A CN 110723965 A CN110723965 A CN 110723965A CN 201911139445 A CN201911139445 A CN 201911139445A CN 110723965 A CN110723965 A CN 110723965A
Authority
CN
China
Prior art keywords
equal
ltcc
microwave
low
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911139445.7A
Other languages
English (en)
Other versions
CN110723965B (zh
Inventor
苏桦
黄芳仪
唐晓莉
李元勋
陶志华
陈加旺
陈振威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Chengqi Ceramic Innovative Materials Co Ltd
University of Electronic Science and Technology of China
Original Assignee
Dongguan Chengqi Ceramic Innovative Materials Co Ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Chengqi Ceramic Innovative Materials Co Ltd, University of Electronic Science and Technology of China filed Critical Dongguan Chengqi Ceramic Innovative Materials Co Ltd
Publication of CN110723965A publication Critical patent/CN110723965A/zh
Application granted granted Critical
Publication of CN110723965B publication Critical patent/CN110723965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子陶瓷材料及其制造领域,涉及一种无助熔剂的LTCC微波陶瓷材料及其制备方法。本发明提供的LTCC微波陶瓷材料,低介低损耗,以CaMg1‑x‑yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,于850℃~950℃烧结,介电常数εr6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为‑30~‑40ppm/℃,通过固相法制备。有效降低信号传输过程中的损耗和信号串扰风险,可广泛应用于LTCC微波基板、叠层微波器件和模块中;材料体系中未加入任何玻璃助熔剂,不仅降低了材料制备工艺和成本,而且更有利于提升材料的品质因数并减少因玻璃掺杂引起的LTCC工艺兼容性问题;生产原料便宜,工艺工程简单,方便操作并利于降低成本。

Description

一种无助熔剂LTCC微波陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷材料及其制造领域,涉及一种无助熔剂掺杂的低介低损耗LTCC微波陶瓷材料及其制备方法。
背景技术
随着通信、电脑及其周边产品和家用电器不断向高频化、数字化方向发展,对元器件的小型化、集成化、多功能化、模块化以及高可靠性要求愈来愈迫切。LTCC(低温共烧陶瓷)技术以其优异的电学、机械、热学及工艺特性,为无源器件以及无源/有源器件混合集成的发展创造了条件,并迅速在叠层片式无源器件中获得了广泛的应用,在国内外的高校、研究机构和公司等得到广泛的研发和生产,并成为了电子元器件小型化、片式化和集成化的首选方式。然而,为了获得高性能的LTCC器件,首先就需要开发出高性能的LTCC材料。国内目前企业和研究所所采用LTCC微波介电陶瓷材料,大部分还依赖于从日本、美国进口。因此,亟须开发出拥有自主知识产权的高性能LTCC微波介电陶瓷粉料,为研发LTCC小型集成化微波器件奠定材料基础。
LTCC微波陶瓷材料是LTCC材料中应用非常广泛的一个分支。其实现方式包括采用微晶玻璃法、玻璃-陶瓷复合法以及固相反应烧结法三大类。其中前两类都包含了大量的玻璃,虽然容易实现材料体系的低温烧结,但材料的介电损耗也都较高。而采用传统固相反应法烧结法制备陶瓷体系的LTCC微波材料,由于一般的微波陶瓷材料烧结温度都在1300℃以上,为了将其烧结温度降低到与LTCC工艺兼容(一般烧结温度为800℃~900℃之间),常通过添加各种低熔玻璃或氧化物来实现材料体系的低温烧结。在这些低熔掺杂助熔方式中,一方面添加的低熔助烧剂容易恶化陶瓷基体微波介电性能,另外如果采用玻璃做助熔剂,制备玻璃的成本也较高。
CaMgSi2O6是一种属于斜辉石类的硅酸盐,在CaMgSi2O6晶体结构中,Ca2+占据八配位多面体,Mg2+占据较规则且更小的六配位八面体,CaO8多面体和MgO6八面体之间通过SiO4四面体连。CaMgSi2O6微波介电陶瓷具有较低的介电常数(~7.5),是LTCC基板材料的重要候选材料之一。纯相CaMgSi2O6微波介电陶瓷需要较高的烧结温度(~1290℃)实现致密,其介电性能如下:εr=7.46,Q×f=59638GHz,τf=-46ppm/℃。由此可见,CaMgSi2O6陶瓷有很好的潜质作为陶瓷基的高性能LTCC材料,但其烧结温度还太高,与LTCC工艺不兼容,一般需要通过直接加氧化物或玻璃将其烧结温度降到900℃。如H.Wang等人在"Effect ofB2O3additives on the sintering and dielectric behaviors of CaMgSi2O6ceramics",Journal of materials science and technology,2010,26(4):351–354中,添加6wt%的B2O3后,CaMgSi2O6微波介电陶瓷能在1100℃形成微观致密结构,同时介电常数εr=7.61,tanδ=7×10-4(1MHz)。该烧结温度离与LTCC工艺兼容的900℃还有一定距离。而T.Joseph等添加15wt%LBS玻璃的CaMgSi2O6微波介电陶瓷能在925℃下实现烧结,其微波介电性分别为:εr=8.0,Q×f=15000GHz(10.17GHz),τf=–49ppm/℃;而添加15wt%LMZBS的CaMgSi2O6微波介电陶瓷能在900℃下实现烧结,相对添加LBS,添加LMZBS玻璃的CaMgSi2O6微波介电陶瓷具有更好的微波介电性能,其εr=8.2、Q×f=32000GHz(10.15GHz)及τf=–48ppm/℃("Effect of glass addition on the microwave dielectric properties ofCaMgSi2O6 ceramics",International Journal of Applied Ceramic Technology,2010,7(S1):E98–E106))。但添加玻璃助熔剂,不仅增加了材料制备的成本,而且也不太利于介电损耗的降低,同时存在引入玻璃导致后期LTCC工艺兼容性的问题。
发明内容
针对上述存在问题或不足,为解决现有硅酸盐陶瓷材料在LTCC技术应用上存在的成本相对较高以及后期流延工艺兼容的问题。本发明提供了一种无助熔剂的LTCC微波陶瓷材料,在不添加任何助熔剂的前提下就可实现900℃低温烧结,且制得的陶瓷材料低介低损,谐振频率温度系数τf为-30~-40ppm/℃。
该无助熔剂的LTCC微波陶瓷材料以CaMg1-x-yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,烧结温度850℃~950℃,介电常数εr为6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为-30~-40ppm/℃。
由原料CaCO3、MgO、Li2CO3、ZnO和SiO2按摩尔比CaCO3:MgO:Li2CO3:ZnO:SiO2=1:1-x-y:x:y:2配制,通过固相法制得。由于无助熔剂因此降低了成本,制备方法简单成熟,在作为LTCC微波介质基板或器件材料时,可以显著降低微波器件或模块的损耗。
其制备方法包括以下步骤:
步骤1、以CaCO3、MgO、Li2CO3、ZnO和SiO2为初始原料,按照CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3,0.1≤y≤0.3的陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO和SiO2的质量百分比,进行称料、一次球磨、混料均匀后烘干;
步骤2、将步骤1所得的烘干料过筛后放入坩埚中压实,按1℃~2℃/分的升温速率升至850℃~950℃进行预烧,保温2~3小时,随炉自然冷却得到预烧料;
步骤3、将步骤2所得预烧料在球磨机中进行二次球磨;
步骤4、将步骤3所得到的二次球磨料烘干后,加入质量分数为10%~20%的PVA溶液进行造粒并干压成型;
步骤5、将步骤4所得的样品放入烧结炉中,按1℃~2℃/分的升温速率升至200℃~300℃保温1~2小时后,继续升温至500℃~600℃保温2~4小时,以排除生坯中的水分和胶水;然后再按2℃~5℃/分的升温速率升温至850℃~950℃进行烧结,保温2~3小时,再按2℃~5℃/分的降温速率降温至500℃~600℃,随后随炉自然冷却得到无助熔剂的低介低损耗微波陶瓷材料。
进一步的,所述步骤4中PVA溶液的浓度为8~10%。
经过以上方案的具体五个步骤,就可以制备得到本发明无助熔剂的低介低损耗LTCC微波陶瓷材料。经过测试,本发明提供的无助熔剂的低介低损耗LTCC微波陶瓷材料,其介电常数在6.9~7.8之间,品质因数Q×f值均在25000GHz以上、最高可达到45800GHz,谐振频率温度系数τf为-30~-40ppm/℃。
本发明提供的无助熔剂的低介低损耗LTCC微波陶瓷材料的优点在于:
1、介电常数在6.9~7.8之间,可广泛应用于LTCC微波基板、叠层微波器件和模块中。
2、具有极低的介电损耗,在900℃低温烧结时Q×f最高可达45800GHz,可以有效降低信号传输过程中的损耗和信号串扰风险。
3、材料体系中未加入任何玻璃助熔剂,不仅降低了材料制备工艺和成本,而且更有利于提升材料的品质因数并减少因玻璃掺杂引起的LTCC工艺兼容性问题。
4、生产原料便宜,工艺工程简单,方便操作并利于降低成本。
附图说明
图1为本发明的制备工艺流程示意图。
具体实施方式
下面结合具体制备实例,进一步说明本发明提供的无助熔剂低介低损耗LTCC微波陶瓷材料。
步骤1、以CaCO3、MgO、Li2CO3、ZnO、SiO2为初始原料,按照CaMg0.75Li0.2Zn0.15Si2O6(x=0.1,y=0.15时)陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO、SiO2的质量百分比,进行准确称料后,在行星球磨机中一次球磨12小时、混料均匀后放在100℃的烘箱中烘干24小时;
步骤2、将步骤1所得的烘干料过40目筛后放入坩埚中压实,按3℃/分的升温速率升至900℃进行预烧,保温3小时,随炉自然冷却得到预烧料备用;
步骤3、将步骤2所得的预烧料,在行星球磨机中进行二次球磨6小时,然后放在100℃的烘箱中烘干24小时;
步骤4、将步骤3所得到的二次球磨烘干料,加入质量分数为20%的PVA溶液(PVA浓度为10%)进行造粒,并干压成型为直径12mm、厚度6mm的圆柱型样品;
步骤5、将步骤4所得的样品放入烧结炉中,按2℃/分的升温速率缓慢升至300℃保温2小时,继续按2℃/分的速率升温至600℃保温3小时,以排除生坯中的水分和胶水;然后再按5℃/分的升温速率升温至900℃进行烧结,保温3小时,再按5℃/分的降温速率降温至600℃,随后随炉自然冷却得到无助熔剂的低介低损耗LTCC微波陶瓷材料。
以上具体实施方式所提供的无助熔剂的低介低损耗LTCC微波陶瓷材料,其介电常数约为7.48,Q×f约为45800GHz,温度系数约为τf=-35ppm/℃。
另外,通过适量改变CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3中x的值(固定y值为0.15,x的取值范围为0.1~0.3)的值和最终的烧结温度(880℃~920℃),可以使制备所得材料的微波介电性能(即介电常数、介电损耗和谐振频率温度系数)发生一定的变化,具体如下表所示。表1为固定y为0.15,x变化及烧结温度变化时材料体系的微波介电性能的变化。
Figure BDA0002280509020000041
表1。

Claims (3)

1.一种无助熔剂的LTCC微波陶瓷材料,其特征在于:
以CaMg1-x-yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,于850℃~950℃烧结,介电常数εr为6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为-30~-40ppm/℃;
由原料CaCO3、MgO、Li2CO3、ZnO和SiO2按摩尔比CaCO3:MgO:Li2CO3:ZnO:SiO2=1:1-x-y:x:y:2配制,通过固相法制得。
该微波陶瓷在作为LTCC微波介质基板或器件材料时,可以显著降低微波器件或模块的损耗。
2.如权利要求1所述无助熔剂的LTCC微波陶瓷材料的制备方法,具体如下:
步骤1、以CaCO3、MgO、Li2CO3、ZnO和SiO2为初始原料,按照CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3,0.1≤y≤0.3的陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO和SiO2的质量百分比,进行称料、一次球磨、混料均匀后烘干;
步骤2、将步骤1所得的烘干料过筛后放入坩埚中压实,按1℃~2℃/分的升温速率升至850℃~950℃进行预烧,保温2~3小时,随炉自然冷却得到预烧料;
步骤3、将步骤2所得预烧料在球磨机中进行二次球磨;
步骤4、将步骤3所得到的二次球磨料烘干后,加入质量分数为10%~20%的PVA溶液进行造粒并干压成型;
步骤5、将步骤4所得的样品放入烧结炉中,按1℃~2℃/分的升温速率升至200℃~300℃保温1~2小时后,继续升温至500℃~600℃保温2~4小时,以排除生坯中的水分和胶水;然后再按2℃~5℃/分的升温速率升温至850℃~950℃进行烧结,保温2~3小时,再按2℃~5℃/分的降温速率降温至500℃~600℃,随后随炉自然冷却得到无助熔剂的低介低损耗微波陶瓷材料。
3.如权利要求1所述无助熔剂的LTCC微波陶瓷材料的制备方法,其特征在于:所述PVA溶液的浓度为8~10%。
CN201911139445.7A 2019-08-23 2019-11-20 一种无助熔剂ltcc微波陶瓷材料及其制备方法 Active CN110723965B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019107811999 2019-08-23
CN201910781199 2019-08-23

Publications (2)

Publication Number Publication Date
CN110723965A true CN110723965A (zh) 2020-01-24
CN110723965B CN110723965B (zh) 2024-06-28

Family

ID=69224627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911139445.7A Active CN110723965B (zh) 2019-08-23 2019-11-20 一种无助熔剂ltcc微波陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110723965B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666731A (zh) * 2021-08-24 2021-11-19 中国电子科技集团公司第五十八研究所 一种硅酸盐微波介质陶瓷材料及其制备方法
CN114477984A (zh) * 2022-01-26 2022-05-13 清华大学 微波介质陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283024A (ja) * 1992-09-22 1994-10-07 Matsushita Electric Ind Co Ltd 誘電体磁器組成物
CN104341144A (zh) * 2013-08-01 2015-02-11 北京元六鸿远电子技术有限公司 低温烧结c0g特性微波介质材料及其制备方法
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN106032318A (zh) * 2015-03-12 2016-10-19 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷材料及其制备方法
CN107382299A (zh) * 2017-08-08 2017-11-24 电子科技大学 一种低介微波介质陶瓷的低温制备方法
CN109180173A (zh) * 2018-10-23 2019-01-11 江西国创产业园发展有限公司 一种低温烧结微波陶瓷材料及其制备方法
CN109467426A (zh) * 2018-10-29 2019-03-15 中国电子科技集团公司第四十三研究所 一种低温共烧陶瓷基板材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283024A (ja) * 1992-09-22 1994-10-07 Matsushita Electric Ind Co Ltd 誘電体磁器組成物
CN104341144A (zh) * 2013-08-01 2015-02-11 北京元六鸿远电子技术有限公司 低温烧结c0g特性微波介质材料及其制备方法
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN106032318A (zh) * 2015-03-12 2016-10-19 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷材料及其制备方法
CN107382299A (zh) * 2017-08-08 2017-11-24 电子科技大学 一种低介微波介质陶瓷的低温制备方法
CN109180173A (zh) * 2018-10-23 2019-01-11 江西国创产业园发展有限公司 一种低温烧结微波陶瓷材料及其制备方法
CN109467426A (zh) * 2018-10-29 2019-03-15 中国电子科技集团公司第四十三研究所 一种低温共烧陶瓷基板材料及其制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
YUANMING LAI等人: "Low-temperature sintering of microwave ceramics with high Qf values through LiF addition", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
YUANMING LAI等人: "Low-temperature sintering of microwave ceramics with high Qf values through LiF addition", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》, vol. 102, no. 4, 17 September 2018 (2018-09-17), pages 1893 - 1903 *
ZHANG JIE等: "Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1-xZnxSi2O6 ceramics", 《CERAMICS INTERNATIONAL》 *
ZHANG JIE等: "Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1-xZnxSi2O6 ceramics", 《CERAMICS INTERNATIONAL》, vol. 39, 23 August 2013 (2013-08-23), pages 2051 - 2058 *
曾燕伟: "《无机材料科学基础》", 31 August 2011, 武汉理工大学出版社, pages: 378 - 379 *
王焕平等: "纳米(Ca0.7Mg0.3)SiO3 粉体的低温合成", 《浙江大学学报》 *
王焕平等: "纳米(Ca0.7Mg0.3)SiO3 粉体的低温合成", 《浙江大学学报》, vol. 41, no. 8, 31 August 2007 (2007-08-31), pages 1370 - 1373 *
王绍荣等人: "《大能源 固体氧化物燃料电池》", 30 September 2015, 武汉大学出版社, pages: 59 *
袁林等人: "《绿色耐火材料》", 31 January 2015, 北京:中国建材工业出版社, pages: 49 - 50 *
靳正国等人: "《材料科学基础》", 28 February 2015, 天津大学出版社, pages: 142 - 143 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666731A (zh) * 2021-08-24 2021-11-19 中国电子科技集团公司第五十八研究所 一种硅酸盐微波介质陶瓷材料及其制备方法
CN114477984A (zh) * 2022-01-26 2022-05-13 清华大学 微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN110723965B (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN109608050B (zh) 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法
CN101870584B (zh) 一种钼基超低温烧结微波介质陶瓷材料的制备方法
CN111410524B (zh) 一种ltcc微波介质材料及其制备方法
CN101613200B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN102875148B (zh) 可低温烧结的微波介电陶瓷LiCa3(Mg1-xZnx) V3O12及制备方法
CN104402419B (zh) 一种具有较低烧结温度的低介电常数微波介质陶瓷及其制备方法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN104230329A (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN109650871A (zh) 一种ZnAl2O4陶瓷体系材料及其制备方法
CN110723965A (zh) 一种无助熔剂ltcc微波陶瓷材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN103951425B (zh) 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法
CN110128114B (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN103420670B (zh) 一种低温烧结微波陶瓷材料及其制备方法
US6844278B2 (en) Dense lead-free glass ceramic for electronic devices
CN102887708B (zh) 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法
CN110903078A (zh) 一种超低介ltcc微波陶瓷材料及其制备方法
CN107056277B (zh) 一种低温烧结中介电常数微波介质材料及其制备方法
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
CN113754419A (zh) 一种硅基可低温烧结的低介高品质因数微波介质陶瓷的制备及应用
CN116639967B (zh) 一种低介低损耗复合ltcc材料、制备方法及应用
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN103922721A (zh) 可低温烧结微波介电陶瓷Li4P2O7及其制备方法
CN113292338B (zh) 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant