CN110723965A - 一种无助熔剂ltcc微波陶瓷材料及其制备方法 - Google Patents
一种无助熔剂ltcc微波陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN110723965A CN110723965A CN201911139445.7A CN201911139445A CN110723965A CN 110723965 A CN110723965 A CN 110723965A CN 201911139445 A CN201911139445 A CN 201911139445A CN 110723965 A CN110723965 A CN 110723965A
- Authority
- CN
- China
- Prior art keywords
- equal
- ltcc
- microwave
- low
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 47
- 239000000919 ceramic Substances 0.000 claims abstract description 21
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910007270 Si2O6 Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 239000012071 phase Substances 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 12
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 10
- 229910052681 coesite Inorganic materials 0.000 claims description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims description 10
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052682 stishovite Inorganic materials 0.000 claims description 10
- 229910052905 tridymite Inorganic materials 0.000 claims description 10
- 238000000498 ball milling Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 7
- 238000010327 methods by industry Methods 0.000 abstract description 2
- 230000008054 signal transmission Effects 0.000 abstract description 2
- 229910052637 diopside Inorganic materials 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 238000009766 low-temperature sintering Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004231 Riboflavin-5-Sodium Phosphate Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明属于电子陶瓷材料及其制造领域,涉及一种无助熔剂的LTCC微波陶瓷材料及其制备方法。本发明提供的LTCC微波陶瓷材料,低介低损耗,以CaMg1‑x‑yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,于850℃~950℃烧结,介电常数εr6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为‑30~‑40ppm/℃,通过固相法制备。有效降低信号传输过程中的损耗和信号串扰风险,可广泛应用于LTCC微波基板、叠层微波器件和模块中;材料体系中未加入任何玻璃助熔剂,不仅降低了材料制备工艺和成本,而且更有利于提升材料的品质因数并减少因玻璃掺杂引起的LTCC工艺兼容性问题;生产原料便宜,工艺工程简单,方便操作并利于降低成本。
Description
技术领域
本发明属于电子陶瓷材料及其制造领域,涉及一种无助熔剂掺杂的低介低损耗LTCC微波陶瓷材料及其制备方法。
背景技术
随着通信、电脑及其周边产品和家用电器不断向高频化、数字化方向发展,对元器件的小型化、集成化、多功能化、模块化以及高可靠性要求愈来愈迫切。LTCC(低温共烧陶瓷)技术以其优异的电学、机械、热学及工艺特性,为无源器件以及无源/有源器件混合集成的发展创造了条件,并迅速在叠层片式无源器件中获得了广泛的应用,在国内外的高校、研究机构和公司等得到广泛的研发和生产,并成为了电子元器件小型化、片式化和集成化的首选方式。然而,为了获得高性能的LTCC器件,首先就需要开发出高性能的LTCC材料。国内目前企业和研究所所采用LTCC微波介电陶瓷材料,大部分还依赖于从日本、美国进口。因此,亟须开发出拥有自主知识产权的高性能LTCC微波介电陶瓷粉料,为研发LTCC小型集成化微波器件奠定材料基础。
LTCC微波陶瓷材料是LTCC材料中应用非常广泛的一个分支。其实现方式包括采用微晶玻璃法、玻璃-陶瓷复合法以及固相反应烧结法三大类。其中前两类都包含了大量的玻璃,虽然容易实现材料体系的低温烧结,但材料的介电损耗也都较高。而采用传统固相反应法烧结法制备陶瓷体系的LTCC微波材料,由于一般的微波陶瓷材料烧结温度都在1300℃以上,为了将其烧结温度降低到与LTCC工艺兼容(一般烧结温度为800℃~900℃之间),常通过添加各种低熔玻璃或氧化物来实现材料体系的低温烧结。在这些低熔掺杂助熔方式中,一方面添加的低熔助烧剂容易恶化陶瓷基体微波介电性能,另外如果采用玻璃做助熔剂,制备玻璃的成本也较高。
CaMgSi2O6是一种属于斜辉石类的硅酸盐,在CaMgSi2O6晶体结构中,Ca2+占据八配位多面体,Mg2+占据较规则且更小的六配位八面体,CaO8多面体和MgO6八面体之间通过SiO4四面体连。CaMgSi2O6微波介电陶瓷具有较低的介电常数(~7.5),是LTCC基板材料的重要候选材料之一。纯相CaMgSi2O6微波介电陶瓷需要较高的烧结温度(~1290℃)实现致密,其介电性能如下:εr=7.46,Q×f=59638GHz,τf=-46ppm/℃。由此可见,CaMgSi2O6陶瓷有很好的潜质作为陶瓷基的高性能LTCC材料,但其烧结温度还太高,与LTCC工艺不兼容,一般需要通过直接加氧化物或玻璃将其烧结温度降到900℃。如H.Wang等人在"Effect ofB2O3additives on the sintering and dielectric behaviors of CaMgSi2O6ceramics",Journal of materials science and technology,2010,26(4):351–354中,添加6wt%的B2O3后,CaMgSi2O6微波介电陶瓷能在1100℃形成微观致密结构,同时介电常数εr=7.61,tanδ=7×10-4(1MHz)。该烧结温度离与LTCC工艺兼容的900℃还有一定距离。而T.Joseph等添加15wt%LBS玻璃的CaMgSi2O6微波介电陶瓷能在925℃下实现烧结,其微波介电性分别为:εr=8.0,Q×f=15000GHz(10.17GHz),τf=–49ppm/℃;而添加15wt%LMZBS的CaMgSi2O6微波介电陶瓷能在900℃下实现烧结,相对添加LBS,添加LMZBS玻璃的CaMgSi2O6微波介电陶瓷具有更好的微波介电性能,其εr=8.2、Q×f=32000GHz(10.15GHz)及τf=–48ppm/℃("Effect of glass addition on the microwave dielectric properties ofCaMgSi2O6 ceramics",International Journal of Applied Ceramic Technology,2010,7(S1):E98–E106))。但添加玻璃助熔剂,不仅增加了材料制备的成本,而且也不太利于介电损耗的降低,同时存在引入玻璃导致后期LTCC工艺兼容性的问题。
发明内容
针对上述存在问题或不足,为解决现有硅酸盐陶瓷材料在LTCC技术应用上存在的成本相对较高以及后期流延工艺兼容的问题。本发明提供了一种无助熔剂的LTCC微波陶瓷材料,在不添加任何助熔剂的前提下就可实现900℃低温烧结,且制得的陶瓷材料低介低损,谐振频率温度系数τf为-30~-40ppm/℃。
该无助熔剂的LTCC微波陶瓷材料以CaMg1-x-yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,烧结温度850℃~950℃,介电常数εr为6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为-30~-40ppm/℃。
由原料CaCO3、MgO、Li2CO3、ZnO和SiO2按摩尔比CaCO3:MgO:Li2CO3:ZnO:SiO2=1:1-x-y:x:y:2配制,通过固相法制得。由于无助熔剂因此降低了成本,制备方法简单成熟,在作为LTCC微波介质基板或器件材料时,可以显著降低微波器件或模块的损耗。
其制备方法包括以下步骤:
步骤1、以CaCO3、MgO、Li2CO3、ZnO和SiO2为初始原料,按照CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3,0.1≤y≤0.3的陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO和SiO2的质量百分比,进行称料、一次球磨、混料均匀后烘干;
步骤2、将步骤1所得的烘干料过筛后放入坩埚中压实,按1℃~2℃/分的升温速率升至850℃~950℃进行预烧,保温2~3小时,随炉自然冷却得到预烧料;
步骤3、将步骤2所得预烧料在球磨机中进行二次球磨;
步骤4、将步骤3所得到的二次球磨料烘干后,加入质量分数为10%~20%的PVA溶液进行造粒并干压成型;
步骤5、将步骤4所得的样品放入烧结炉中,按1℃~2℃/分的升温速率升至200℃~300℃保温1~2小时后,继续升温至500℃~600℃保温2~4小时,以排除生坯中的水分和胶水;然后再按2℃~5℃/分的升温速率升温至850℃~950℃进行烧结,保温2~3小时,再按2℃~5℃/分的降温速率降温至500℃~600℃,随后随炉自然冷却得到无助熔剂的低介低损耗微波陶瓷材料。
进一步的,所述步骤4中PVA溶液的浓度为8~10%。
经过以上方案的具体五个步骤,就可以制备得到本发明无助熔剂的低介低损耗LTCC微波陶瓷材料。经过测试,本发明提供的无助熔剂的低介低损耗LTCC微波陶瓷材料,其介电常数在6.9~7.8之间,品质因数Q×f值均在25000GHz以上、最高可达到45800GHz,谐振频率温度系数τf为-30~-40ppm/℃。
本发明提供的无助熔剂的低介低损耗LTCC微波陶瓷材料的优点在于:
1、介电常数在6.9~7.8之间,可广泛应用于LTCC微波基板、叠层微波器件和模块中。
2、具有极低的介电损耗,在900℃低温烧结时Q×f最高可达45800GHz,可以有效降低信号传输过程中的损耗和信号串扰风险。
3、材料体系中未加入任何玻璃助熔剂,不仅降低了材料制备工艺和成本,而且更有利于提升材料的品质因数并减少因玻璃掺杂引起的LTCC工艺兼容性问题。
4、生产原料便宜,工艺工程简单,方便操作并利于降低成本。
附图说明
图1为本发明的制备工艺流程示意图。
具体实施方式
下面结合具体制备实例,进一步说明本发明提供的无助熔剂低介低损耗LTCC微波陶瓷材料。
步骤1、以CaCO3、MgO、Li2CO3、ZnO、SiO2为初始原料,按照CaMg0.75Li0.2Zn0.15Si2O6(x=0.1,y=0.15时)陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO、SiO2的质量百分比,进行准确称料后,在行星球磨机中一次球磨12小时、混料均匀后放在100℃的烘箱中烘干24小时;
步骤2、将步骤1所得的烘干料过40目筛后放入坩埚中压实,按3℃/分的升温速率升至900℃进行预烧,保温3小时,随炉自然冷却得到预烧料备用;
步骤3、将步骤2所得的预烧料,在行星球磨机中进行二次球磨6小时,然后放在100℃的烘箱中烘干24小时;
步骤4、将步骤3所得到的二次球磨烘干料,加入质量分数为20%的PVA溶液(PVA浓度为10%)进行造粒,并干压成型为直径12mm、厚度6mm的圆柱型样品;
步骤5、将步骤4所得的样品放入烧结炉中,按2℃/分的升温速率缓慢升至300℃保温2小时,继续按2℃/分的速率升温至600℃保温3小时,以排除生坯中的水分和胶水;然后再按5℃/分的升温速率升温至900℃进行烧结,保温3小时,再按5℃/分的降温速率降温至600℃,随后随炉自然冷却得到无助熔剂的低介低损耗LTCC微波陶瓷材料。
以上具体实施方式所提供的无助熔剂的低介低损耗LTCC微波陶瓷材料,其介电常数约为7.48,Q×f约为45800GHz,温度系数约为τf=-35ppm/℃。
另外,通过适量改变CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3中x的值(固定y值为0.15,x的取值范围为0.1~0.3)的值和最终的烧结温度(880℃~920℃),可以使制备所得材料的微波介电性能(即介电常数、介电损耗和谐振频率温度系数)发生一定的变化,具体如下表所示。表1为固定y为0.15,x变化及烧结温度变化时材料体系的微波介电性能的变化。
表1。
Claims (3)
1.一种无助熔剂的LTCC微波陶瓷材料,其特征在于:
以CaMg1-x-yLi2xZnySi2O6为主晶相,0.1≤x≤0.3,0.1≤y≤0.3,于850℃~950℃烧结,介电常数εr为6.9~7.8,品质因数Q×f值25000GHz~45800GHz,谐振频率温度系数τf为-30~-40ppm/℃;
由原料CaCO3、MgO、Li2CO3、ZnO和SiO2按摩尔比CaCO3:MgO:Li2CO3:ZnO:SiO2=1:1-x-y:x:y:2配制,通过固相法制得。
该微波陶瓷在作为LTCC微波介质基板或器件材料时,可以显著降低微波器件或模块的损耗。
2.如权利要求1所述无助熔剂的LTCC微波陶瓷材料的制备方法,具体如下:
步骤1、以CaCO3、MgO、Li2CO3、ZnO和SiO2为初始原料,按照CaMg1-x-yLi2xZnySi2O6,0.1≤x≤0.3,0.1≤y≤0.3的陶瓷配方分子式中各元素的摩尔比例折算出CaCO3、MgO、Li2CO3、ZnO和SiO2的质量百分比,进行称料、一次球磨、混料均匀后烘干;
步骤2、将步骤1所得的烘干料过筛后放入坩埚中压实,按1℃~2℃/分的升温速率升至850℃~950℃进行预烧,保温2~3小时,随炉自然冷却得到预烧料;
步骤3、将步骤2所得预烧料在球磨机中进行二次球磨;
步骤4、将步骤3所得到的二次球磨料烘干后,加入质量分数为10%~20%的PVA溶液进行造粒并干压成型;
步骤5、将步骤4所得的样品放入烧结炉中,按1℃~2℃/分的升温速率升至200℃~300℃保温1~2小时后,继续升温至500℃~600℃保温2~4小时,以排除生坯中的水分和胶水;然后再按2℃~5℃/分的升温速率升温至850℃~950℃进行烧结,保温2~3小时,再按2℃~5℃/分的降温速率降温至500℃~600℃,随后随炉自然冷却得到无助熔剂的低介低损耗微波陶瓷材料。
3.如权利要求1所述无助熔剂的LTCC微波陶瓷材料的制备方法,其特征在于:所述PVA溶液的浓度为8~10%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019107811999 | 2019-08-23 | ||
CN201910781199 | 2019-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110723965A true CN110723965A (zh) | 2020-01-24 |
CN110723965B CN110723965B (zh) | 2024-06-28 |
Family
ID=69224627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911139445.7A Active CN110723965B (zh) | 2019-08-23 | 2019-11-20 | 一种无助熔剂ltcc微波陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110723965B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113666731A (zh) * | 2021-08-24 | 2021-11-19 | 中国电子科技集团公司第五十八研究所 | 一种硅酸盐微波介质陶瓷材料及其制备方法 |
CN114477984A (zh) * | 2022-01-26 | 2022-05-13 | 清华大学 | 微波介质陶瓷材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06283024A (ja) * | 1992-09-22 | 1994-10-07 | Matsushita Electric Ind Co Ltd | 誘電体磁器組成物 |
CN104341144A (zh) * | 2013-08-01 | 2015-02-11 | 北京元六鸿远电子技术有限公司 | 低温烧结c0g特性微波介质材料及其制备方法 |
CN104710188A (zh) * | 2015-03-02 | 2015-06-17 | 浙江大学 | 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用 |
CN106032318A (zh) * | 2015-03-12 | 2016-10-19 | 中国科学院上海硅酸盐研究所 | 一种低温共烧陶瓷材料及其制备方法 |
CN107382299A (zh) * | 2017-08-08 | 2017-11-24 | 电子科技大学 | 一种低介微波介质陶瓷的低温制备方法 |
CN109180173A (zh) * | 2018-10-23 | 2019-01-11 | 江西国创产业园发展有限公司 | 一种低温烧结微波陶瓷材料及其制备方法 |
CN109467426A (zh) * | 2018-10-29 | 2019-03-15 | 中国电子科技集团公司第四十三研究所 | 一种低温共烧陶瓷基板材料及其制备方法 |
-
2019
- 2019-11-20 CN CN201911139445.7A patent/CN110723965B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06283024A (ja) * | 1992-09-22 | 1994-10-07 | Matsushita Electric Ind Co Ltd | 誘電体磁器組成物 |
CN104341144A (zh) * | 2013-08-01 | 2015-02-11 | 北京元六鸿远电子技术有限公司 | 低温烧结c0g特性微波介质材料及其制备方法 |
CN104710188A (zh) * | 2015-03-02 | 2015-06-17 | 浙江大学 | 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用 |
CN106032318A (zh) * | 2015-03-12 | 2016-10-19 | 中国科学院上海硅酸盐研究所 | 一种低温共烧陶瓷材料及其制备方法 |
CN107382299A (zh) * | 2017-08-08 | 2017-11-24 | 电子科技大学 | 一种低介微波介质陶瓷的低温制备方法 |
CN109180173A (zh) * | 2018-10-23 | 2019-01-11 | 江西国创产业园发展有限公司 | 一种低温烧结微波陶瓷材料及其制备方法 |
CN109467426A (zh) * | 2018-10-29 | 2019-03-15 | 中国电子科技集团公司第四十三研究所 | 一种低温共烧陶瓷基板材料及其制备方法 |
Non-Patent Citations (10)
Title |
---|
YUANMING LAI等人: "Low-temperature sintering of microwave ceramics with high Qf values through LiF addition", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
YUANMING LAI等人: "Low-temperature sintering of microwave ceramics with high Qf values through LiF addition", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》, vol. 102, no. 4, 17 September 2018 (2018-09-17), pages 1893 - 1903 * |
ZHANG JIE等: "Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1-xZnxSi2O6 ceramics", 《CERAMICS INTERNATIONAL》 * |
ZHANG JIE等: "Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1-xZnxSi2O6 ceramics", 《CERAMICS INTERNATIONAL》, vol. 39, 23 August 2013 (2013-08-23), pages 2051 - 2058 * |
曾燕伟: "《无机材料科学基础》", 31 August 2011, 武汉理工大学出版社, pages: 378 - 379 * |
王焕平等: "纳米(Ca0.7Mg0.3)SiO3 粉体的低温合成", 《浙江大学学报》 * |
王焕平等: "纳米(Ca0.7Mg0.3)SiO3 粉体的低温合成", 《浙江大学学报》, vol. 41, no. 8, 31 August 2007 (2007-08-31), pages 1370 - 1373 * |
王绍荣等人: "《大能源 固体氧化物燃料电池》", 30 September 2015, 武汉大学出版社, pages: 59 * |
袁林等人: "《绿色耐火材料》", 31 January 2015, 北京:中国建材工业出版社, pages: 49 - 50 * |
靳正国等人: "《材料科学基础》", 28 February 2015, 天津大学出版社, pages: 142 - 143 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113666731A (zh) * | 2021-08-24 | 2021-11-19 | 中国电子科技集团公司第五十八研究所 | 一种硅酸盐微波介质陶瓷材料及其制备方法 |
CN114477984A (zh) * | 2022-01-26 | 2022-05-13 | 清华大学 | 微波介质陶瓷材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110723965B (zh) | 2024-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10899669B2 (en) | Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof | |
CN109608050B (zh) | 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法 | |
CN101870584B (zh) | 一种钼基超低温烧结微波介质陶瓷材料的制备方法 | |
CN111410524B (zh) | 一种ltcc微波介质材料及其制备方法 | |
CN101613200B (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN102875148B (zh) | 可低温烧结的微波介电陶瓷LiCa3(Mg1-xZnx) V3O12及制备方法 | |
CN104402419B (zh) | 一种具有较低烧结温度的低介电常数微波介质陶瓷及其制备方法 | |
CN100457678C (zh) | 一种介电可调的陶瓷材料及其制备方法 | |
CN104230329A (zh) | 一种低温烧结微波陶瓷材料及其制备方法 | |
CN109650871A (zh) | 一种ZnAl2O4陶瓷体系材料及其制备方法 | |
CN110723965A (zh) | 一种无助熔剂ltcc微波陶瓷材料及其制备方法 | |
CN105347781B (zh) | 一种陶瓷材料及其制备方法 | |
CN103951425B (zh) | 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法 | |
CN110128114B (zh) | 一种低温共烧陶瓷介质材料及其制备方法 | |
CN103420670B (zh) | 一种低温烧结微波陶瓷材料及其制备方法 | |
US6844278B2 (en) | Dense lead-free glass ceramic for electronic devices | |
CN102887708B (zh) | 可低温烧结的微波介电陶瓷NaCa2(Mg1-xZnx)2V3O12及制备方法 | |
CN110903078A (zh) | 一种超低介ltcc微波陶瓷材料及其制备方法 | |
CN107056277B (zh) | 一种低温烧结中介电常数微波介质材料及其制备方法 | |
CN101265097B (zh) | 一种低温烧结的复合微波介质陶瓷及其制备方法 | |
CN113754419A (zh) | 一种硅基可低温烧结的低介高品质因数微波介质陶瓷的制备及应用 | |
CN116639967B (zh) | 一种低介低损耗复合ltcc材料、制备方法及应用 | |
CN109650886A (zh) | 一种Ba-Mg-Ta系LTCC材料及其制备方法 | |
CN103922721A (zh) | 可低温烧结微波介电陶瓷Li4P2O7及其制备方法 | |
CN113292338B (zh) | 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |