CN110684748B - 咖啡酸作为漆酶降解霉菌毒素的介体的应用 - Google Patents
咖啡酸作为漆酶降解霉菌毒素的介体的应用 Download PDFInfo
- Publication number
- CN110684748B CN110684748B CN201910938770.3A CN201910938770A CN110684748B CN 110684748 B CN110684748 B CN 110684748B CN 201910938770 A CN201910938770 A CN 201910938770A CN 110684748 B CN110684748 B CN 110684748B
- Authority
- CN
- China
- Prior art keywords
- laccase
- mediator
- mycotoxin
- pro
- leu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0055—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
- C12N9/0057—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
- C12N9/0061—Laccase (1.10.3.2)
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/20—Removal of unwanted matter, e.g. deodorisation or detoxification
- A23L5/25—Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y110/00—Oxidoreductases acting on diphenols and related substances as donors (1.10)
- C12Y110/03—Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
- C12Y110/03002—Laccase (1.10.3.2)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明属于农业生物领域,具体涉及参与枯草芽孢杆菌来源漆酶降解霉菌毒素的高效介体的应用。本发明提供了一种可用于霉菌毒素降解的高效漆酶介体。本发明的介体能够协助枯草芽孢杆菌来源漆酶有效地降解不同结构类型的霉菌毒素,广泛用于食品和饲料霉菌毒素脱毒领域。
Description
技术领域
本发明属于农业生物技术领域,具体涉及咖啡酸作为漆酶降解霉菌毒素的介体的应用。
背景技术
霉菌毒素是真菌产生的次级代谢产物,主要污染储存的粮油食品和饲料,严重危害人畜健康。根据其结构特征,霉菌毒素可分为芳香环和非芳香环两大类,芳香环类包括黄曲霉毒素、玉米赤霉烯酮、桔霉素、赭曲霉素、棒曲霉素和单端孢霉烯族毒素等;非芳香环类仅包括伏马毒素。其中黄曲霉毒素、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇(呕吐毒素)是最为常见和危害最大的霉菌毒素。因此,亟需建立简单、有效且环境友好的霉菌毒素的脱毒方法。
目前,被霉菌毒素污染的饲料的脱毒方法主要包括物理法、化学法、吸附法和生物法等。物理和化学脱毒法存在操作困难、效果不稳定、营养成分损失大以及影响饲料适口性等缺点。吸附法虽简单易行,但存在用量大、不够经济,容易引起二次污染等缺点。微生物脱毒法具有作用条件温和,对原料的感官性状、适口性等影响极小、增加原料营养价值等优点,被认为是最佳脱毒方法。生物脱毒作用主要是指降解酶通过酶促反应将毒素转化成低毒或者无毒产物,其中降解酶包括氧化酶如漆酶、锰过氧化物酶和水解酶(如酯酶)等。
生物脱毒技术实现规模化应用的过程中,寻找和筛选能降解霉菌毒素的菌株,并对其所产胞外降解酶进行特性研究及对降解酶基因进行克隆和表达,是霉菌毒素生物降解研究领域重要的突破点和发展方向。因此,建立酶法降解霉菌毒素的高效降解体系是生物脱毒技术的关键所在。
现有漆酶对霉菌毒素的降解率普遍较低。据文献报道,利用漆酶-介体体系进行染料脱色时,介体的效果取决于被处理染料的类型。如,白腐菌漆酶能够以HBT作为介体有效降解酸性红73。利用云芝漆酶进行农药降解时,不同农药底物也表现出了对介体的选择性,如降解嘧霉胺和异丙隆时,效果最好的介体是紫脲酸,乙酰丁香酮和HBT则是降解百菌清和草脱净时效果最佳的介体。由此可见,漆酶的适当介体因其降解底物性质的差异而显著不同。
发明内容
本发明的目的在于提供咖啡酸作为参与枯草芽孢杆菌来源漆酶降解霉菌毒素的高效介体的应用。
根据本发明具体实施方式的咖啡酸作为参与漆酶降解霉菌毒素的介体的应用,其中,所述漆酶来自枯草芽孢杆菌,其氨基酸序列如SEQ ID No.1所示。
根据本发明具体实施方式,所述霉菌毒素为黄曲霉毒素B1和/或玉米赤霉烯酮。
根据本发明具体实施方式,在缓冲溶液中对黄曲霉毒素B1和玉米赤霉烯酮进行高效降解,所述缓冲液为浓度50mM、pH 7.0的Tris-HCl溶液。
根据本发明的提高漆酶降解霉菌毒素的降解率的方法,包括使用咖啡酸作为参与漆酶降解霉菌毒素的介体的步骤,其中,所述漆酶来自枯草芽孢杆菌,其氨基酸序列如SEQID No.1所示。
根据本发明具体实施方式,所述霉菌毒素为黄曲霉毒素B1和/或玉米赤霉烯酮。
根据本发明具体实施方式,在缓冲溶液中对黄曲霉毒素B1和玉米赤霉烯酮进行高效降解,所述缓冲液为浓度50mM、pH 7.0的Tris-HCl溶液。
本发明的方法能够高效降解霉菌毒素、成本低、适用范围广,可广泛用于饲料毒素降解酶领域。
附图说明
图1显示枯草芽孢杆菌来源漆酶-咖啡酸体系对黄曲霉毒素B1和玉米赤霉烯酮的降解作用。
图2显示重组枯草芽孢杆菌来源漆酶-咖啡酸体系降解黄曲霉毒素B1的HPLC分析结果;
图3显示重组枯草芽孢杆菌来源漆酶-咖啡酸体系降解玉米赤霉烯酮的HPLC分析结果;
具体实施方式
试验材料和试剂
1、菌株:产枯草芽孢杆菌来源漆酶BsCotA的大肠杆菌工程菌株。
2、生化试剂:黄曲霉毒素B1、玉米赤霉烯酮、咖啡酸;色谱纯乙腈、三氟乙酸、Tris。
3、培养基:
(1)大肠杆菌培养基LB(1%蛋白胨、0.5%酵母提取物、1%NaCl,pH7.0)BsCotA氨基酸序列如下:
MTLEKFVDALPIPDTLKPVQQSKEKTYYEVTMEECTHQLHRDLPPTRLWGYNGLFPGPTIEVKRNENVYVKWMNNLPSTHFLPIDHTIHHSDSQHEEPEVKTVVHLHGGVTPDDSDGYPEAWFSKDFEQTGPYFKREVYHYPNQQRGAILWYHDHAMALTRLNVYAGLVGAYIIHDPKEKRLKLPSDEYDVPLLITDRTINEDGSLFYPSAPENPSPSLPNPSIVPAFCGETILVNGKVWPYLEVEPRKYRFRVINASNTRTYNLSLDNGGDFIQIGSDGGLLPRSVKLNSFSLAPAERYDIIIDFTAYEGESIILANSAGCGGDVNPETDANIMQFRVTKPLAQKDESRKPKYLASYPSVQHERIQNIRTLKLAGTQDEYGRPVLLLNNKRWHDPVTETPKVGTTEIWSIINPTRGTHPIHLHLVSFRVLDRRPFDIARYQESGELSYTGPAVPPPPSEKGWKDTIQAHAGEVLRIAATFGPYSGRYVWHCHILEHEDYDMMRPMDITDPHK
实施例1重组漆酶BsCotA的制备
取含有重组质粒的BL21(DE3)/BsCotA大肠杆菌工程菌株,接种于50mL LB培养液中,37℃,220rpm振荡培养12h后,按2%比例转接于300mL LB培养基中,37℃220rpm振荡培养约3h(OD600≈0.6),加入终浓度1mM的诱导剂IPTG,于16℃诱导15h后,离心收集菌体。将菌体重悬于磷酸氢二钠-柠檬酸缓冲液(20mM,pH 7.5)中。采取超声破碎法裂解菌体。将破碎后的菌体碎片离心去除,利用Ni亲和层析柱进行纯化,收集电泳纯的洗脱组分并透析至Tris-HCl蛋白储存液(50mM Tris-HCl,pH7.4,150mM NaCl)中。
实施例2 BsCotA-介体体系降解黄曲霉毒素B1
将黄曲霉毒素B1溶解到二甲基亚砜中配制成50mg/L的母液,按如下反应体系:50mM Tris-HCl(pH 7.0),20μL黄曲霉毒素B1溶液(50mg/L),20μL咖啡酸溶液(10mM),20μLBsCotA(300U/L)。以未加入漆酶BsCotA的体系作为对照,反应体系设3个重复。反应在30℃下进行,10h后加入三倍体积的乙腈终止反应,采用高效液相色谱(HPLC)分析黄曲霉毒素B1的降解率。液相色谱为岛津Nexera UHPLC高效液相色谱分析系统,色谱分离柱为ZorbaxSB-C18(4.6×250mm,5μm),流动相A(0.06%TFA的水),流动相B(0.05%TFA的乙腈);梯度洗脱条件0%B洗脱4分钟,0%-100%B洗脱15分钟,100%B洗脱6分钟;检测波长365nm。
结果如图1、图2所示,可见部分黄曲霉毒素B1已被降解,以咖啡酸作为介体时,降解率为65.7%,而当体系中未加入咖啡酸时,降解率仅为1.7%。由此可知,当降解体系中加入咖啡酸时,黄曲霉毒素B1的降解率提高了60倍,咖啡酸的加入显著提高了漆酶对黄曲霉毒素B1的降解率。利用灵芝来源漆酶,以咖啡酸为介体降解黄曲霉毒素B1,其降解率为30.8%,该降解率显著低于利用枯草芽孢杆菌来源漆酶进行毒素降解时的降解率。
实施例3 BsCotA-介体体系降解玉米赤霉烯酮
将玉米赤霉烯酮溶解到二甲基亚砜中配制成50mg/L的母液,按如下反应体系:50mM Tris-HCl(pH 7.0),20μL黄曲霉毒素B1溶液(50mg/L),20μL咖啡酸溶液(10mM),20μLBsCotA(300U/L)。以未加入漆酶BsCotA的体系作为对照,反应体系设3个重复。反应在30℃下进行,10h后加入三倍体积的乙腈终止反应,采用高效液相色谱(HPLC)分析玉米赤霉烯酮的降解率。液相色谱为岛津Nexera UHPLC高效液相色谱分析系统,色谱分离柱为ZorbaxSB-C18(4.6×250mm,5μm),流动相A(0.06%TFA的水),流动相B(0.05%TFA的乙腈);梯度洗脱条件0%B洗脱4分钟,0%-100%B洗脱15分钟,100%B洗脱6分钟;检测波长316nm。
结果如图1、图3所示,可见部分玉米赤霉烯酮已被降解,以咖啡酸作为介体时,降解率为67.4%,而当体系中未加入咖啡酸时,降解率仅为1.6%。由此可知,当降解体系中加入咖啡酸时,玉米赤霉烯酮的降解率提高了60倍,咖啡酸的加入显著提高了漆酶对玉米赤霉烯酮的降解率。利用灵芝来源漆酶,以咖啡酸为介体降解玉米赤霉烯酮,其降解率为32.4%,该降解率显著低于利用枯草芽孢杆菌来源漆酶进行毒素降解时的降解率。
实施例4 BsCotA-介体体系降解伏马菌素B1
将伏马菌素B1溶解到二甲基亚砜中配制成100mg/L的母液,按如下反应体系:50mMTris-HCl(pH 7.0),20μL伏马菌素B1溶液(100mg/L),20μL咖啡酸溶液(10mM),20μL BsCotA(300U/L)。以未加入漆酶BsCotA的体系作为对照,反应体系设3个重复。反应在30℃下进行,10h后加入三倍体积的乙腈终止反应。利用岛津Nexera UHPLC系统与AB-SCIEX 5600+Triple TOF质谱仪联用,对伏马菌素B1降解进行检测。色谱分离柱为Zorbax SB-C18(4.6×250mm,5μm)。HPLC流动相A为ACN:甲醇(1:1),流动相B为0.1%甲酸水。程序设置为:30-70%溶剂A,10min;70%溶剂A,8min;100%溶剂A,2min;30%溶剂A,5min。MS分析参数为:正离子、高灵敏度模式;GS1,50psi;GS2 50psi;Curtain gas,25psi;温度,500℃;离子喷雾电压,5,500V;CE能量,35V±15V。结果表明,该BsCotA-咖啡酸体系对伏马菌素B1并无明显的降解效果。
序列表
<110> 中国农业科学院饲料研究所
<120> 咖啡酸作为漆酶降解霉菌毒素的介体的应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 513
<212> PRT
<213> 枯草芽孢杆菌(Bacillus subtilis)
<400> 1
Met Thr Leu Glu Lys Phe Val Asp Ala Leu Pro Ile Pro Asp Thr Leu
1 5 10 15
Lys Pro Val Gln Gln Ser Lys Glu Lys Thr Tyr Tyr Glu Val Thr Met
20 25 30
Glu Glu Cys Thr His Gln Leu His Arg Asp Leu Pro Pro Thr Arg Leu
35 40 45
Trp Gly Tyr Asn Gly Leu Phe Pro Gly Pro Thr Ile Glu Val Lys Arg
50 55 60
Asn Glu Asn Val Tyr Val Lys Trp Met Asn Asn Leu Pro Ser Thr His
65 70 75 80
Phe Leu Pro Ile Asp His Thr Ile His His Ser Asp Ser Gln His Glu
85 90 95
Glu Pro Glu Val Lys Thr Val Val His Leu His Gly Gly Val Thr Pro
100 105 110
Asp Asp Ser Asp Gly Tyr Pro Glu Ala Trp Phe Ser Lys Asp Phe Glu
115 120 125
Gln Thr Gly Pro Tyr Phe Lys Arg Glu Val Tyr His Tyr Pro Asn Gln
130 135 140
Gln Arg Gly Ala Ile Leu Trp Tyr His Asp His Ala Met Ala Leu Thr
145 150 155 160
Arg Leu Asn Val Tyr Ala Gly Leu Val Gly Ala Tyr Ile Ile His Asp
165 170 175
Pro Lys Glu Lys Arg Leu Lys Leu Pro Ser Asp Glu Tyr Asp Val Pro
180 185 190
Leu Leu Ile Thr Asp Arg Thr Ile Asn Glu Asp Gly Ser Leu Phe Tyr
195 200 205
Pro Ser Ala Pro Glu Asn Pro Ser Pro Ser Leu Pro Asn Pro Ser Ile
210 215 220
Val Pro Ala Phe Cys Gly Glu Thr Ile Leu Val Asn Gly Lys Val Trp
225 230 235 240
Pro Tyr Leu Glu Val Glu Pro Arg Lys Tyr Arg Phe Arg Val Ile Asn
245 250 255
Ala Ser Asn Thr Arg Thr Tyr Asn Leu Ser Leu Asp Asn Gly Gly Asp
260 265 270
Phe Ile Gln Ile Gly Ser Asp Gly Gly Leu Leu Pro Arg Ser Val Lys
275 280 285
Leu Asn Ser Phe Ser Leu Ala Pro Ala Glu Arg Tyr Asp Ile Ile Ile
290 295 300
Asp Phe Thr Ala Tyr Glu Gly Glu Ser Ile Ile Leu Ala Asn Ser Ala
305 310 315 320
Gly Cys Gly Gly Asp Val Asn Pro Glu Thr Asp Ala Asn Ile Met Gln
325 330 335
Phe Arg Val Thr Lys Pro Leu Ala Gln Lys Asp Glu Ser Arg Lys Pro
340 345 350
Lys Tyr Leu Ala Ser Tyr Pro Ser Val Gln His Glu Arg Ile Gln Asn
355 360 365
Ile Arg Thr Leu Lys Leu Ala Gly Thr Gln Asp Glu Tyr Gly Arg Pro
370 375 380
Val Leu Leu Leu Asn Asn Lys Arg Trp His Asp Pro Val Thr Glu Thr
385 390 395 400
Pro Lys Val Gly Thr Thr Glu Ile Trp Ser Ile Ile Asn Pro Thr Arg
405 410 415
Gly Thr His Pro Ile His Leu His Leu Val Ser Phe Arg Val Leu Asp
420 425 430
Arg Arg Pro Phe Asp Ile Ala Arg Tyr Gln Glu Ser Gly Glu Leu Ser
435 440 445
Tyr Thr Gly Pro Ala Val Pro Pro Pro Pro Ser Glu Lys Gly Trp Lys
450 455 460
Asp Thr Ile Gln Ala His Ala Gly Glu Val Leu Arg Ile Ala Ala Thr
465 470 475 480
Phe Gly Pro Tyr Ser Gly Arg Tyr Val Trp His Cys His Ile Leu Glu
485 490 495
His Glu Asp Tyr Asp Met Met Arg Pro Met Asp Ile Thr Asp Pro His
500 505 510
Lys
Claims (4)
1.咖啡酸作为参与漆酶降解霉菌毒素的介体的应用,其中,所述漆酶来自枯草芽孢杆菌,其氨基酸序列如SEQ ID No.1所示,所述霉菌毒素为黄曲霉毒素B1和/或玉米赤霉烯酮。
2.根据权利要求1所述的应用,其特征在于,漆酶和咖啡酸在浓度为50mM、pH为7.0的Tris-HCl溶液中降解霉菌毒素。
3.一种提高漆酶降解霉菌毒素的降解率的方法,其特征在于,所述方法包括使用咖啡酸作为参与漆酶降解霉菌毒素的介体的步骤,其中,所述漆酶来自枯草芽孢杆菌,其氨基酸序列如SEQ ID No.1所示,所述霉菌毒素为黄曲霉毒素B1和/或玉米赤霉烯酮。
4.根据权利要求3所述的方法,其特征在于,漆酶和咖啡酸在浓度为50mM、pH为7.0的Tris-HCl溶液中降解霉菌毒素。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910938770.3A CN110684748B (zh) | 2019-09-30 | 2019-09-30 | 咖啡酸作为漆酶降解霉菌毒素的介体的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910938770.3A CN110684748B (zh) | 2019-09-30 | 2019-09-30 | 咖啡酸作为漆酶降解霉菌毒素的介体的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110684748A CN110684748A (zh) | 2020-01-14 |
CN110684748B true CN110684748B (zh) | 2021-07-20 |
Family
ID=69111227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910938770.3A Active CN110684748B (zh) | 2019-09-30 | 2019-09-30 | 咖啡酸作为漆酶降解霉菌毒素的介体的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110684748B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113699127B (zh) * | 2021-08-05 | 2023-03-21 | 中国农业科学院北京畜牧兽医研究所 | 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法 |
CN113693189B (zh) * | 2021-09-28 | 2023-11-17 | 中国农业科学院北京畜牧兽医研究所 | 锰过氧化物酶用于降解棒曲霉素的应用及方法 |
CN114457063A (zh) * | 2022-03-11 | 2022-05-10 | 安徽黑娃食品科技有限公司 | 一种降解花生中黄曲霉毒素b1的固定化酶制备方法 |
CN115211522B (zh) * | 2022-07-26 | 2024-01-26 | 南昌大学 | 单宁酸作为介体提高漆酶降解真菌毒素能力的方法 |
CN115812893B (zh) * | 2022-08-05 | 2024-09-17 | 河南农业大学 | 饲料用霉菌毒素降解剂及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1269828A (zh) * | 1997-08-14 | 2000-10-11 | 诺沃挪第克公司 | 恶臭味的减少 |
CN1300195A (zh) * | 1998-05-07 | 2001-06-20 | 诺沃挪第克公司 | 角蛋白纤维交联物的重整方法 |
CN103305536A (zh) * | 2012-03-08 | 2013-09-18 | 浙江商达环保有限公司 | 漆酶基因及工程菌与用途 |
-
2019
- 2019-09-30 CN CN201910938770.3A patent/CN110684748B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1269828A (zh) * | 1997-08-14 | 2000-10-11 | 诺沃挪第克公司 | 恶臭味的减少 |
CN1300195A (zh) * | 1998-05-07 | 2001-06-20 | 诺沃挪第克公司 | 角蛋白纤维交联物的重整方法 |
CN103305536A (zh) * | 2012-03-08 | 2013-09-18 | 浙江商达环保有限公司 | 漆酶基因及工程菌与用途 |
Non-Patent Citations (2)
Title |
---|
Degradation of Aflatoxin B1 and Zearalenone by Bacterial and Fungal Laccases in Presence of Structurally Defined Chemicals and Complex Natural Mediators;Xiaolu Wang et al.;《toxins》;20191022;第11卷(第10期);1-17 * |
Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal;Larine Kupski et al.;《Environmental Science and Pollution Research》;20190103;第26卷;5141-5139 * |
Also Published As
Publication number | Publication date |
---|---|
CN110684748A (zh) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110684748B (zh) | 咖啡酸作为漆酶降解霉菌毒素的介体的应用 | |
CN110637970B (zh) | 丁香醛作为参与漆酶降解霉菌毒素的介体的应用 | |
Cao et al. | A fungal enzyme with the ability of aflatoxin B1 conversion: Purification and ESI-MS/MS identification | |
CN110373395B (zh) | 提高漆酶对真菌毒素降解率的薰衣草介体及其应用 | |
Moon et al. | Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1 | |
CN107012131B (zh) | 一种锰过氧化物酶及其基因和在霉菌毒素脱毒上的应用 | |
US20210139864A1 (en) | Manganese peroxidase, gene thereof, and use thereof in detoxification of mycotoxin | |
CN110353153B (zh) | 提高漆酶对真菌毒素降解率的荆芥介体及其应用 | |
CN110527677B (zh) | 玉米赤霉烯酮水解酶突变体zhdm2及其编码基因和应用 | |
CN109504666B (zh) | 锰过氧化物酶PcMnP1及其编码基因和应用 | |
CN107916266B (zh) | 镰刀菌毒素脱毒路径相关基因adh、akr6d1、akr13b2及其应用 | |
CN110684754B (zh) | 一种真菌毒素zen降解酶突变体及其应用 | |
Avelar et al. | Recombinant expression of a laccase from Coriolopsis gallica in Pichia pastoris using a modified α-factor preproleader | |
Yan et al. | Two novel cationic antifungal peptides isolated from Bacillus pumilus HN-10 and their inhibitory activity against Trichothecium roseum | |
CN109370995B (zh) | 锰过氧化物酶CsMnP及其编码基因和应用 | |
Lebrun et al. | Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: A study of enzymatic system in Trametes versicolor | |
Abidi et al. | MS analysis and molecular characterization of Botrytis cinerea protease Prot-2. Use in bioactive peptides production | |
Zhou et al. | Purification and characterization of a urethanase from Penicillium variabile | |
CN110292105B (zh) | 提高漆酶对真菌毒素降解率的黄瓜介体及其应用 | |
Siebert et al. | Enzymatic hydrolysis of kaempferol 3‐O‐(2‴‐O‐sinapoyl‐β‐sophoroside), the key bitter compound of rapeseed (Brassica napus L.) protein isolate | |
CN111394336A (zh) | 一种玉米赤霉烯酮水解酶及其编码基因和应用 | |
CN110272878A (zh) | 漆酶TvLac及其编码基因和应用 | |
CN109880883A (zh) | 活性黑5的应用及霉菌毒素降解酶的筛选方法 | |
Swiontek Brzezinska et al. | Purification and characterization of Streptomyces albidoflavus antifungal components | |
Plagemann et al. | Isolation and characterization of wild-type lipoxygenase LOXPsa1 from Pleurotus sapidus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200819 Address after: 100193 Beijing Old Summer Palace West Road, Haidian District, No. 2 Applicant after: Beijing Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences Address before: 100081 Beijing, Zhongguancun, South Street, No. 12, No. Applicant before: FEED Research Institute CHINESE ACADEMY OF AGRICULTURAL SCIENCES |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |