CN113699127B - 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法 - Google Patents

一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法 Download PDF

Info

Publication number
CN113699127B
CN113699127B CN202110898384.3A CN202110898384A CN113699127B CN 113699127 B CN113699127 B CN 113699127B CN 202110898384 A CN202110898384 A CN 202110898384A CN 113699127 B CN113699127 B CN 113699127B
Authority
CN
China
Prior art keywords
ala
mycotoxin
gly
peroxidase
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110898384.3A
Other languages
English (en)
Other versions
CN113699127A (zh
Inventor
秦星
罗会颖
王晓璐
涂涛
苏小运
张�杰
黄火清
柏映国
王苑
王亚茹
姚斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Animal Science of CAAS
Original Assignee
Institute of Animal Science of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Animal Science of CAAS filed Critical Institute of Animal Science of CAAS
Priority to CN202110898384.3A priority Critical patent/CN113699127B/zh
Publication of CN113699127A publication Critical patent/CN113699127A/zh
Application granted granted Critical
Publication of CN113699127B publication Critical patent/CN113699127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01019Dye decolorizing peroxidase (1.11.1.19)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及农业生物技术领域,具体涉及一种提高染料脱色过氧化物酶降解霉菌毒素效率的方法。本发明提供了两种可用于霉菌毒素玉米赤霉烯酮降解的高效染料脱色过氧化酶介体。本发明的介体能够协助链霉菌来源染料脱色过氧化物酶有效地降解霉菌毒素玉米赤霉烯酮,广泛用于食品和饲料霉菌毒素脱毒领域。

Description

一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法
技术领域
本发明涉及农业生物技术领域,具体涉及一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法。
背景技术
霉菌毒素是由曲霉属、青霉属、镰刀属等真菌产生的有毒次级代谢产物,具有致癌性、致畸性、免疫毒性、神经毒性、生殖和发育毒性等特点,能通过粮食、饲料或食品进入到人和动物的体内,从而严重危害人和动物的健康。目前已报道的真菌毒素有400多种,其中饲料中常见的真菌毒素包括玉米赤霉烯酮、黄曲霉毒素和脱氧雪腐镰刀菌烯醇。这些常见的真菌毒素不仅降低了饲料品质,而且还间接影响了畜禽的生产性能,对动物组织机能、健康产生了不利的影响,同时也带来了潜在的食品安全问题。因此,亟需建立高效且环境友好的霉菌毒素脱毒方法。
目前,霉菌毒素脱毒主要有如下三种方法:物理脱毒法、化学脱毒法和生物脱毒法。传统的物理和化学脱毒法存在效果不稳定、营养成分损失大、影响饲料适口性、难以规模化生产等问题,尚未能广泛用到实际生产中;而生物脱毒法具有安全、高效、环保等特点,具有广阔的发展应用前景。其中,霉菌毒素降解酶作为一种环境友好的酶制剂,因其催化反应条件温和、无毒副产物等优势,引起越来越多的研究者重视和关注。
近年来,木质素降解酶如漆酶、锰过氧化物酶作为一类新型的霉菌毒素降解酶逐渐应用到黄曲霉毒素、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇的降解当中。据文献报道,漆酶和锰过氧化物酶对霉菌毒素的直接降解普遍较低,往往需要借助介体物质来提升降解效果,不同介体物质的作用效果差异显著,如枯草芽孢杆菌来源的漆酶在介体丁香酸甲酯的添加下,对玉米赤霉烯酮的降解率可达到100.0%,而在介体1-羟基苯并三唑的添加下,对玉米赤霉烯酮的降解率仅为8.2%。由此可见,木质素降解酶对霉菌毒素的降解效果因介体物质而异。
发明内容
本发明的目的在于提供一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法。
根据本发明的提高染料脱色过氧化物酶的霉菌毒素降解率的方法,包括使用二价锰离子或1-羟基苯并三唑作为介体参与染料脱色过氧化物酶降解霉菌毒素的步骤,其中,所述霉菌毒素为玉米赤霉烯酮,所述染料脱色过氧化物酶来自链霉菌,其氨基酸序列如SEQID NO: 1所示。
根据本发明的提高染料脱色过氧化物酶的霉菌毒素降解率的方法,在缓冲溶液中对玉米赤霉烯酮进行高效降解,所述缓冲液为浓度50 mM、pH 4.0的丙二酸-丙二酸钠溶液。
本发明提供了特异性提高染料脱色过氧化物酶StDyP对玉米赤霉烯酮降解率的反应系统,以二价锰离子或1-羟基苯并三唑作为介体参与染料脱色过氧化物酶降解霉菌毒素。本发明的方法能够高效降解霉菌毒素、成本低、适用范围广,可广泛用于食品和饲料霉菌毒素脱毒领域。
附图说明
图1显示链霉菌来源染料脱色过氧化物酶-二价锰离子或1-羟基苯并三唑体系对霉菌毒素玉米赤霉烯酮的降解作用。
图2显示重组链霉菌来源染料脱色过氧化物酶-二价锰离子或1-羟基苯并三唑体系降解玉米赤霉烯酮的HPLC分析结果。
具体实施方式
试验材料和试剂
1、基因及载体:大肠杆菌表达载体pCold I及菌株大肠杆菌pG-Tf2/BL21;
2、酶类及其它生化试剂:内切酶、重组酶、黄曲霉毒素B1和玉米赤霉烯酮。
3、培养基:大肠杆菌培养基LB (1%蛋白胨,0.5%酵母提取物,1% NaCl,pH 7.0)。
StDyP的氨基酸序列如SEQ ID NO: 1所示,核苷酸序列如SEQ ID NO: 2所示。
实施例1 染料脱色过氧化物酶StDyP编码基因的克隆
本发明的目的基因来源于链霉菌Streptomyces thermocarboxydus的染料脱色过氧化物酶StDyP。序列特异性引物: SEQ ID NO:3; SEQ ID NO:4。
以链霉菌Streptomyces thermocarboxydus的基因组DNA为模板进行PCR扩增。在1%琼脂糖凝胶上电泳,切胶得到目的片段,将该片段回收后与NdeI-XbaI双酶切的pCold I载体通过同源重组的方法相连,转化Trans I克隆宿主,测序验证,得到染料脱色过氧化物酶StDyP编码基因。
实施例2 重组染料脱色过氧化物酶StDyP的制备
将获得的含有染料脱色过氧化物酶基因StDyP的重组大肠杆菌表达质粒pCold I-StDyP转化大肠杆菌pG-Tf2/BL21,获得重组大肠杆菌 pG-Tf2/BL21/StDyP。
E. coli pG-Tf2/BL21/StDyP菌株,接种于50 mL LB培养液中,37 ℃ 200 rpm振荡培养12 h后,按2%比例转接于300 mL LB培养基中,37 ℃ 200 rpm振荡培养约4 h(OD600≈0.6),而后加入终浓度1 mM的诱导剂 IPTG和10 μM的Hemin溶液,于16 ℃ 200rpm诱导培养12 h后,离心收集菌体。将菌体重悬于平衡缓冲液(20 mM pH 7.4 Na2HPO4-NaH2PO4,500 mM NaCl)中。采取超声破碎法裂解菌体。将破碎后的菌体碎片离心去除,利用Ni亲和层析柱进行纯化,收集电泳纯的洗脱组分并透析至蛋白储存液(20 mM pH 7.4Na2HPO4-NaH2PO4)中。
实施例3 重组染料脱色过氧化物酶StDyP-介体体系降解玉米赤霉烯酮
将玉米赤霉烯酮溶解到二甲基亚砜中配制成100 mg/L的母液,按如下反应体系:55 μL丙二酸缓冲液(0.2 M,pH 4.0),20 μL玉米赤霉烯酮溶液(100 mg/L),20 μL 10 mM介体,使用的介体为:硫酸锰;1-羟基苯并三唑;香豆酸;羟基苯甲酸;香草醛;香草酸;阿魏酸;丁香酸;丁香醛和乙酰丁香酮,,100 μL染料脱色过氧化酶(1 U/mL),5 μL过氧化氢(4 mM)。以未加入染料脱色过氧化物酶的体系作为对照,反应体系设3个重复。反应在30℃下进行,48 h后加入等体积的甲醇终止反应,采用高效液相色谱(HPLC)分析玉米赤霉烯酮的降解率。液相色谱为岛津LC-20A高效液相色谱分析系统,色谱分离柱为Waters XBridge C18column (4.6×150 mm, 5 μm),流动相A(水),流动相B (乙腈);等梯度洗脱条件45%B洗脱20分钟;采用荧光检测器检测,激发波长274 nm,发射波长440 nm。
结果如图1、图2所示,可见部分玉米赤霉烯酮已被降解,当体系中未加入介体物质时,降解率仅为8.17%,而当加入介体物质二价锰离子时,降解率为27.49%;加入介体物质1-羟基苯并三唑时,降解率为98.84%;加入其它介体物质如香豆酸,羟基苯甲酸,香草醛,香草酸,阿魏酸,丁香酸,丁香醛和乙酰丁香酮对链霉菌来源的染料过氧化物酶降解霉菌毒素玉米赤霉烯酮无促进效果。由此可知,当降解体系中加入介体二价锰离子,玉米赤霉烯酮的降解率提高了3.36倍;加入介体1-羟基苯并三唑,玉米赤霉烯酮的降解率提高了12.10倍;介体物质二价锰离子或1-羟基苯并三唑的加入显著提高了染料脱色过氧化物酶对玉米赤霉烯酮的降解率。
序列表
<110> 中国农业科学院北京畜牧兽医研究所
<120> 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 425
<212> PRT
<213> Streptomyces thermocarboxydus
<400> 1
Met Ala Asp Pro Ser Leu Ser Gln Thr Arg Thr Pro Glu Lys Glu Pro
1 5 10 15
Gln Ala Glu Ala Ala Ala Ser Gly Ile Ser Arg Arg Arg Leu Leu Gly
20 25 30
Thr Ala Gly Ala Thr Gly Leu Val Leu Gly Ala Ala Gly Gly Ala Val
35 40 45
Gly Tyr Ala Ser Ala Pro Thr Gly Ala Thr Pro Leu Thr Ser Val Gly
50 55 60
Ala Thr Lys Val Pro Phe His Val Lys His Gln Pro Gly Ile Thr Asp
65 70 75 80
Pro Leu Gln Ser Arg Gly His Leu Leu Ala Phe Asp Leu Arg Pro Gly
85 90 95
Ala Gly Arg Lys Glu Ala Ala Ala Leu Leu Arg Arg Trp Ser Asp Thr
100 105 110
Ala Arg Arg Leu Met Asp Gly Thr Phe Asp Ala Glu Gly Asp Ser Asp
115 120 125
Val Ala Arg Asp Ala Gly Pro Ser Ser Leu Thr Leu Thr Phe Gly Phe
130 135 140
Gly His Ser Phe Phe Ala Arg Thr Gly Leu Glu Arg Gln Arg Pro Ala
145 150 155 160
Ala Leu Glu Pro Leu Pro Ala Phe Ser Ser Asp Arg Leu Asp Arg Ala
165 170 175
Arg Ser Asp Gly Asp Leu Trp Val Gln Ile Gly Ala Asp Asp Ala Leu
180 185 190
Val Ala Phe His Ala Leu Arg Ala Val Gln Lys Asp Ala Gly Ala Ala
195 200 205
Ala Arg Val Arg Trp Gln Met Asn Gly Phe Asn Arg Ser Pro Gly Ala
210 215 220
Thr Ala Arg Pro Met Thr Thr Arg Asn Leu Met Gly Gln Val Asp Gly
225 230 235 240
Thr Arg Asn Pro Lys Pro Asp Glu Pro Asp Phe Asp Gln Arg Ile Phe
245 250 255
Val Ala Glu Gln Gly Glu Pro Ala Trp Met Ala Asn Gly Ser Tyr Val
260 265 270
Val Val Arg Arg Ile Arg Met Leu Leu Asp Asp Trp Glu Lys Leu Ser
275 280 285
Leu Arg Glu Gln Glu Gly Val Ile Gly Arg Arg Lys Ala Asp Gly Ala
290 295 300
Pro Leu Ser Gly Gly Asp Glu Thr Thr Glu Met Asp Leu Glu Lys Thr
305 310 315 320
Asp Ala Gln Gly Asn Leu Val Val Pro Phe Asn Ala His Ala Arg Ile
325 330 335
Thr Arg Pro Asp Gln Asn Gly Gly Ala Ala Met Leu Arg Arg Pro Phe
340 345 350
Ser Tyr His Asp Gly Ile Asp Ala Asp Gly Thr Pro Asp Ala Gly Leu
355 360 365
Leu Phe Ile Cys Trp Gln Ala Asp Pro Leu Arg Gly Phe Val Pro Val
370 375 380
Gln Arg Lys Leu Asp Arg Gly Asp Ala Leu Thr Pro Phe Ile Arg His
385 390 395 400
Glu Ala Ser Gly Leu Phe Ala Val Pro Gly Gly Ala Ala Glu Gly Glu
405 410 415
Tyr Val Gly Gln Ala Leu Leu Glu Gly
420 425
<210> 2
<211> 1278
<212> DNA
<213> Streptomyces thermocarboxydus
<400> 2
atggctgacc cttccctgtc gcagacccgc acccccgaga aggagcccca ggcggaagcc 60
gccgcctccg gcatctcgcg gcggcgcctg ctcggcacgg ccggcgccac cgggctcgtg 120
ctcggggcgg ccggcggtgc cgtcgggtac gcgtcggcgc ccaccggagc cactccgctc 180
acctcggtcg gcgccacaaa agtcccgttt cacgtgaaac atcagccggg catcaccgac 240
ccgctccagt cgcgtggcca tctcctcgcc ttcgacctga ggcccggcgc cggacgcaag 300
gaggcggctg cgctgctgcg ccgctggtcc gacaccgccc ggcggctgat ggacgggacg 360
ttcgacgccg agggcgacag tgacgtggcc cgtgacgcgg ggccctcctc gctgaccctg 420
accttcggtt ttgggcacag cttcttcgcg cgcaccgggc tggagaggca gcgtccggcc 480
gccctggagc cgctgcccgc cttctcctcc gaccgcctcg accgggcccg cagcgacggg 540
gacctgtggg tgcagattgg cgccgacgac gccctcgtcg cgttccatgc cctgcgcgcg 600
gtgcagaagg acgcgggcgc ggcggcccgg gtgcgctggc agatgaacgg cttcaaccgg 660
tcgccgggcg ccaccgcccg cccgatgacc acccgcaatc tgatgggcca ggtcgacggc 720
acccgcaacc cgaaacccga cgagcccgac ttcgaccagc ggatcttcgt ggcggagcag 780
ggcgagcccg cctggatggc gaacggctcc tatgtggtcg tccgccggat ccgcatgctg 840
ctggacgact gggagaagct gtcgctcagg gagcaggagg gtgtcatcgg gcggcgcaag 900
gcggacggcg ccccgctctc cgggggcgac gagacgaccg agatggacct ggagaagacc 960
gacgcccagg gcaatctggt cgtcccgttc aacgcgcacg cacgcatcac ccggcccgac 1020
cagaacggcg gggcggcgat gctgcgccgg ccgttctcgt accacgacgg catcgacgcg 1080
gacgggacgc cggacgcggg gctgctgttc atctgctggc aggccgatcc gctgcgcggc 1140
ttcgtgccgg tgcagcgcaa gctcgaccgg ggcgacgccc tgacgccgtt catccgtcac 1200
gaggcgagcg ggctgttcgc cgtcccgggc ggggcggcgg agggtgagta tgtgggccag 1260
gcgctgctgg aggggtga 1278
<210> 3
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atcatcatat cgaaggtagg catatggctg acccttccct gtcgcagac 49
<210> 4
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ttttaagcag agattaccta tctagacccc tccagcagcg cctggccc 48

Claims (3)

1.一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法,其特征在于,所述方法包括使用二价锰离子参与染料脱色过氧化物酶降解霉菌毒素的步骤,其中,所述霉菌毒素为玉米赤霉烯酮,所述染料脱色过氧化物酶的氨基酸序列如SEQ ID NO: 1所示。
2.根据权利要求1所述的提高染料脱色过氧化物酶的霉菌毒素降解率的方法,其特征在于,在缓冲溶液中对玉米赤霉烯酮进行降解,所述缓冲液为浓度50 mM、pH 4.0的丙二酸-丙二酸钠溶液。
3.根据权利要求1所述的提高染料脱色过氧化物酶的霉菌毒素降解率的方法,其特征在于,所述二价锰离子为硫酸锰或氯化锰。
CN202110898384.3A 2021-08-05 2021-08-05 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法 Active CN113699127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110898384.3A CN113699127B (zh) 2021-08-05 2021-08-05 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110898384.3A CN113699127B (zh) 2021-08-05 2021-08-05 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法

Publications (2)

Publication Number Publication Date
CN113699127A CN113699127A (zh) 2021-11-26
CN113699127B true CN113699127B (zh) 2023-03-21

Family

ID=78651684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110898384.3A Active CN113699127B (zh) 2021-08-05 2021-08-05 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法

Country Status (1)

Country Link
CN (1) CN113699127B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107012131B (zh) * 2017-01-12 2020-11-06 中国农业科学院北京畜牧兽医研究所 一种锰过氧化物酶及其基因和在霉菌毒素脱毒上的应用
CN109820132B (zh) * 2018-12-07 2022-07-12 中国农业大学 细菌漆酶CotA蛋白在降解霉菌毒素中的应用
CN110684748B (zh) * 2019-09-30 2021-07-20 中国农业科学院北京畜牧兽医研究所 咖啡酸作为漆酶降解霉菌毒素的介体的应用
CN111418756B (zh) * 2020-01-07 2023-12-15 中国农业大学 葡萄糖氧化酶联合过氧化物酶在霉菌毒素脱毒中的应用
CN111073867B (zh) * 2020-01-07 2022-04-08 中国农业大学 染料脱色过氧化物酶BsDyP及其在真菌毒素脱毒中的应用

Also Published As

Publication number Publication date
CN113699127A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN110684748B (zh) 咖啡酸作为漆酶降解霉菌毒素的介体的应用
CN110637970B (zh) 丁香醛作为参与漆酶降解霉菌毒素的介体的应用
Wei et al. Detoxification of ochratoxin A by Lysobacter sp. CW239 and characteristics of a novel degrading gene carboxypeptidase cp4
Tang et al. Secretory expression and characterization of a novel peroxiredoxin for zearalenone detoxification in Saccharomyces cerevisiae
WO2018218476A1 (zh) 一种锰过氧化物酶及其基因和在霉菌毒素脱毒上的应用
CA2391739A1 (en) Site-directed mutagenesis of escherichia coli phytase
CN110373395B (zh) 提高漆酶对真菌毒素降解率的薰衣草介体及其应用
US10336990B2 (en) Helicobacter pylori α-1,3 fucosyltransferase gene and protein with improved soluble protein expression and activity, and thereof application for synthesis of α-1,3 fucosyloligosaccharide
CN109504666B (zh) 锰过氧化物酶PcMnP1及其编码基因和应用
US20090104668A1 (en) Method for Producing Biopterins Using Tetrahydrobiopterin Biosynthesis Enzyme
CN110353153B (zh) 提高漆酶对真菌毒素降解率的荆芥介体及其应用
CN113699127B (zh) 一种提高染料脱色过氧化物酶的霉菌毒素降解率的方法
CN109370995B (zh) 锰过氧化物酶CsMnP及其编码基因和应用
CN113699126B (zh) 染料脱色过氧化物酶StDyP用于同时降解黄曲霉毒素和玉米赤霉烯酮的应用
KR100565732B1 (ko) 뉴로스포라 크라사 기원의 감마부티로베타인 하이드록실라제
US10927363B2 (en) DNA sequence and expression vector for alginate lyase
CN111607575B (zh) 一种转氨酶phta、制备方法和应用
CN110292105B (zh) 提高漆酶对真菌毒素降解率的黄瓜介体及其应用
CN114958804A (zh) 一种中性植酸酶突变体
CN103695364A (zh) 通过弱化5-氨基乙酰丙酸脱水酶活性获得5-氨基乙酰丙酸高产菌株及其应用
KR102018269B1 (ko) 2-하이드록시-감마-부티로락톤의 제조방법
Gordeeva et al. Expression and Characterization of Phytase from Obesumbacterium proteus in Pichia pastoris
CN109486776B (zh) 锰过氧化物酶NfMnP及其编码基因和应用
WO2020083958A2 (en) In vivo fluorination, chlorination and bromination
CN113166740A (zh) 具有植酸酶活性的多肽

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant