CN110684526A - 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法 - Google Patents

一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法 Download PDF

Info

Publication number
CN110684526A
CN110684526A CN201911010205.7A CN201911010205A CN110684526A CN 110684526 A CN110684526 A CN 110684526A CN 201911010205 A CN201911010205 A CN 201911010205A CN 110684526 A CN110684526 A CN 110684526A
Authority
CN
China
Prior art keywords
dysprosium
solution
fluorescent
cuprate
soluble salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911010205.7A
Other languages
English (en)
Inventor
郭瑞
刘宣文
于涛
张圣琦
温辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University Qinhuangdao Branch
Original Assignee
Northeastern University Qinhuangdao Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University Qinhuangdao Branch filed Critical Northeastern University Qinhuangdao Branch
Priority to CN201911010205.7A priority Critical patent/CN110684526A/zh
Publication of CN110684526A publication Critical patent/CN110684526A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明属于荧光材料及电催化材料技术领域,具体涉及一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法。本专利采用配位法制备纳米催化粉体,纯度高,粒度小且均匀,比表面积大,不仅可以作为荧光材料,也可在电催化水解产氢、产氧方面具有潜在的应用空间。本发明提供的制备方法,简单易操作,成本低,颗粒细小,不会引入杂质或造成金属物料损失,配位法能保证析出物中金属离子的化学计量比,能推广应用于工业化生产。

Description

一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法
技术领域
本发明属于荧光材料及电催化材料技术领域,具体涉及一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法。
稀土发光材料指利用稀土元素特有的电子层结构,通过不同的激发方式使其发光的稀土功能材料,俗称稀土荧光粉,具有吸收能力强、转换效率高等优点。稀土发光材料可发射从紫外到红外的光谱,特别是在可见光区有很强的发射。稀土发光材料已经被普遍地应用在照明、新光源、显示显像、X射线增光屏等方面,在人们生活中的地位日益提高。稀土发光材料是稀土研究领域的一个主要方向,随着稀土研究方面基础技术的进步,稀土发光材料的研究得到进一步发展。
制备铜系稀土材料的常见方法包括高温固相合成法、溶胶凝胶法、共沉淀法、水热法、燃烧法等等。这些方法都面临着同一个问题:无法解决铜离子和稀土离子严格化学计量比的问题,无法制备出高纯度的、成分均匀的产品,而样品的纯度与性质息息相关。制备的铜酸镝光致发光光谱中,Dy3+离子在许多无机基质中都是重要的激发中心,这与它的能级结构和较高的荧光效率有关。通常Dy3+离子有两个主发射峰,一个是4F9/26H15/2跃迁,出现在蓝光区域(470-500nm)。该跃迁是磁偶极跃迁,不受离子所在配位环境对称性的影响。另外一个发射峰在560-600nm范围内,发射黄光,归属为4F9/26H13/2跃迁,这是一个电偶极跃迁,对配位环境对称性比较敏感。
本专利采用配位化合法制备FeOOH包覆铜酸镝荧光、催化粉体。利用金属阳离子与有机溶剂反应,使金属离子与配位体以配位键的形式相结合,从而形成具有一定组成或空间构型的配位离子。
本发明所提供的制备方法,不仅可以解决上述问题,还将FeOOH粉体同时包覆在配位法制备的的Dy2Cu2O5纳米粉体上,制备出的粉体纯度高、粒度均匀、可控性好、性能优异。此外,本专利制备的纳米粉体,可用于荧光材料,还可在电催化水解产氢、产氧方面具有潜在的应用空间。
发明内容
为解决上述技术问题,本发明提供了一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法。本发明制备的粉体具有粉体纯度高、粒度均匀、可控性好、性能优异,制备的铜酸镝纳米粉体不仅可以用于荧光材料,还可用于电解水产氢产氧的催化剂。
具体技术方案如下:
一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法,包括以下步骤:
(1)将一定量铁的可溶性盐溶解于去离子水中,搅拌均匀,加入一定量的盐酸,调整溶液pH值为4-6,将溶液放入烘箱中在60-90℃下加热2-3h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取Cu的可溶性盐和Dy的可溶性盐,溶于去离子水中,混合均匀,得到溶液B;
(3)在溶液B中加入一定量的乙腈和一定量的丁二酮肟,将溶液于60~90℃加热并搅拌2~3h,用移液枪加入5-10mL浓度为1mol/L的碱液,搅拌直至溶解,制备成溶液C;
(4)将溶液C放进烘箱,在120℃-150℃的温度条件下,恒温反应3-6小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤2-4次,得到片状晶体,将得到的晶体放入液氮中进行粉化,将得到的粉体D取出;
(5)将粉体D加入到溶液A中,搅拌均匀,搅拌时间为20-30min,用喷雾器进行喷雾造粒,60-90℃的温度条件下,烘箱烘干1-2h,制备出本专利需要的纳米粉体。
步骤(1)中所述的铁的可溶性盐可以为氯化铁、硝酸铁或醋酸铁。
步骤(1)中铁的可溶性盐的用量为铜的可溶性盐和镝的可溶性盐总摩尔量的1~2倍,去离子水的体积用量为铜的可溶性盐和镝的可溶性盐总摩尔量的4~6倍。
步骤(1)(3)(5)中所述的搅拌条件为机械搅拌或磁力搅拌,转子转数为500~1000r/min。
步骤(2)中所述的铜的可溶性盐可以为氯化铜、硝酸铜或醋酸铜,镝的可溶性盐可以为氯化镝、硝酸镝或醋酸镝。
步骤(3)中所述乙腈的用量为铜盐摩尔量的3-4倍、丁二酮肟用量为铜盐摩尔量的1-2倍。
步骤(3)中碱液的溶质为三乙胺,溶剂为乙醇。
所述粉体可作为荧光材料,还可用于电催化水解产氢、产氧。
与现有技术相比,本发明具有如下有益技术效果:
(1)本发明采用配位合成的方法,制备过程简单,金属原子匹配性好,不会造成金属的浪费,污染环境,节约成本;
(2)本发明在原有简单溶液制备的过程中,添加乙腈和丁二酮肟,有效的分散了铜离子和镝离子;在液氮中进行粉化,使得制备的粉体更为细小,有利于纳米化,具体为丁二酮肟与铜离子进行有效的配位,可使铜和镝充分溶解在乙腈溶液中,而使用其他分散剂很难达到本专利要求的实验效果。
(3)本发明制备的粉体纯度高、粒度均匀、可控性好、性能优异,目前还未见有该粉体对电解水催化的相关报道。不仅可以用于荧光材料,还开辟了电催化水解产氢、产氧方面具有潜在的应用空间,开拓了新的性能。
附图说明
图1为本发明实施例1制备得到的FeOOH包覆铜酸镝荧光、催化粉体的扫描电镜图;
图2为本发明实施例2制备得到的FeOOH包覆铜酸镝荧光、催化粉体在272nm的荧光发射光谱;
图3为本发明实施例3制备得到的FeOOH包覆铜酸镝荧光、催化粉体的析氢曲线;
图4为本发明实施例3制备得到的FeOOH包覆铜酸镝荧光、催化粉体的析氧曲线;
图5为本发明对比例1制备得到的FeOOH包覆铜酸镝荧光、催化粉体的扫描电镜图;
图6为本发明对比例1制备得到的FeOOH包覆铜酸镝荧光、催化粉体在272nm的荧光发射光谱。
具体实施方式
下面结合附图对本发明进行详细说明,但本发明的保护范围不受实施例所限。
实施例1
(1)将2mmol氯化铁溶解于12mmol去离子水中,500r/min磁力搅拌10min,加入一定量的盐酸,调整溶液pH值为4,将溶液放入烘箱中90℃下加热2h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取1mmol氯化铜和1mmol氯化镝,溶于去离子水中,去离子水的体积用量为氯化铜和氯化镝总摩尔质量的6倍,混合均匀,得到溶液B;
(3)在溶液B中加入3mmol乙腈,加入2mmol丁二酮肟,在60℃下加热并500r/min搅拌2h,用移液枪加入浓度为1mol/L的碱液5ml(溶质为三乙胺,溶剂为乙醇),500r/min搅拌20min直至溶解,制备成溶液C。
(4)将溶液C放进烘箱,在150℃的温度条件下,恒温反应3小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤2次,将得到的晶体放入液氮中进行粉化,取出粉体D。
(5)将粉体D加入到溶液A中,500r/min磁力搅拌20min,用喷雾器进行喷雾造粒,60℃的温度条件下,烘箱烘干2h,制备出本专利需要的粉体。
图1为本发明实施例1制备得到的FeOOH包覆铜酸镝荧光、催化粉体的扫描电镜图,如图所示,制备的粉体呈现均匀的颗粒,尺度为50-100nm,颗粒均匀,分散性好,比表面积大,有利于催化反应进行。
实施例2
(1)将4mmol硝酸铁溶解于12mmol去离子水中,800r/min磁力搅拌10min,加入一定量的盐酸,调整溶液pH值为6,将溶液烘箱中在80℃下加热2.5h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取1mmol硝酸铜和1mmol硝酸镝,溶于去离子水中,去离子水的体积用量为硝酸铜和硝酸镝总摩尔质量的6倍,混合均匀,得到溶液B;
(3)在溶液B中加入3mmol乙腈,加入1mmol丁二酮肟,在60℃下加热并800r/min磁力搅拌2h,用移液枪加入浓度为1mol/L的碱液5ml(溶质为三乙胺,溶剂为乙醇),800r/min磁力搅拌10min,制备成溶液C。
(4)将溶液C放进烘箱,在120℃的温度条件下,恒温反应3小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤2次,将得到的晶体放入液氮中进行粉化,取出粉体D。
(5)将粉体D加入到溶液A中,搅拌均匀,800r/min磁力搅拌25min,用喷雾器进行喷雾造粒,90℃的温度条件下,烘箱烘干1h,制备出本专利需要的纳米粉体。
图2为FeOOH包覆铜酸镝荧光、催化粉体在272nm激发下的发射光谱,在487nm和577nm处有两个明显的发射峰,分别对应于Dy3+离子的4F9/26H15/24F9/26H13/2跃迁。其中发射蓝光的4F9/26H15/2跃迁是磁偶极跃迁,而发射黄光的4F9/26H13/2跃迁是超敏感受迫电偶极跃迁。
实施例3
(1)将2mmol硝酸铁溶解于12mmol去离子水中,600r/min磁力搅拌10min,加入一定量的盐酸,调整溶液pH值为5,将溶液放入烘箱中在760℃下加热3h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取1mmol硝酸铜和1mmol硝酸镝,溶于去离子水中,去离子水的体积用量为硝酸铜和硝酸镝总摩尔质量的6倍,混合均匀,得到溶液B;
(3)在溶液B中加入3mmol乙腈,加入1mmol丁二酮肟,在60℃下加热并600r/min磁力搅拌2h,用移液枪加入浓度为1mol/L的碱液5ml(溶质为三乙胺,溶剂为乙醇),搅拌直至溶解,制备成溶液C。
(4)将溶液C放进烘箱,在130℃的温度条件下,恒温反应6小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤4次,将得到的晶体放入液氮中进行粉化,取出粉体D。
(5)将粉体D加入到溶液A中,600r/min磁力搅拌30min,用喷雾器进行喷雾造粒,60℃的温度条件下,烘箱烘干2h,制备出本专利需要的纳米粉体。
采用三电极体系对FeOOH包覆铜酸镝纳米催化粉体的电催化析氢析氧性能进行测试,以Pt片为对电极,饱和甘汞电极(SCE)为参比电极,工作电极为表面滴涂有铜酸稀土电催化材料的ITO电极;测试仪器为PARSTAT 2273电化学工作站;测试溶液为1mol/L的KOH。
采用滴涂法制备工作电极,具体工艺如下:称取0.04g的FeOOH包覆铜酸镝纳米催化粉体,置于小玻璃瓶中,加入500ml乙醇,500ml去离子水和30μl质量分数为5%的杜邦溶液,将上述混合物超声20min以上形成催化剂溶液。以ITO为电极时,需要先将ITO依次使用丙酮,乙醇和去离子水清洗,再向ITO导电面底涂20μl上述催化剂溶液,于干燥箱中以60℃烘干1h,待测。
测试参数:LSV测试时扫描速率5mV/s。
图3为本发明实施例3制备得到的FeOOH包覆铜酸镝荧光、催化粉体的析氢曲线,图4为本发明实施例3制备得到的FeOOH包覆铜酸镝荧光、催化粉体的析氧曲线,如图所示:
图3为HER曲线,曲线向下弯曲的起始点代表还原产氢的起始电位,越小越好。弯曲的斜率代表还原速度与过电位的关系,越大越好。图4为OER曲线,曲线向上弯曲的起始点代表氧化产氢的起始电位,越小越好。弯曲的斜率代表还原速度与过电位的关系,越大越好。
对比例1
该对比例未在液氮中粉化、未加丁二酮肟
(1)将4mmol硝酸铁溶解于12mmol去离子水中,800r/min磁力搅拌10min,加入一定量的盐酸,调整溶液pH值为5,将溶液放入烘箱中在70℃下加热2h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取1mmo硝酸铜和1mmol硝酸镝,溶于去离子水中,去离子水的体积用量为硝酸铜和硝酸镝总摩尔质量的4倍,混合均匀,得到溶液B;
(3)在溶液B中加入3mmol乙腈,在60℃下加热并搅拌2h,用移液枪加入浓度为1mol/L的碱液5ml(溶质为三乙胺,溶剂为乙醇),600r/min磁力搅拌10min,制备成溶液C。
(4)将溶液C放进烘箱,在130℃的温度条件下,恒温反应3小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤3次,得到片状晶体D。
(5)将粉体D加入到溶液A中,600r/min磁力搅拌20min,用喷雾器进行喷雾造粒,80℃的温度条件下,烘箱烘干1.5h,制备出本专利需要的纳米粉体。
图5为本发明对比例1制备得到的FeOOH包覆铜酸镝荧光、催化粉体的扫描电镜图,如图所示,本对比例条件下制备的粉体块体较大,分散性不好图6为本实施例制备粉体的在272nm激发下的发射光谱,从图6可以看出,该粉体在487nm和577nm处的发射峰强度降低,荧光性能不好。

Claims (8)

1.一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于,包括以下步骤:
(1)将一定量铁的可溶性盐溶解于去离子水中,搅拌均匀,加入一定量的盐酸,调整溶液pH值为4-6,将溶液放入烘箱中在60-90℃下加热2-3h,得到溶液A;
(2)按照Dy2Cu2O5中Cu与Dy的化学计量比称取Cu的可溶性盐和Dy的可溶性盐,溶于去离子水中,混合均匀,得到溶液B;
(3)在溶液B中加入一定量的乙腈和一定量的丁二酮肟,将溶液于60~90℃加热并搅拌2~3h,用移液枪加入5-10mL浓度为1mol/L的碱液,搅拌直至溶解,制备成溶液C;
(4)将溶液C放进烘箱,在120℃-150℃的温度条件下,恒温反应3-6小时后,空气中冷却至室温;待溶液体系稳定后,将所得混合溶液进行过滤,所得固体用水洗涤2-4次,得到片状晶体,将得到的晶体放入液氮中进行粉化,将得到的粉体D取出;
(5)将粉体D加入到溶液A中,搅拌均匀,搅拌时间为20-30min,用喷雾器进行喷雾造粒,60-90℃的温度条件下,烘箱烘干1-2h,制备出纳米粉体。
2.根据权利要求1所述的一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于,步骤(1)中所述的铁的可溶性盐可以为氯化铁、硝酸铁或醋酸铁。
3.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于:步骤(1)中铁的可溶性盐的用量为铜的可溶性盐和镝的可溶性盐总摩尔量的1~2倍,去离子水的体积用量为铜的可溶性盐和镝的可溶性盐总摩尔量的4~6倍。
4.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于:步骤(1)(3)(5)中所述的搅拌条件为机械搅拌或磁力搅拌,转子转数为500~1000r/min。
5.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于:步骤(2)中所述的铜的可溶性盐可以为氯化铜、硝酸铜或醋酸铜,镝的可溶性盐可以为氯化镝、硝酸镝或醋酸镝。
6.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于:步骤(3)中所述乙腈的用量为铜盐摩尔量的3-4倍、丁二酮肟用量为铜盐摩尔量的1-2倍。
7.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的制备方法,其特征在于:步骤(3)中碱液的溶质为三乙胺,溶剂为乙醇。
8.根据权利要求1所述的FeOOH包覆铜酸镝荧光、催化粉体的应用,其特征在于:所述粉体可作为荧光材料,还可用于电催化水解产氢、产氧。
CN201911010205.7A 2019-10-23 2019-10-23 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法 Pending CN110684526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911010205.7A CN110684526A (zh) 2019-10-23 2019-10-23 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911010205.7A CN110684526A (zh) 2019-10-23 2019-10-23 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法

Publications (1)

Publication Number Publication Date
CN110684526A true CN110684526A (zh) 2020-01-14

Family

ID=69113905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911010205.7A Pending CN110684526A (zh) 2019-10-23 2019-10-23 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法

Country Status (1)

Country Link
CN (1) CN110684526A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004631A (zh) * 2019-10-23 2020-04-14 东北大学秦皇岛分校 FeOOH包覆铜酸钬纳米荧光、催化粉体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105347797A (zh) * 2015-10-10 2016-02-24 东北大学 应用于低温磁制冷中的R2Cu2O5氧化物材料及其制备方法
CN106563437A (zh) * 2016-11-10 2017-04-19 东北大学秦皇岛分校 一种含Dy纳米片层结构配合物光催化剂及其制备方法
CN110639531A (zh) * 2019-10-23 2020-01-03 东北大学秦皇岛分校 一种TiO2-铜酸镧纳米催化粉体的制备方法
CN110684533A (zh) * 2019-10-23 2020-01-14 东北大学秦皇岛分校 一种SiO2-铜酸铕纳米荧光、电催化粉体的制备方法
CN110681385A (zh) * 2019-10-23 2020-01-14 沈阳工业大学 一种TiO2-铜酸钕纳米催化粉体的制备方法
CN110681384A (zh) * 2019-10-23 2020-01-14 东北大学秦皇岛分校 TiO2-铜酸钐纳米光催化、电催化粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105347797A (zh) * 2015-10-10 2016-02-24 东北大学 应用于低温磁制冷中的R2Cu2O5氧化物材料及其制备方法
CN106563437A (zh) * 2016-11-10 2017-04-19 东北大学秦皇岛分校 一种含Dy纳米片层结构配合物光催化剂及其制备方法
CN110639531A (zh) * 2019-10-23 2020-01-03 东北大学秦皇岛分校 一种TiO2-铜酸镧纳米催化粉体的制备方法
CN110684533A (zh) * 2019-10-23 2020-01-14 东北大学秦皇岛分校 一种SiO2-铜酸铕纳米荧光、电催化粉体的制备方法
CN110681385A (zh) * 2019-10-23 2020-01-14 沈阳工业大学 一种TiO2-铜酸钕纳米催化粉体的制备方法
CN110681384A (zh) * 2019-10-23 2020-01-14 东北大学秦皇岛分校 TiO2-铜酸钐纳米光催化、电催化粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO RUI: "Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho2Cu2O5 nanoplates prepared with a coordination-complex method", 《APPLIED SURFACE SCIENCE》 *
LIU XUANWEN: "Synthesis and Absorption Properties of Hollow-spherical Dy2Cu2O5 via a Coordination Compound Method with [DyCu(3,4-pdc)2(OAc)(H2O)2]center dot 10.5H2O Precursor", 《SCIENTIFIC REPORTS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004631A (zh) * 2019-10-23 2020-04-14 东北大学秦皇岛分校 FeOOH包覆铜酸钬纳米荧光、催化粉体的制备方法

Similar Documents

Publication Publication Date Title
CN102337136B (zh) 掺有金属纳米粒子的空心结构氧化物发光材料及其制备方法
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
CN108654648B (zh) 一种光解水高效制取过氧化氢的光催化剂的制备方法及其应用
CN110684533B (zh) 一种SiO2-铜酸铕纳米荧光、电催化粉体的制备方法
CN109680299B (zh) 一种三维自支撑γ-Fe2O3-NC/CF电极及其制备方法和应用
CN108864158B (zh) 一种四核稀土铽配合物及其制备方法和作为发光材料的应用
CN101824625B (zh) 一种从金属铋直接电解控制合成铋系纳米材料的方法
CN106384832A (zh) 一种具备高效电催化氧还原性能的ZnO‑CuO/rGO复合材料
CN109603832A (zh) 一种快速制备大量花状钴基双金属氢氧化物的方法
CN113621988B (zh) 一种高效氧析出高熵非晶氧化物纳米催化剂及其制备方法和应用
CN102212360B (zh) 一种场发射荧光材料及其制备方法
CN117643891B (zh) 硼掺杂金属氧化物/氢氧化物析氧催化剂及其制备方法
CN110684526A (zh) 一种FeOOH包覆铜酸镝荧光、催化粉体的制备方法
CN108842165B (zh) 溶剂热法制备硫掺杂的NiFe(CN)5NO电解水析氧催化剂及其应用
CN102337116B (zh) 包覆金属纳米粒子的氧化物核壳结构发光材料及其制备方法
CN114990612B (zh) 铟基钙钛矿催化剂LaInO3的制备及应用
CN111004631A (zh) FeOOH包覆铜酸钬纳米荧光、催化粉体的制备方法
CN110404546A (zh) 一种Ni(OH)2纳米颗粒改性的SrTiO3复合催化剂及其制备方法和应用
CN113332991B (zh) 一种可见光响应的纳米多面体钒酸铁薄膜光电极及其制备方法和应用
CN102220132B (zh) 一种掺杂金属纳米粒子的发光材料及其制备方法
CN113437312A (zh) 一种应用于锌空气电池的普鲁士蓝衍生物催化剂的制备
CN110681386B (zh) 一种FeOOH包覆铜酸镨纳米催化粉体的制备方法
Xuan et al. Nanotechnology for Energy Storage and Efficiency
CN113235112B (zh) 一种具有大空腔蛋壳结构的铜氧化物纳米颗粒催化剂及其制备方法与应用
CN102897828B (zh) 一种PbO1.44空心球状聚集体的可控制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200114

RJ01 Rejection of invention patent application after publication