CN110665484B - 一种协同生长的自支撑介孔金属有机框架材料的制备方法 - Google Patents

一种协同生长的自支撑介孔金属有机框架材料的制备方法 Download PDF

Info

Publication number
CN110665484B
CN110665484B CN201910857899.1A CN201910857899A CN110665484B CN 110665484 B CN110665484 B CN 110665484B CN 201910857899 A CN201910857899 A CN 201910857899A CN 110665484 B CN110665484 B CN 110665484B
Authority
CN
China
Prior art keywords
self
organic framework
framework material
growth
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910857899.1A
Other languages
English (en)
Other versions
CN110665484A (zh
Inventor
贾希来
许婕
朱晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Zhongshi Hydrogen Production Equipment Manufacturing Co ltd
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910857899.1A priority Critical patent/CN110665484B/zh
Publication of CN110665484A publication Critical patent/CN110665484A/zh
Application granted granted Critical
Publication of CN110665484B publication Critical patent/CN110665484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,采用两步法:(1)超声成核;(2)水热或溶剂热生长制备得到。分别取N,N‑二甲基甲酰胺、乙醇、水置于反应釜内衬中,然后将有机配体超声分散在混合液中,加入不同组合的金属盐搅拌使之均匀分散,之后可加入三乙胺作为酸结合剂,混合均匀后加入生长基底,先进行一定时间的超声成核反应。然后,将其转移至高压反应釜继续反应。冷却至室温后,洗涤干燥得到纳米线、纳米片协同生长的自支撑金属有机框架材料。本发明制备的纳米线、纳米片协同生长的自支撑金属有机框架材料具有连续的介孔结构,催化活性提高;同时,纳米线与纳米片相互支撑,稳定性提高。

Description

一种协同生长的自支撑介孔金属有机框架材料的制备方法
技术领域
本发明涉及一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料及其制备方法。用该方法得到的金属有机框架材料由原位生长的纳米线、纳米片形成自支撑结构,且有连续的介孔结构,结构稳定,制备方法简单易行,主要用于催化材料、气体分离、气体吸附等方面。
背景技术
金属有机骨架材料(Metal Organic Frameworks,MOFs)是一种由有机配体和金属离子组装而成的具有周期性多孔结构的化合物,是一种近年来得到日益广泛关注的新型材料。目前,利用MOFs作为牺牲模板或前驱体制备碳-金属杂化材料用作电催化剂的研究已经取得了很大的进展,但对MOFs本身的活性研究甚少。此外,碳-金属材料的制备过程涉及多步控制过程,碳化引起的收缩、聚集会破坏原始MOFs的纳米结构,大大降低活性位点。目前,通过对金属离子的合理设计、对形貌和尺寸的合理组合,发现MOFs本身具有良好的结构特点,在气体存储与分离、催化、储能等领域可以得到广泛应用。
理论上,低维MOFs中作为活性位点的金属离子可以被高度暴露,甚至达到单原子状态,这为高效催化提供了一个新的视角。在此背景下,低维MOFs,包括一维纳米线和二维纳米片,成为具有广泛应用的催化材料。因为低维度不仅可以高度暴露反应物的活性位点,还可以促进电解质的传输。然而,低维MOFs纳米片、纳米线的堆积或聚集,极大的降低了预期活性。同时,大多数MOFs只具有微孔结构,这阻碍了传质运动,使得客体分子无法进入MOFs内的活性位点。为了克服上述困难,由低维度MOF材料组装而成的具有分层孔隙度纳米结构的三维MOFs材料的开发变得具有重要价值。
发明内容
本发明的目的在于公开一种纳米线、纳米片协同生长的自支撑金属有机框架材料及其制备方法,这是首次采用无模板法合成低维自支撑多级结构的MOFs材料。
为了实现上述目标,该方法采用超声-水热或溶剂热两步法,超声过程中金属盐与有机配体连接,在基底表面预成核。在水热或溶剂热过程中,基底表面成核诱导MOF纳米线的生长,溶液的自由生长则导致纳米片的形成,纳米线与纳米片原位协同生长形成自支撑结构,提高材料稳定性。同时,在水热或溶剂热过程中,MOFs结构中不稳定的部分被移除,从而产生稳定的连续的纳米结构MOF材料,增强了材料的活性位点,提高了其催化性能及其他性能。
具体工艺过程如下:
(1)将N,N-二甲基甲酰胺、乙醇、水按照一定的体积份数量取,置于反应釜内衬中,然后加入有机配体将其超声分散在混合液中;
(2)将金属盐加入步骤(1)得到的混合液中,搅拌使之分散均匀;
(3)将生长基底加入步骤(2)得到的混合液中,并加入适量络合剂,然后将混合液在超声环境下反应一定时间;
(4)将步骤(3)超声得到的产物转移至高压反应釜,进行水热或者溶剂热反应;
(5)将步骤(4)水热或溶剂热反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔金属有机框架材料。
进一步地,步骤(1)中N,N-二甲基甲酰胺、乙醇、水的体积比为8:0-4:0-4。
进一步地,步骤(2)中金属盐包括镍、钒、铁、钴、锰、铜、钼、铂、钌、钨、铌等金属盐中的两种以上的金属盐。
进一步地,步骤(3)所述的生长基底可以为泡沫镍、泡沫铜、碳布,及其他具有类似带孔结构的基底。
进一步地,步骤(3)所述的超声预成核反应为必须步骤,反应时间为0.5~10h。
进一步地,步骤(4)中的水热或溶剂热处理时间为5~100h。
进一步地,基于上述步骤得到的金属有机框架材料中纳米线、纳米片协同生长形成自支撑结构,纳米线、纳米片连接在一起作为一个整体。
本发明中,纳米线、纳米片自支撑金属有机框架材料的应用领域包括催化材料、气体吸附、储能材料、环境材料等,但不局限于此。
本发明的优点:
(1)本发明提供了一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法。经过预成核处理,纳米线与纳米片在基底原位生长,这种自支撑结构可以促进传质过程的快速进行,与传统低维材料相比,具有更高的稳定性。
(2)本发明制备的纳米线、纳米片协同生长的自支撑介孔金属有机框架材料具有连续的介孔结构,存在大量活性位点,有利于底物分子与更多活性位点的接触,进而可以提高MOFs材料在催化、传感、储能等领域的性能。
(3)本发明采用无模板的方法制备出纳米线与纳米片协同生长的自支撑分层多孔金属有机框架材料。与模板法相比,该方法的控制过程简单易行,还可以避免移除模板时对MOFs孔结构造成破坏。
附图说明
图1为本发明实例1得到的NiVFe-MOF材料的扫描电镜图片;
从图1可知制得的NiVFe-MOF材料为纳米线、纳米片协同生长的自支撑结构。
图2为本发明实例1得到的NiVFe-MOF材料的透射电镜图片;
从图2可知制得的NiVFe-MOF材料纳米线、纳米片中存在连续的介孔结构。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,
实施例1:一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.45mmol NiCl2.6H2O,0.225mmol VCl2和0.075mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的悬浮液,加入生长基底,然后将其超声8h。
(3)将超声后得到的包含生长基底的混合液转移至高压反应釜中,于140℃反应12h。
(4)将反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔NiVFe-MOF材料。
本实施例制备的NiVFe-MOF材料扫描电镜图片如图1所示,从图1可知,该材料为纳米线、纳米片协同生长的自支撑结构。本实施例制备的NiVFe-MOF材料的透射电镜图片如图2所示,从图2可知,该方法制备得到的NiVFe-MOF材料纳米线、纳米片中存在连续的介孔结构。
实施例2:一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.506mmol NiCl2.6H2O,0.169mmol VCl2和0.075mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的悬浮液,加入生长基底,然后将其超声8h。
(3)将超声后得到的包含生长基底的混合液转移至高压反应釜中,于140℃反应12h。
(4)将反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔NiVFe-MOF材料。
实施例3:一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.45mmol NiCl2.6H2O,0.225mmol VCl2和0.075mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的悬浮液,加入生长基底,然后将其超声8h。
(3)将超声后得到的包含生长基底的混合液转移至高压反应釜中,于140℃反应24h。
(4)将反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔NiVFe-MOF材料。
实施例4:一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.45mmol NiCl2.6H2O,0.225mmol VCl2和0.075mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的悬浮液,加入生长基底,然后将其超声8h。
(3)将超声后得到的包含生长基底的混合液转移至高压反应釜中,于140℃反应36h。
(4)将反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔NiVFe-MOF材料。
实施例5:一种纳米线、纳米片协同生长的自支撑介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.45mmol NiCl2.6H2O,0.225mmol VCl2和0.075mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的悬浮液,加入生长基底,然后将其超声8h。
(3)将超声后得到的包含生长基底的混合液转移至高压反应釜中,于140℃反应48h。
(4)将反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑介孔NiVFe-MOF材料。

Claims (5)

1.一种协同生长的自支撑介孔金属有机框架材料的制备方法,其特征在于步骤包括:
(1)将N,N-二甲基甲酰胺、乙醇、水反应溶剂按照一定的体积份数量取,置于反应釜内衬中,然后加入有机配体将其超声分散在混合液中;
(2)将金属盐加入步骤(1)得到的混合液中,搅拌使之分散均匀;
(3)将生长基底加入步骤(2)得到的混合液中,并在混合液中加入了0~5%的三乙胺作为酸结合剂,然后将混合液在超声环境下预成核一定时间;
(4)将步骤(3)超声得到的产物转移至高压反应釜,进行水热或者溶剂热反应;
(5)将步骤(4)水热或溶剂热反应后所得产物冷却至室温,洗涤,干燥得到纳米线、纳米片协同生长的自支撑的金属有机框架材料;
步骤(1)中N,N-二甲基甲酰胺、乙醇、水的体积比为8:0-4:0-4;
步骤(2)中金属盐包括镍、钒、铁、钴、锰、铜、钼、铂、钌、钨、铌金属盐中的两种以上的金属盐。
2.根据权利要求1所述协同生长的自支撑介孔金属有机框架材料的制备方法,其特征在于:步骤(3)所述的生长基底为泡沫镍、泡沫铜、碳布,及其他具有类似带孔结构的基底。
3.根据权利要求1所述协同生长的自支撑介孔金属有机框架材料的制备方法,其特征在于:步骤(3)所述的超声环境下预成核反应为必须步骤,预成核反应时间为0.5~10h。
4.根据权利要求1所述协同生长的自支撑介孔金属有机框架材料的制备方法,其特征在于:步骤(4)中的水热或溶剂热处理时间为5~100h。
5.根据权利要求1所述协同生长的自支撑介孔金属有机框架材料的制备方法,其特征在于:金属有机框架材料纳米线、纳米片协同生长形成自支撑结构,纳米线、纳米片连接在一起作为一个整体。
CN201910857899.1A 2019-09-11 2019-09-11 一种协同生长的自支撑介孔金属有机框架材料的制备方法 Active CN110665484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910857899.1A CN110665484B (zh) 2019-09-11 2019-09-11 一种协同生长的自支撑介孔金属有机框架材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910857899.1A CN110665484B (zh) 2019-09-11 2019-09-11 一种协同生长的自支撑介孔金属有机框架材料的制备方法

Publications (2)

Publication Number Publication Date
CN110665484A CN110665484A (zh) 2020-01-10
CN110665484B true CN110665484B (zh) 2021-02-12

Family

ID=69077697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910857899.1A Active CN110665484B (zh) 2019-09-11 2019-09-11 一种协同生长的自支撑介孔金属有机框架材料的制备方法

Country Status (1)

Country Link
CN (1) CN110665484B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112321858B (zh) * 2020-10-22 2022-07-26 河北工业大学 一种宏量制备具有析氧性能MOFs纳米片的方法
CN114002201A (zh) * 2021-11-09 2022-02-01 山西聚微天成科技有限公司 一种高灵敏性离子检测装置及其应用
CN115029713B (zh) * 2022-06-27 2023-04-18 海南大学 用于电解水析氧反应的镍基mof自重构异质结的制备方法及所得产品和应用
CN115010951B (zh) * 2022-07-22 2023-02-24 中南大学 一种钒元素利用率高的钒金属有机框架材料的制备方法
CN115057981B (zh) * 2022-08-18 2022-11-15 北京市疾病预防控制中心 一种氨基功能化的共价有机框架材料及其制备方法和用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787875A (zh) * 2014-01-22 2014-05-14 天津大学 通过超声波制备金属有机框架化合物的方法
CN105732728B (zh) * 2016-01-26 2019-02-26 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN107146711A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种导电基底生长纳米层状金属化合物电极材料及其制备与应用
CN108492999A (zh) * 2018-02-01 2018-09-04 四川大学 一种基于泡沫镍原位制备三维结构Co-MOF/NF超级电容器电极材料的方法
CN108315760B (zh) * 2018-03-29 2020-02-18 首都师范大学 一种金属有机框架/泡沫镍电极材料及其制备方法和应用
CN110033961B (zh) * 2019-05-22 2020-09-11 新乡学院 Ni-MOF自支撑复合电极及制作方法

Also Published As

Publication number Publication date
CN110665484A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110665484B (zh) 一种协同生长的自支撑介孔金属有机框架材料的制备方法
Chen et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
US11345608B2 (en) Method for prepareing copper-nickel cobaltate nanowire
Farid et al. MOF-derived metal/carbon materials as oxygen evolution reaction catalysts
CN107790164B (zh) 氮磷共掺杂多孔碳包覆磷化亚铜复合型催化剂及其制备方法
CN110289424B (zh) 一种mof衍生碳与蜂窝状多孔碳复合材料的制备方法
Xu et al. Highly controllable hierarchically porous Ag/Ag2S heterostructure by cation exchange for efficient hydrogen evolution
Han et al. Research progresses in the preparation of Co-based catalyst derived from Co-MOFs and application in the catalytic oxidation reaction
CN105622445A (zh) 一种室温下合成纳米级金属有机骨架材料的方法
Christensen et al. Study of CoCu alloy nanoparticles supported on MOF-derived carbon for hydrosilylation of ketones
Li et al. Zeolitic imidazolate framework-67 derived cobalt-based catalysts for water splitting
Abu Hatab et al. MOF-Derived Cobalt@ Mesoporous Carbon as Electrocatalysts for Oxygen Evolution Reaction: Impact of Organic Linker
CN113698617A (zh) 一种超薄二维分级多孔zif-67的合成方法
CN113046765B (zh) 一种泡沫镍负载Fe2O3@Ni3S2复合结构OER电催化剂的制备方法
CN114214657B (zh) 钼基氮化物/碳化物电催化剂及其制备方法与应用
CN114873611A (zh) 一锅法原位制备3D中空大孔Co/Fe PBA纳米笼结构材料的方法及其应用
CN110894298A (zh) 一种MOFs纳米材料及其衍生物的制备方法
CN115475641A (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN111229214B (zh) 一种调控铂钌合金纳米颗粒尺寸的制备方法
Farid et al. Promoting the Oxygen Evolution Reaction via Morphological Manipulation of a Lamellar Nanorod-Assembled Ni (II)-Pyrazolate Superstructure
Chen et al. Insights on MOF-derived metal–carbon nanostructures for oxygen evolution
CN116948206B (zh) 一种精准调控zif-8材料形貌的方法
CN115947952B (zh) 一种中空Co金属有机框架纳米管的一步合成方法
CN114657600B (zh) 一种3D微米花复合材料Fe-CoP@C及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230425

Address after: No. 1-5, Tianji Road, Karamay District, Karamay City, Xinjiang Uygur Autonomous Region 834099

Patentee after: Xinjiang Zhongshi Hydrogen Production Equipment Manufacturing Co.,Ltd.

Address before: 100083 No. 30, Haidian District, Beijing, Xueyuan Road

Patentee before: University OF SCIENCE AND TECHNOLOGY BEIJING