CN113698617A - 一种超薄二维分级多孔zif-67的合成方法 - Google Patents

一种超薄二维分级多孔zif-67的合成方法 Download PDF

Info

Publication number
CN113698617A
CN113698617A CN202110984258.XA CN202110984258A CN113698617A CN 113698617 A CN113698617 A CN 113698617A CN 202110984258 A CN202110984258 A CN 202110984258A CN 113698617 A CN113698617 A CN 113698617A
Authority
CN
China
Prior art keywords
solution
hierarchical porous
zif
dimensional hierarchical
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110984258.XA
Other languages
English (en)
Other versions
CN113698617B (zh
Inventor
于岩
贺来冉
冯依桐
庄国鑫
庄赞勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110984258.XA priority Critical patent/CN113698617B/zh
Publication of CN113698617A publication Critical patent/CN113698617A/zh
Priority to US17/833,593 priority patent/US11819836B2/en
Application granted granted Critical
Publication of CN113698617B publication Critical patent/CN113698617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了一种超薄二维分级多孔ZIF‑67的合成方法,属于纳米材料制备领域,其主要是采用共滴定法,通过调控滴定时H2O的用量以及改变反应时间,使ZIF‑67纳米颗粒转变为分级多孔超薄二维ZIF‑67。本发明利用易获得的原料,采用共滴定法,一步合成了超薄二维分级多孔ZIF‑67,其制备工艺简单,成本低廉,可大规模工业化生产,具有良好的经济效益和环境效益。

Description

一种超薄二维分级多孔ZIF-67的合成方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种超薄二维分级多孔ZIF-67的合成方法。
背景技术
MOFs是无机金属离子或者氧化簇和有机桥连配体配位形成三维高度有序的框架结构,具有成分可调、高的孔隙率和大的比表面,并广泛地应用到各个催化领域(光催化、电催化等)。近十年来,MOFs在合成新结构和功能化设计方面得到了很大的探究。但是常规的块状微孔MOFs具有较低的传质速度和差的导电率,这大大限制了他们的实际应用。因此,迫切需要开发能够快速传质和具有高电子传导性的二维MOFs材料。
通过控制MOFs的形态和结构来提高其理化性质是常用的方法之一。纳米片自组装的3D分级多孔结构被认为是理想MOFs的纳米结构之一。与其它块状材料相比,分级多孔超薄二维MOFs具有以下几个优点:1)自组装形成的孔道结构和几个原子薄的厚度(<5 nm),具有极短的传输路径,提供了快速传质的通道和高速电子转移的路径;2)具有高的暴露活性表面的原子百分比、不饱和配位原子和悬挂键,提供了更多高度可接触的活性位点,促进了催化中心与反应物分子之间的相互作用,具有更高的催化活性;3)产生量子效应,具有独特的理化性质(能带/电子结构);4)自组装结构能够有效抑制常规纳米片在反应过程中的自团聚或者褶皱现象,能够确保活性位点的有效暴露。
目前,常见的方法是通过“自上而下”和“自下而上”的方法来制备分级多孔超薄二维MOFs。其中,“自上而下”的策略一般只适合具有层状结构的MOFs材料,其存在所产生的纳米片大小和厚度难以精确控制的问题。“自下而上”策略则是使用表面活性剂或者互不相溶的有机试剂,通过控制MOFs特定晶面的生长速度或者空间限域生长效应,实现MOFs二维纳米片的制备。尽管,“自下而上”的原理可以适用于大部分二维MOFs的合成,但是对于同种策略的条件局限在特定或者几种MOFs。此外,表面活性剂和互不相溶的有机试剂的使用还增加了工业应用的成本,并且容易覆盖在二维MOFs材料的表面活性位点上,导致MOFs材料催化活性的降低。这些限制在很大程度上影响了二维MOFs的合成、质量和工业化推广。因此,开发简单、无表面活性剂的方法来制备分级多孔二维MOFs具有重要意义,成为当前研究的热点之一。
发明内容
本发明的目的在于提供一种超薄二维分级多孔ZIF-67的合成方法,其是采用共滴定法,通过调控滴定时H2O的用量以及反应时间,实现ZIF-67由纳米颗粒向分级多孔超薄二维纳米片的转变。
为实现上述目的,本发明采用如下技术方案:
一种超薄二维分级多孔ZIF-67的合成方法,其包括以下步骤:
(1)将六水合硝酸钴加入到甲醇中形成溶液A,将2-甲基咪唑加入到甲醇中形成溶液B,将溶液A和溶液B分别进行室温搅拌;
(2)搅拌完成后将溶液A通过蠕动泵缓慢滴加到溶液B中,并在滴加10min后,同时通过蠕动泵将一定量的H2O滴加到溶液B中,搅拌反应;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤后冷冻干燥,即得。
进一步地,步骤(1)所述溶液A中六水合硝酸钴的浓度为0.01 g/mL-0.7 g/mL ;所述溶液B中2-甲基咪唑的浓度为0.025g/mL-0.4 g/mL。
进一步地,步骤(1)中所述室温搅拌的速度为100-800 rpm,时间为20-50 min。
进一步地,步骤(2)中所用溶液A与溶液B的体积比为1:5-5:1。
进一步地,步骤(2)中滴加H2O的量与溶液B的体积比为1:20-2:1。
进一步地,步骤(2)中溶液A与H2O的滴定速度均为100-15000 μL/min。
进一步地,步骤(2)中所述搅拌反应的速度为500 rpm,时间为1-72h。
进一步地,步骤(3)所述冷冻干燥的温度为-50 ℃,时间为4-72 h。
上述方法制得的超薄二维分级多孔ZIF-67的厚度<5 nm,BET为200-400 cm2/g,主要孔隙结构为微孔和/或介孔,其孔径分布为1.1-1.5 nm(微孔)、35-40 nm(介孔)。
本发明利用Co-N配位键在不同溶剂中的稳定性差异,基于共滴定法,将H2O和Co2+滴定到二甲基咪唑的甲醇溶液中,并调节共滴定时间和H2O的用量,以调控形核生长-固相转化过程,从而调控ZIF-67纳米颗粒转变为分级多孔超薄二维ZIF-67的衍化程度和暴露面,制备得到拥有丰富不饱和Co配位中心的分级多孔超薄(< 5 nm)二维ZIF-67。
本发明的显著优点在于:
(1)本发明在无表面活性剂的条件下,利用易获得的原料,采用共滴定法,一步合成了厚度< 5 nm的超薄二维分级多孔ZIF-67。
(2)本发明所需要的设备和材料易于获取,工艺操作简单,工艺条件简洁,具有成本低、安全、效率高的优点,可大规模工业化生产,具有很好的推广应用价值。
附图说明
图1为实施例1中搅拌反应2、4、6、12h所得产品的SEM对比图;
图2为实施例2中滴加1、2.5、5、10 mL H2O后所得产品的SEM对比图;
图3为实施例3所得产品的形貌结构表征图,其中a为SEM图,b为能谱图,c为TEM图,d为AFM图;
图4为实施例3所得产品的XRD图;
图5为实施例3所得产品的FT-IR谱图;
图6为实施例3所得产品的N2-吸脱附曲线和孔径分布图;
图7为对比例1中所得产品的SEM图。
具体实施方式
一种超薄二维分级多孔ZIF-67的合成方法,其步骤如下:
(1)将0.2-3.5 g六水合硝酸钴加入到5-20 mL甲醇中形成溶液A,将0.5g-2 g 的2-甲基咪唑加入到5-20 mL甲醇中形成溶液B,将溶液A和溶液B分别以100-800 rpm的转速室温搅拌20-50 min;
(2)搅拌完成后按体积比1:5-5:1将溶液A通过蠕动泵以100-15000 μL/min的速度缓慢滴加到溶液B中,并在滴加10 min后,同时通过蠕动泵将溶液B体积5%-200%的H2O以100-15000 μL/min的速度滴加到溶液B中,500 rpm搅拌反应1-72 h;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤3次后置于冰箱中冷冻,再置于冷冻干燥机中于-50 ℃干燥4-72 h,得到厚度<5 nm的超薄二维分级多孔ZIF-67。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以结合。
实施例1
(1)将0.546 g的六水合硝酸钴加入到15 mL甲醇中形成溶液A,将0.632 g的2-甲基咪唑加入到15 mL甲醇中形成溶液B,将溶液A和溶液B分别以500 rpm的转速室温搅拌处理30 min;
(2)搅拌完成后将所得溶液A通过蠕动泵以500 μL/min的速度滴加到溶液B中,滴加10 min后,同时将5 mL的H2O通过蠕动泵以500 μL/min的速度滴加到溶液B中,500 rpm分别搅拌反应2、4、6、12h;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤3次后置于冰箱中冷冻,再置于冷冻干燥机中于-50 ℃干燥8 h。
图1为本实施例中搅拌反应2、4、6、12h后所得产品的SEM图。由图中可见,当反应2h时,可以看到规则的ZIF-67颗粒,其尺寸约200 nm,之后随着反应时间的延长,外延生长的纳米片越来越大,将纳米颗粒包裹在内部;当反应6 h时,规则的多面体ZIF-67颗粒转变为不规则的四面体,其颗粒尺寸进一步减小(< 200 nm);当反应12 h时,纳米颗粒完全转化为由超薄二维ZIF-67形成的分级多孔结构。
实施例2
(1)将0.546 g的六水合硝酸钴加入到15 mL甲醇中形成溶液A,将0.632 g的2-甲基咪唑加入到15 mL甲醇中形成溶液B,将溶液A和溶液B分别以500 rpm的转速室温搅拌处理30 min;
(2)搅拌完成后将所得溶液A通过蠕动泵以500 μL/min的速度滴加到溶液B中,滴加10 min后,同时将1、2.5、5、10 mL的H2O(对应于溶液B体积的6.7%、16.7%、33.3%、66.7%)通过蠕动泵以500 μL/min的速度分别滴加到溶液B中,500 rpm搅拌反应24 h。
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤3次后置于冰箱中冷冻,再置于冷冻干燥机中于-50 ℃干燥8 h。
图2为本实施例中滴加1、2.5、5、10 mL H2O后所得产品的SEM对比图。从图中可以看出,当共滴定1 mL的H2O时,所制备的ZIF-67大部分为几何多面体颗粒,每个颗粒的表面出现褶皱,存在外延生长的纳米片;当共滴定2.5 mL的H2O时,原来规则的多面体颗粒变得不规则,其表面的褶皱更加明显,并且外延生长的纳米片进一步生长;当添加5 mL以上的H2O之后,由超薄的纳米片相互交联形成自支撑的分级多孔材料。
实施例3
(1)将0.546 g的六水合硝酸钴加入到15 mL甲醇中形成溶液A,将0.632 g的2-甲基咪唑加入到15 mL甲醇中形成溶液B,将溶液A和溶液B分别以500 rpm的转速室温搅拌处理30 min;
(2)搅拌完成后将所得溶液A通过蠕动泵以500 μL/min的速度滴加到溶液B中,滴加10 min后,同时将5 mL的H2O通过蠕动泵以500 μL/min的速度滴加到溶液B中,500 rpm搅拌反应24h;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤3次后置于冰箱中冷冻,再置于冷冻干燥机中于-50 ℃干燥8 h。
图3为本实施例中搅拌反应24 h后所得产品的形貌结构表征图。从SEM图(a)可以看出,其是由纳米片相互支撑形成的分级多孔ZIF-67(a),电子能谱mapping(b)结果显示,产品由Co、C、N三种元素组成,且各元素均匀的分布在纳米片上。由TEM图(c)和AFM图(d)表明,自组装的分级多孔ZIF-67纳米片属于超薄材料,其厚度~3 nm。
图4为本实施例所得产品的XRD图。从图中可以看出,超薄二维分级多孔ZIF-67的衍射峰与标准的ZIF-67的衍射图谱基本一致。
图5为本实施例所得产品的FT-IR谱图。
图6为本实施例所得产品的N2-吸脱附曲线和孔径分布图。从图中可见,分级多孔超薄ZIF-67的BET面积为400 cm2 g-1。吸脱附等温线存在一个小的磁滞回线,孔径分布出现在大约1.5nm的微孔范围以及大约40nm的介孔范围。
对比例1
(1)将0.546 g的六水合硝酸钴加入到15 mL甲醇中形成溶液A,将0.632 g的2-甲基咪唑加入到15 mL甲醇中形成溶液B,将溶液A和溶液B分别以500 rpm的转速室温搅拌处理30 min;
(2)搅拌完成后将所得溶液A通过蠕动泵以500 μL/min的速度滴加到溶液B中,搅拌反应24 h;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤3次后置于冰箱中冷冻,再置于冷冻干燥机中于-50 ℃干燥8 h。
图7为本对比例所得产品的SEM图。从图中可以看出,在不加入H2O的条件下,所得样品为不均匀的多面体颗粒。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:包括以下步骤:
(1)将六水合硝酸钴加入到甲醇中形成溶液A,将2-甲基咪唑加入到甲醇中形成溶液B,将溶液A和溶液B分别进行室温搅拌;
(2)搅拌完成后将溶液A通过蠕动泵缓慢滴加到溶液B中,并在滴加10min后,同时通过蠕动泵将一定量的H2O滴加到溶液B中,搅拌反应;
(3)反应结束后离心分离,得到紫色沉淀,用甲醇离心洗涤后冷冻干燥,即得。
2. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(1)所述溶液A中六水合硝酸钴的浓度为0.01 g/mL-0.7 g/mL;所述溶液B中2-甲基咪唑的浓度为0.025 g/mL-0.4 g/mL。
3. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(1)中所述室温搅拌的速度为100-800 rpm,时间为20-50 min。
4.根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(2)中所用溶液A与溶液B的体积比为1:5-5:1。
5.根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(2)中滴加H2O的量与溶液B的体积比为1:20-2:1。
6. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(2)中溶液A与H2O的滴加速度均为100-15000 μL/min。
7. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(2)中所述搅拌反应的速度为500 rpm,时间为1-72h。
8. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:步骤(3)所述冷冻干燥的温度为-50 ℃,时间为4-72 h。
9. 根据权利要求1所述的一种超薄二维分级多孔ZIF-67的合成方法,其特征在于:所得超薄二维分级多孔ZIF-67的厚度< 5 nm,BET为200-400 cm2/g,主要孔隙结构为微孔和/或介孔,其孔径分布分别为1.1-1.5 nm和35-40 nm。
CN202110984258.XA 2021-08-25 2021-08-25 一种超薄二维分级多孔zif-67的合成方法 Active CN113698617B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110984258.XA CN113698617B (zh) 2021-08-25 2021-08-25 一种超薄二维分级多孔zif-67的合成方法
US17/833,593 US11819836B2 (en) 2021-08-25 2022-06-06 Method for synthesizing 2D ultrathin ZIF-67 with hierarchical porous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110984258.XA CN113698617B (zh) 2021-08-25 2021-08-25 一种超薄二维分级多孔zif-67的合成方法

Publications (2)

Publication Number Publication Date
CN113698617A true CN113698617A (zh) 2021-11-26
CN113698617B CN113698617B (zh) 2022-06-17

Family

ID=78654871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110984258.XA Active CN113698617B (zh) 2021-08-25 2021-08-25 一种超薄二维分级多孔zif-67的合成方法

Country Status (2)

Country Link
US (1) US11819836B2 (zh)
CN (1) CN113698617B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163652A (zh) * 2021-12-11 2022-03-11 上海工程技术大学 一种超薄zif-67纳米片及其制备方法
CN115739099A (zh) * 2022-12-07 2023-03-07 广东工业大学 一种富锌离子缺陷ZnNi LDHs纳米片材料及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036967A (zh) * 2014-05-27 2014-09-10 中国矿业大学 一种超细晶粒金属氧化物/多孔碳电极及其制备方法
CN105289695A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种石墨烯负载Co-N-C氧还原催化剂及其制备方法
CN105413635A (zh) * 2015-11-02 2016-03-23 江苏省海洋资源开发研究院(连云港) 一种核-壳结构金属有机骨架材料的制备方法
CN105883752A (zh) * 2016-04-28 2016-08-24 北京科技大学 一种超薄二维碳纳米材料的两相界面制备方法
CN106328960A (zh) * 2016-10-08 2017-01-11 华南理工大学 Zif‑67模板法制备钴铂核壳颗粒/多孔碳复合材料以及在燃料电池阴极中的催化应用
CN110527105A (zh) * 2019-08-26 2019-12-03 南京航空航天大学 一种超薄二维多孔金属有机框架纳米片及其制备方法
US20200131214A1 (en) * 2018-10-24 2020-04-30 Sogang University Research & Business Development Foundation Crystal structure-modulated zeolitic imidazolate framework nanoparticles and method of producing the same
US20200291046A1 (en) * 2019-03-12 2020-09-17 China University Of Petroleum-Beijing Preparation method for zeolitic imidazolate frameworks
US20210016245A1 (en) * 2018-03-14 2021-01-21 Deepak Pahwa METHOD FOR IN-SITU SYNTHESIS OF METAL ORGANIC FRAMEWORKS (MOFs), COVALENT ORGANIC FRAMEWORKS (COFs) AND ZEOLITE IMIDAZOLATE FRAMEWORKS (ZIFs), AND APPLICATIONS THEREOF
US20210155649A1 (en) * 2018-10-09 2021-05-27 Soochow University Ultra-thin ni-fe-mof nanosheet, preparation method and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036967A (zh) * 2014-05-27 2014-09-10 中国矿业大学 一种超细晶粒金属氧化物/多孔碳电极及其制备方法
CN105413635A (zh) * 2015-11-02 2016-03-23 江苏省海洋资源开发研究院(连云港) 一种核-壳结构金属有机骨架材料的制备方法
CN105289695A (zh) * 2015-12-08 2016-02-03 武汉理工大学 一种石墨烯负载Co-N-C氧还原催化剂及其制备方法
CN105883752A (zh) * 2016-04-28 2016-08-24 北京科技大学 一种超薄二维碳纳米材料的两相界面制备方法
CN106328960A (zh) * 2016-10-08 2017-01-11 华南理工大学 Zif‑67模板法制备钴铂核壳颗粒/多孔碳复合材料以及在燃料电池阴极中的催化应用
US20210016245A1 (en) * 2018-03-14 2021-01-21 Deepak Pahwa METHOD FOR IN-SITU SYNTHESIS OF METAL ORGANIC FRAMEWORKS (MOFs), COVALENT ORGANIC FRAMEWORKS (COFs) AND ZEOLITE IMIDAZOLATE FRAMEWORKS (ZIFs), AND APPLICATIONS THEREOF
US20210155649A1 (en) * 2018-10-09 2021-05-27 Soochow University Ultra-thin ni-fe-mof nanosheet, preparation method and use thereof
US20200131214A1 (en) * 2018-10-24 2020-04-30 Sogang University Research & Business Development Foundation Crystal structure-modulated zeolitic imidazolate framework nanoparticles and method of producing the same
US20200291046A1 (en) * 2019-03-12 2020-09-17 China University Of Petroleum-Beijing Preparation method for zeolitic imidazolate frameworks
CN110527105A (zh) * 2019-08-26 2019-12-03 南京航空航天大学 一种超薄二维多孔金属有机框架纳米片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163652A (zh) * 2021-12-11 2022-03-11 上海工程技术大学 一种超薄zif-67纳米片及其制备方法
CN115739099A (zh) * 2022-12-07 2023-03-07 广东工业大学 一种富锌离子缺陷ZnNi LDHs纳米片材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113698617B (zh) 2022-06-17
US20230063877A1 (en) 2023-03-02
US11819836B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
Lu et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction
Zhao et al. Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis
Wan et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid
Tahir et al. Synthesis of morphology controlled NiCo-LDH microflowers derived from ZIF-67 using binary additives and their excellent asymmetric supercapacitor properties
Zeng et al. Core–shell CdS@ ZIF-8 structures for improved selectivity in photocatalytic H 2 generation from formic acid
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
Lv et al. Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions
Pal et al. Hierarchically order porous lotus shaped nano-structured MnO 2 through MnCO 3: chelate mediated growth and shape dependent improved catalytic activity
CN113698617B (zh) 一种超薄二维分级多孔zif-67的合成方法
Yokoi et al. Preparation of a colloidal array of NaTaO3 nanoparticles via a confined space synthesis route and its photocatalytic application
CA2600120A1 (en) Single crystalline noble metal ultrathin film nanoparticles formed using, as reaction field, adsorbed micell film formed at solid/liquid interface and process for producing the same
Liu et al. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation
CN111129468B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN110665484B (zh) 一种协同生长的自支撑介孔金属有机框架材料的制备方法
Juibari et al. Metal–organic framework-derived nanocomposite metal-oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate
CN113209969A (zh) 一种制备碳纳米管的催化剂及其制备方法和应用
Wan et al. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Huang et al. 3-Dimensional flower-like clusters of CoNiP nanofoils in-situ grown on randomly-dispersed rGO-Nanosheets with superior electrocatalysis for hydrogen evolution reactions
CN111105935B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
Xu et al. Recent progress of MOF-functionalized nanocomposites: from structure to properties
CN108948366A (zh) 一种具有丰富Lewis酸性位的Fe-MOF催化剂的制备及其脱硫应用
CN111944159A (zh) 一种锌为基础的片状金属有机骨架颗粒材料及其制备方法
CN114381758B (zh) 一种镍掺杂勃姆石与还原氧化石墨烯复合型电催化剂及其制备与应用
CN110894298B (zh) 一种MOFs纳米材料及其衍生物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant