CN110660871A - 一种InAs量子点的远程外延结构及制备与应用 - Google Patents

一种InAs量子点的远程外延结构及制备与应用 Download PDF

Info

Publication number
CN110660871A
CN110660871A CN201910899953.9A CN201910899953A CN110660871A CN 110660871 A CN110660871 A CN 110660871A CN 201910899953 A CN201910899953 A CN 201910899953A CN 110660871 A CN110660871 A CN 110660871A
Authority
CN
China
Prior art keywords
inas quantum
layer
quantum dot
layer graphene
epitaxial structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910899953.9A
Other languages
English (en)
Inventor
李国强
余粤锋
林静
梁敬晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910899953.9A priority Critical patent/CN110660871A/zh
Publication of CN110660871A publication Critical patent/CN110660871A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池器件领域,公开了一种InAs量子点的远程外延结构及制备与应用。所述远程外延结构包括依次层叠的GaAs衬底、单层石墨烯层和InAs量子点阵列。其制备方法为:将单层石墨烯转移到GaAs衬底上,然后放入分子束外延系统中,在单层石墨烯层上生长InAs量子点阵列,得到InAs量子点的远程外延结构。本发明通过在砷化镓衬底与砷化铟外延层之间引入单层石墨烯结构,有效阻断了界面的铟原子与镓原子的互扩散,并为量子点的生长提供了平面有序的成核位点,显著提高砷化铟量子点的晶体质量,为砷化铟中间带量子点电池性能的提升提供有效的材料基础。

Description

一种InAs量子点的远程外延结构及制备与应用
技术领域
本发明属于太阳能电池器件领域,具体涉及一种InAs量子点的远程外延结构及制备与应用。
背景技术
能源问题是现今世界各国共同面对的巨大挑战,太阳能高效光伏技术作为支撑国民经济、可持续发展战略性技术以及提高我国国际竞争力的重要先进生产力,早已成为国家科学技术长期发展规划中至关重要的发展方向。因此,发展太阳能高效光伏技术、提高太阳能电池光伏转换效率,增强太阳能电池实用性刻不容缓。
迄今为止,采用以GaAs为主的Ⅲ-Ⅴ族化合物在光伏领域的应用得到了充分的重视与推广,以GaAs基体系制备的太阳电池效率无论是多结叠层电池还是单结电池都获得了最高的光电转换效率,并在航空航天领域中得到了应用,但是目前太阳电池的光电转换效率的提升受到了叠层结构的晶格匹配与带隙匹配之间的矛盾的限制;上世纪末,InAs量子点中间带太阳电池的概念被提出,以其提供中间能带的特性将单结太阳电池的理论极限效率提升至63.2%。目前, InAs量子点结构较低的尺寸与位置分布均匀性是影响量子点晶体质量、降低电池短路电流和光电转换效率的主要缺陷。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种InAs量子点的远程外延结构。本发明基于InAs量子点的远程外延结构能够有效地提高InAs量子点的尺寸均匀性,从而提高光生载流子的输运速率。
本发明的另一目的在于提供上述InAs量子点的远程外延结构的制备方法。
本发明的再一目的在于提供上述InAs量子点的远程外延结构在制备肖特基结太阳电池中的应用。
本发明目的通过以下技术方案实现:
一种InAs量子点的远程外延结构,包括依次层叠的GaAs衬底、单层石墨烯层和InAs量子点阵列。
进一步地,所述GaAs衬底是指Si掺杂GaAs衬底,晶向为(100)或(001), Si掺杂浓度为1018~1020/cm3,载流子迁移率为1200~1600cm2/(vs)。
上述InAs量子点的远程外延结构的制备方法,包括如下制备步骤:
(1)将生长在铜基上的单层石墨烯转移到氯化铁溶液中溶解铜基底,采用 PMMA陪片将单层石墨烯在水中清洗后转移到GaAs衬底上,氮气吹干后放入 40~60℃的丙酮中溶解PMMA陪片,得到具有单层石墨烯层的GaAs衬底;
(2)将步骤(1)具有单层石墨烯层的GaAs衬底放入分子束外延系统(MBE) 中,在单层石墨烯层上生长InAs量子点阵列,得到InAs量子点的远程外延结构。
进一步地,步骤(1)中所述生长在铜基上的单层石墨烯通过化学气相沉积 (CVD)法制备。
进一步地,步骤(1)中所述GaAs衬底在使用前先依次经AR级丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗。
进一步地,步骤(1)中所述氯化铁溶液的浓度为1mol/L。
进一步地,步骤(2)中所述生长InAs量子点阵列的具体过程为:以0.1~ 0.15℃/s的升温速率将衬底温度升至550~650℃,同时将砷源温度升至 240~260℃,将铟源温度升至760~840℃,将衬底、砷源、铟源挡板打开,进行 InAs量子点阵列结构生长,时间为60~240秒,生长结束后取出降至室温。
上述InAs量子点的远程外延结构在制备肖特基结太阳电池中的应用。
进一步地,所述肖特基结太阳电池包括由上至下依次设置的Ag顶电极、单层石墨烯层、InAs量子点阵列层、单层石墨烯层、GaAs衬底层和Au背电极。
本发明的原理为:在砷化镓衬底上引入单层石墨烯,基于单层石墨烯较弱的机械强度,石墨烯在GaAs衬底上容易产生微裂纹,而由于石墨烯自身的等长六元环结构,石墨烯断裂处裂纹为直线,为InAs量子点的生长提供了分布有序的成核位点,从而实现分布有序InAs量子点阵列的生长。
相对于现有技术,本发明具有如下优点及有益效果:
(1)砷化铟量子点中间带太阳电池由于量子点材料的结构异化、失活以及大密度缺陷的存在,其电池效率一直难以向理论效率迈进,而本发明通过在砷化镓衬底与砷化铟外延层之间引入单层石墨烯结构,有效阻断了界面的铟原子与镓原子的互扩散,并为量子点的生长提供了平面有序的成核位点,有效地抑制了量子点结构异化、失活的现象,降低了砷化铟量子点内的缺陷密度,有效抑制光生载流子在砷化铟量子点缺陷内的非辐射复合,从而显著提高砷化铟量子点的晶体质量,为砷化铟中间带量子点电池性能的提升提供有效的材料基础。
(2)本发明利用单层石墨烯较弱的机械强度,调制微裂纹(氮气吹干可进一步促进微裂纹形成),为InAs量子点提供有序的形核位点,省去了制造有序位点的电子束曝光等繁琐且高成本的常规工艺。
(3)本发明采用热的丙酮清洗PMMA陪片,有效缓解了石墨烯转移到衬底上溶解PMMA时大片撕裂的问题。
附图说明
图1为本发明实施例所得远程外延结构的结构示意图;图中编号说明如下:1-InAs量子点阵列层,2-单层石墨烯层,3-GaAs衬底层。
图2为本发明实施例1所得InAs量子点的远程外延结构的微观形貌表征图。
图3为本发明实施例1所得InAs量子点的远程外延结构的实物图。
图4为本发明实施例1所得InAs量子点的远程外延结构制备的肖特基结太阳电池器件的结构示意图;图中编号说明如下:1-Ag顶电极,2-单层石墨烯层,3-InAs量子点阵列层,4-GaAs衬底层,5-Au背电极。
图5为本发明实施例1所得InAs量子点的远程外延结构制备的肖特基结太阳电池器件的性能表征图,其中(a)为有无单层石墨烯的InAs量子点结构的 GaAs太阳电池的EQE表征结果图;(b)为有无单层石墨烯的InAs量子点结构的GaAs太阳电池的电流密度-电压(J-V)曲线图;(c)、(d)分别为(a)、(b) 中两曲线的差值曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)采用高掺杂n型GaAs衬底为基底材料,晶向为(100),Si掺杂浓度 5.1×1018/cm3,载流子迁移率为1336cm2/(vs)。按照顺序,分别用AR级丙酮、乙醇和超纯水进行5分钟的超声清洗,之后用6%的盐酸润洗3分钟,之后用去离子水进行冲洗。
(2)石墨烯转移:石墨烯为生长在铜基上的单层石墨烯,制备方法为常规 CVD方法(参考Dervishi E,Li Z,Watanabe F,et al.Large-scale graphene production by RF-cCVD method[J].Chemical Communications,2009(27):4061.),在转移前,石墨烯需先转移到1mol/L的氯化铁溶液,将铜金属基底完全溶解后,使用PMMA陪片将石墨烯在超纯水中进行3次转移,每次3分钟,以达到完全除去氯化铁的目的,随后转移到步骤(1)处理后的GaAs衬底上。使用氮气将衬底与石墨烯上残留的水吹干,将吹干的衬底放入温度为60℃的丙酮中,彻底溶解石墨烯上的PMMA,得到具有单层石墨烯层的GaAs衬底。
(3)将具有单层石墨烯层的GaAs衬底放入分子束外延系统(MBE)中,以0.1℃/s的升温速率将衬底温度升到600℃,同时将砷源(纯度为99.99999%的As4块状固体)温度升至260℃,将铟源(纯度为99.99999%的金属铟球)温度升至780℃;将衬底、砷源、铟源挡板打开,进行InAs量子点阵列结构生长制备,时间为80秒,生长结束后将所有挡板关闭,并将尚未降温的基片取出至放样室内快速降温,得到InAs量子点的远程外延结构。
本实施例所得远程外延结构的结构示意图如图1所示;由上至下依次为InAs 量子点阵列层、单层石墨烯层和GaAs衬底层。
本实施例所得InAs量子点的远程外延结构的微观形貌表征图和实物图分别如图2和图3所示。结果可见InAs量子点结构阵列具有一定的空间有序性。
采用本实施例所得InAs量子点的远程外延结构制备的肖特基结太阳电池器件,其结构示意图如图4所示。由上至下依次设置的Ag顶电极、单层石墨烯层、 InAs量子点阵列层、单层石墨烯层、GaAs衬底层和Au背电极构成。所得肖特基结太阳电池器件的性能表征图如图5所示。其中(a)为有无单层石墨烯的InAs 量子点结构的GaAs太阳电池的EQE表征结果图;(b)为有无单层石墨烯的InAs 量子点结构的GaAs太阳电池的电流密度-电压(J-V)曲线图;(c)、(d)分别为(a)、(b)中两曲线的差值曲线图。通过图5中(c)、(d)结果可以看出,本发明具有单层石墨烯的InAs量子点的远程外延结构制备的肖特基结太阳电池器件相比无单层石墨烯的InAs量子点结构的GaAs太阳电池在外量子效率和电流密度方面均有一定程度的提升。
实施例2
(1)采用高掺杂n型GaAs衬底为基底材料,晶向为(001),Si掺杂浓度 5.1×1019/cm3,载流子迁移率为1600cm2/(vs)。按照顺序,分别用AR级丙酮、乙醇和超纯水进行5分钟的超声清洗,之后用6%的盐酸润洗3分钟,之后用去离子水进行冲洗。
(2)石墨烯转移:石墨烯为生长在铜基上的单层石墨烯,制备方法为常规 CVD方法(参考Dervishi E,Li Z,Watanabe F,et al.Large-scale graphene production by RF-cCVD method[J].Chemical Communications,2009(27):4061.),在转移前,石墨烯需先转移到1mol/L的氯化铁溶液,将铜金属基底完全溶解后,使用PMMA陪片将石墨烯在超纯水中进行3次转移,每次3分钟,以达到完全除去氯化铁的目的,随后转移到步骤(1)处理后的GaAs衬底上。使用氮气将衬底与石墨烯上残留的水吹干,将吹干的衬底放入温度为60℃的丙酮中,彻底溶解石墨烯上的PMMA,得到具有单层石墨烯层的GaAs衬底。
(3)将具有单层石墨烯层的GaAs衬底放入分子束外延系统(MBE)中,以0.15℃/s的升温速率将衬底温度升到650℃,同时将砷源(纯度为99.99999%的As4块状固体)温度升至240℃,将铟源(纯度为99.99999%的金属铟球)温度升至840℃;将衬底、砷源、铟源挡板打开,进行InAs量子点阵列结构生长制备,时间为80秒,生长结束后将所有挡板关闭,并将尚未降温的基片取出至放样室内快速降温,得到InAs量子点的远程外延结构。
本实施例所得远程外延结构的结构示意图如图1所示;由上至下依次为InAs 量子点阵列层、单层石墨烯层和GaAs衬底层。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种InAs量子点的远程外延结构,其特征在于:所述远程外延结构包括依次层叠的GaAs衬底、单层石墨烯层和InAs量子点阵列。
2.根据权利要求1所述的一种InAs量子点的远程外延结构,其特征在于:所述GaAs衬底是指Si掺杂GaAs衬底,晶向为(100)或(001),Si掺杂浓度为1018~1020/cm3,载流子迁移率为1200~1600cm2/(vs)。
3.权利要求1或2所述的一种InAs量子点的远程外延结构的制备方法,其特征在于包括如下制备步骤:
(1)将生长在铜基上的单层石墨烯转移到氯化铁溶液中溶解铜基底,采用PMMA陪片将单层石墨烯在水中清洗后转移到GaAs衬底上,氮气吹干后放入40~60℃的丙酮中溶解PMMA陪片,得到具有单层石墨烯层的GaAs衬底;
(2)将步骤(1)具有单层石墨烯层的GaAs衬底放入分子束外延系统中,在单层石墨烯层上生长InAs量子点阵列,得到InAs量子点的远程外延结构。
4.根据权利要求3所述的一种InAs量子点的远程外延结构的制备方法,其特征在于:步骤(1)中所述生长在铜基上的单层石墨烯通过化学气相沉积法制备。
5.根据权利要求3所述的一种InAs量子点的远程外延结构的制备方法,其特征在于:步骤(1)中所述GaAs衬底在使用前先依次经AR级丙酮、乙醇和超纯水进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗。
6.根据权利要求3所述的一种InAs量子点的远程外延结构的制备方法,其特征在于:步骤(1)中所述氯化铁溶液的浓度为1mol/L。
7.根据权利要求3所述的一种InAs量子点的远程外延结构的制备方法,其特征在于步骤(2)中所述生长InAs量子点阵列的具体过程为:以0.1~0.15℃/s的升温速率将衬底温度升至550~650℃,同时将砷源温度升至240~260℃,将铟源温度升至760~840℃,将衬底、砷源、铟源挡板打开,进行InAs量子点阵列结构生长,时间为60~240秒,生长结束后取出降至室温。
8.权利要求1或2所述的一种InAs量子点的远程外延结构在制备肖特基结太阳电池中的应用。
9.根据权利要求8所述的一种InAs量子点的远程外延结构在制备肖特基结太阳电池中的应用,其特征在于:所述肖特基结太阳电池包括由上至下依次设置的Ag顶电极、单层石墨烯层、InAs量子点阵列层、单层石墨烯层、GaAs衬底层和Au背电极。
CN201910899953.9A 2019-09-23 2019-09-23 一种InAs量子点的远程外延结构及制备与应用 Pending CN110660871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910899953.9A CN110660871A (zh) 2019-09-23 2019-09-23 一种InAs量子点的远程外延结构及制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910899953.9A CN110660871A (zh) 2019-09-23 2019-09-23 一种InAs量子点的远程外延结构及制备与应用

Publications (1)

Publication Number Publication Date
CN110660871A true CN110660871A (zh) 2020-01-07

Family

ID=69038957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910899953.9A Pending CN110660871A (zh) 2019-09-23 2019-09-23 一种InAs量子点的远程外延结构及制备与应用

Country Status (1)

Country Link
CN (1) CN110660871A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122155A (zh) * 2021-10-15 2022-03-01 华南理工大学 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN114836827A (zh) * 2022-04-29 2022-08-02 中国科学院半导体研究所 量子点的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196065A (ja) * 1998-12-25 2000-07-14 Fujitsu Ltd 量子ドットを備えた素子
JP2002237456A (ja) * 2000-12-04 2002-08-23 Oki Electric Ind Co Ltd 半導体素子及びその製造方法
JP2009231601A (ja) * 2008-03-24 2009-10-08 Pioneer Electronic Corp 量子ドットの形成方法
US20100187499A1 (en) * 2009-01-29 2010-07-29 Oh Jae-Eung Method for epitaxial growth and epitaxial layer structure using the method
CN101908581A (zh) * 2010-06-23 2010-12-08 中国科学院半导体研究所 磷化镓铝应力补偿的砷化铟量子点太阳电池制作方法
CN102130206A (zh) * 2010-12-23 2011-07-20 中国科学院半导体研究所 硅掺杂的砷化铟/砷化镓量子点太阳电池的制作方法
US20150279656A1 (en) * 2014-03-28 2015-10-01 National Tsing Hua University GaN EPITAXIAL GROWTH METHOD
CN106409988A (zh) * 2016-12-09 2017-02-15 中国科学院微电子研究所 一种石墨烯/砷化镓太阳电池的制备方法
US20170047223A1 (en) * 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer
CN106784068A (zh) * 2016-12-09 2017-05-31 中国科学院微电子研究所 一种石墨烯/砷化镓太阳电池
CN108565343A (zh) * 2018-05-30 2018-09-21 华南理工大学 高性能量子点中间带石墨烯肖特基结太阳电池及制备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196065A (ja) * 1998-12-25 2000-07-14 Fujitsu Ltd 量子ドットを備えた素子
JP2002237456A (ja) * 2000-12-04 2002-08-23 Oki Electric Ind Co Ltd 半導体素子及びその製造方法
JP2009231601A (ja) * 2008-03-24 2009-10-08 Pioneer Electronic Corp 量子ドットの形成方法
US20100187499A1 (en) * 2009-01-29 2010-07-29 Oh Jae-Eung Method for epitaxial growth and epitaxial layer structure using the method
CN101908581A (zh) * 2010-06-23 2010-12-08 中国科学院半导体研究所 磷化镓铝应力补偿的砷化铟量子点太阳电池制作方法
CN102130206A (zh) * 2010-12-23 2011-07-20 中国科学院半导体研究所 硅掺杂的砷化铟/砷化镓量子点太阳电池的制作方法
US20150279656A1 (en) * 2014-03-28 2015-10-01 National Tsing Hua University GaN EPITAXIAL GROWTH METHOD
US20170047223A1 (en) * 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer
CN106409988A (zh) * 2016-12-09 2017-02-15 中国科学院微电子研究所 一种石墨烯/砷化镓太阳电池的制备方法
CN106784068A (zh) * 2016-12-09 2017-05-31 中国科学院微电子研究所 一种石墨烯/砷化镓太阳电池
CN108565343A (zh) * 2018-05-30 2018-09-21 华南理工大学 高性能量子点中间带石墨烯肖特基结太阳电池及制备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122155A (zh) * 2021-10-15 2022-03-01 华南理工大学 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN114836827A (zh) * 2022-04-29 2022-08-02 中国科学院半导体研究所 量子点的制备方法

Similar Documents

Publication Publication Date Title
US7615400B2 (en) Method for producing multijunction solar cell
CN110660871A (zh) 一种InAs量子点的远程外延结构及制备与应用
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN109285909B (zh) 一种多结太阳能电池及其制作方法
WO2016145936A1 (zh) 倒装多结太阳能电池及其制备方法
CN110444640A (zh) 一种多波长GaN基核壳纳米棒LED器件结构及其制备方法
CN111081805B (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN211125673U (zh) 一种远程外延结构及肖特基结太阳电池器件
CN101702414B (zh) 一种半导体太阳电池的制作方法
CN110098272B (zh) 一种柔性空间三结太阳能电池外延片的制造方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN209357742U (zh) 三结叠层太阳能电池
CN101702413B (zh) 一种砷化镓/锑化镓太阳电池的制作方法
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN114093973A (zh) 一种火焰修饰碳纳米管/氧化镍/砷化镓太阳电池及其制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
JP5231142B2 (ja) 多接合型太陽電池の製造方法
Fornari Epitaxy for energy materials
CN110444616B (zh) 一种超薄晶硅太阳电池及其制备方法
Bauhuis et al. Inverted thin film InGaP/GaAs tandem solar cells for CPV applications using epitaxial lift off
CN111524992A (zh) 一种GaInP/GaAs/HIT三结叠层太阳能电池及其制备方法
CN107403850B (zh) 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN106935721A (zh) 一种基于液滴外延技术的量子点太阳能电池及其制备方法
CN110137294A (zh) 一种氮化物多结太阳能电池及其制备方法
Aberle et al. Polycrystalline silicon on glass thin-film solar cell research at UNSW the seed layer concept

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination