CN114122155A - 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备 - Google Patents

一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备 Download PDF

Info

Publication number
CN114122155A
CN114122155A CN202111207027.4A CN202111207027A CN114122155A CN 114122155 A CN114122155 A CN 114122155A CN 202111207027 A CN202111207027 A CN 202111207027A CN 114122155 A CN114122155 A CN 114122155A
Authority
CN
China
Prior art keywords
layer
nickel
substrate
gallium arsenide
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111207027.4A
Other languages
English (en)
Inventor
李国强
莫由天
朱利宏
邓曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111207027.4A priority Critical patent/CN114122155A/zh
Publication of CN114122155A publication Critical patent/CN114122155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳电池的技术领域,公开了一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备。所述砷化镓太阳电池包括从下到上依次层叠的背面电极、砷化镓衬底、镍金纳米球阵列层、石墨烯层、正面电极;所述镍金纳米球阵列层是通过以下方法制备得到:在基底上依次蒸镀隔离层,镍层和金层,蒸镀后置于火焰内焰中进行燃烧,基底上形成金属纳米球阵列即镍金纳米球阵列,然后去除基底和隔离层。本发明还公开了砷化镓太阳电池的制备方法。本发明采用火焰处理法制备镍金纳米球阵列层,所制备的镍金纳米球阵列提升了石墨烯/砷化镓异质结太阳电池的光电转换效率。本发明的火焰处理法更加便捷。本发明的太阳电池具有较好的光电性能。

Description

一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其 制备
技术领域
本发明属于太阳电池制备技术领域,具体涉及一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备。
背景技术
太阳能光伏器件是未来最具发展潜力的能源利用技术,如何进一步提高其光电转换效率一直是该领域最核心的问题。为突破太阳电池转换效率瓶颈,宽带隙、高载流子迁移率、直接带隙的砷化镓半导体受到科研界的极大关注,被视为最有望达到最高理论转换效率的材料体系。石墨烯凭借其优异的电学、光学性质,尤其是其特殊的能带结构,被广泛应用于异质结太阳电池的制备,常见的有石墨烯/硅异质结太阳电池和石墨烯/砷化镓异质结太阳电池,以代替传统的工艺繁琐和高昂成本的同质结太阳电池。
近年来,金属纳米颗粒表面所激发的局域表面等离激元在太阳电池陷光中的应用受到广泛关注。金属纳米颗粒表面的自由电子通过利用入射光子的照射进行集体共振,同时在该状态下将入射光子的自由能转化为自由电子的集体共振能,伴随着是强散射效应、局域场增强等物理效应,进而应用于增强太阳电池的光吸收。常见的金属纳米颗粒制备方法主要有电化学沉积、自组装模板法、高温退火和分散旋涂等,其中电化学沉积、高温退火和分散旋涂手段所制备的金属纳米颗粒阵列存在尺寸不一、排列不规整等问题,虽然有机模板自组装法所制备的纳米颗粒阵列尺寸统一且排列整齐,但制备工艺繁琐。特别地,上述方法对实验仪器设备要求较高,难以实现大范围推广。
发明内容
为了克服现有技术的缺点和不足,本发明的目的在于提出一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备方法。
本发明的目的通过以下技术方案实现:
一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池,包括从下到上依次层叠的背面电极、砷化镓衬底、镍金纳米球阵列层、石墨烯层、正面电极。
进一步地,所述砷化镓衬底上表面的两端设有绝缘层,未被绝缘层覆盖的砷化镓衬底上表面以及两端的绝缘层部分上表面设有镍金纳米球阵列层,镍金纳米球阵列层在绝缘层上形成台面结构,镍金纳米球阵列层上设有石墨烯层,石墨烯层上设有正面电极,正面电极覆盖部分石墨烯层。
正面电极位于石墨烯层的两端。
所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,包括以下步骤:
1)在基底上蒸镀隔离层,然后分别蒸镀镍层和金层,蒸镀后置于火焰内焰中进行燃烧,基底上形成金属纳米球阵列即镍金纳米球阵列;
2)在金属纳米球阵列的表面进行石墨烯的转移,在石墨烯层的表面旋涂高分子溶液并成膜,随后去除基底和隔离层,获得金属纳米球阵列/石墨烯层/高分子薄膜;
3)在砷化镓衬底的一表面蒸镀背面电极,退火处理,获得砷化镓衬底/背面电极;当太阳电池中含有绝缘层时,在砷化镓衬底表面制备绝缘层,该表面与蒸镀背面电极的表面为对立面;绝缘层位于砷化镓衬底表面的两端;或者步骤2)中隔离层未完全去除,所述绝缘层为未去除的隔离层,未去除的隔离层位于金属纳米球阵列的两端;
4)将金属纳米球阵列/石墨烯层/高分子薄膜转移至砷化镓衬底/背面电极上,其中金属纳米球阵列设置在砷化镓衬底的表面上,该表面与蒸镀背面电极的表面为对立面;去除高分子薄膜,获得背面电极/砷化镓衬底/金属纳米球阵列/石墨烯层;
5)在石墨烯层上制备正面电极,获得砷化镓太阳电池。
步骤1)中所述基底为不锈钢片、铜片或铁片。所述基底在使用前进行清洗,所述清洗是指采用有机溶剂和水依次对基底进行超声清洗,吹干。
所述有机溶剂为丙酮、乙醇、异丙醇中一种以上。
所述火焰为酒精燃烧的火焰。
步骤1)中所述隔离层为SiO2,其蒸镀厚度为2-1000nm,优选厚度为300~700nm。
步骤1)中所述镍层和金层,其蒸镀厚度分别为2-10nm、2-10nm,优选为2nm、2nm。步骤1)所述的火焰温度为450-1000℃,优选为600~800℃,更优选为650~750℃。
步骤1)中所述分别蒸镀镍层和金层是指先蒸镀镍层,再蒸镀金层或先蒸镀金层,再蒸镀镍层。
步骤1)所述燃烧的时间为1~10min,优选为2~4min,更优选3min。
步骤1)中所述金属纳米球阵列直径为50-100nm。此处直径是指纳米球的直径。
步骤2)中所述石墨烯层的层数为2~4层,优选为3层。
步骤2)中所述去除基底和隔离层是指依次采用FeCl3与HCl混合溶液,KOH水溶液刻蚀掉去除基底和隔离层。
步骤2)中所述高分子溶液为PMMA的溶液。
步骤3)中砷化镓衬底在使用前进行清洗,具体采用有机溶剂和水对砷化镓衬底进行依次超声清洗,吹干。步骤3)所述的有机试剂可以为丙酮、乙醇、异丙醇。退火完成后,裂片,清洗。
步骤3)中所述背面电极可以为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
步骤4)中所述去除高分子薄膜是指采用有机溶剂去除,有机溶剂为丙酮和异丙醇中一种以上。
步骤5)所述正面电极可以为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)相较于现有金属纳米颗粒阵列制备方法,本发明的火焰合成镍金金属纳米球阵列的制备流程更加简便经济,所用设备(酒精火焰)及制备条件要求较低,具有明显竞争力,容易实现规模化生产。
(2)相较于石墨烯/砷化镓太阳电池,本发明采用的火焰合成镍金纳米球阵列,利用表面等离激元效应可增强半导体/金属纳米球、石墨烯/金属纳米球界面局部场强,增强光生载流子分离能力及进一步增强光吸收。此外,在制备镍金纳米球的同时,在金属镍的催化下有少量碳纳米管的生成,作为中间插入层,高电子迁移率的碳纳米管的存在为载流子的传输提高一个途径,进一步提高异质结太阳器件的光伏转化效率。
附图说明
图1为本发明的石墨烯/镍金纳米球阵列/砷化镓太阳电池的结构示意图;1-背面电极,2-砷化镓衬底,3-镍金纳米球阵列层,4-石墨烯层,5-正面电极,6-绝缘层;
图2为实施例1中火焰合成镍金纳米球阵列前后的SEM;
图3为实施例1制备的太阳电池的电流密度-电压曲线;
图4为实施例2制备的太阳电池的电流密度-电压曲线;
图5为实施例3制备的太阳电池的电流密度-电压曲线;
图6为对比例1以及实施例1~3制备的太阳电池的电流密度-电压曲线。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中所用试剂如无特殊说明均可从市场常规购得。
本发明的石墨烯/镍金纳米球阵列/砷化镓太阳电池的结构示意图如图1所示,包括从下到上依次层叠的背面电极1、砷化镓衬底2、镍金纳米球阵列层3、石墨烯层4、正面电极5。
进一步地,所述砷化镓衬底2上表面的两端设有绝缘层6,未被绝缘层覆盖的砷化镓衬底2上表面以及两端的绝缘层部分上表面设有镍金纳米球阵列层3,镍金纳米球阵列层3在绝缘层6上形成台面结构,镍金纳米球阵列层3上设有石墨烯层4,石墨烯层4上设有正面电极5,正面电极覆盖部分石墨烯层。
正面电极5位于石墨烯层4的两端。
本发明的绝缘层是防止电极在制备之后与半导体衬底有直接接触而导致漏电。
实施例1:
(1)采用丙酮、乙醇和去离子水依次对不锈钢片(SS)进行超声清洗各5min,N2吹干,依次蒸镀500nm SiO2隔离层、2nm Au、2nm Ni金属催化剂层,蒸镀后置于酒精火焰内焰中,温度约为700℃,燃烧时间为1min,在不锈钢表面即可获得镍金纳米球阵列,尺寸为50-100nm;
(2)在不锈钢片/金属纳米颗粒阵列表面进行石墨烯的转移(湿法转移:将石墨烯/PMMA薄膜转移悬浮于水面,随后用目标衬底捞起干燥,用丙酮溶解去除PMMA后即成功将石墨烯转移至目标衬底,石墨烯层数为3层),然后旋涂PMMA溶液,干燥成膜,依次使用FeCl3+HCl(各物质的浓度为1M)和KOH水溶液(KOH的浓度为1M)刻蚀不锈钢片和隔离层,得到金属纳米球阵列/石墨烯/PMMA薄膜;
(3)采用丙酮、乙醇和去离子水依次对砷化镓衬底进行依次超声清洗各5min,用N2吹干,在底部进行金背面电极的蒸镀(背电极的厚度为120nm),并裂为面积1×1cm2规格,再次采用丙酮、乙醇和去离子水依次对砷化镓衬底进行依次超声清洗各5min,N2吹干备用;
(4)通过湿法转移将镍金纳米球阵列/石墨烯/PMMA薄膜转移至砷化镓衬底上(将纳米球阵列/石墨烯/PMMA薄膜转移悬浮于水面,随后用目标衬底捞起干燥,用丙酮溶解去除PMMA后即成功将纳米球阵列/石墨烯转移至目标衬底),通过丙酮、异丙醇洗涤去除PMMA;
(5)在镍金纳米球阵列/石墨烯上蒸镀Ag正面电极(正面电极的厚度为120nm)。
图2为实施例1中火焰合成镍金纳米球阵列前后的SEM。燃烧后,本发明的镍金纳米球阵列的尺寸为50-100nm。
本实施例制备的太阳电池性能测试结果为:Voc=0.52V,Jsc=25.83mA cm-2,FF=49.03%,PCE=6.61%;电流密度-电压曲线如图3所示。
实施例2
其它条件与实施例1相同,但是火焰处理时间延长为10min。在不锈钢片/镍金纳米球阵列表面进行石墨烯的转移和PMMA旋涂,通过湿法转移将镍金纳米球阵列/石墨烯/PMMA转移至砷化镓衬底上制得镍金纳米球阵列/砷化镓太阳电池。
本实施例制备的太阳电池性能测试结果为:Voc=0.54V,Jsc=18.84mA cm-2,FF=49.74%,PCE=5.04%;电流密度-电压曲线如图4所示。
实施例3
其它条件与实施例1相同,蒸镀10nm Au、10nm Ni的金属催化剂层,火焰处理时间为10min。在不锈钢片/镍金纳米球阵列表面进行石墨烯的转移和PMMA旋涂,通过湿法转移将镍金纳米球阵列/石墨烯/PMMA转移至砷化镓衬底上制得镍金纳米球阵列/砷化镓太阳电池。
本实施例制备的太阳电池性能测试结果为:Voc=0.59V,Jsc=21.97mA cm-2,FF=35.05%,PCE=4.55%;电流密度-电压曲线如图5所示。
对比例1
太阳电池中未添加镍金金属纳米颗粒阵列,其他条件同实施例1。
对比例1以及实施例1~3的太阳电池电流密度-电压曲线如图6所示。空白样对应对比例1,PCE=3.25%。

Claims (9)

1.一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池,其特征在于:包括从下到上依次层叠的背面电极、砷化镓衬底、镍金纳米球阵列层、石墨烯层、正面电极;
所述镍金纳米球阵列层是通过以下方法制备得到:在基底上蒸镀隔离层,然后蒸镀镍层和金层,蒸镀后置于火焰内焰中进行燃烧,基底上形成金属纳米球阵列即镍金纳米球阵列,然后去除基底和隔离层。
2.根据权利要求1所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池,其特征在于:所述镍层和金层,其蒸镀厚度分别为2-10nm、2-10nm;所述火焰的温度为450-1000℃,所述燃烧的时间为1-10min;
所述金属纳米球阵列的直径为50-100nm;
所述石墨烯层的层数为2~4层。
3.根据权利要求2所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池,其特征在于:所述镍层和金层,其蒸镀厚度分别为2nm、2nm;所述的火焰温度为600~800℃,所述燃烧的时间为2~4min;
所述石墨烯层的层数为3层。
4.根据权利要求1所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池,其特征在于:
所述砷化镓衬底上表面的两端设有绝缘层,未被绝缘层覆盖的砷化镓衬底上表面以及两端的绝缘层部分上表面设有镍金纳米球阵列层,镍金纳米球阵列层在绝缘层上形成台面结构,镍金纳米球阵列层上设有石墨烯层,石墨烯层上设有正面电极,正面电极覆盖部分石墨烯层。
5.根据权利要求1~4任一项所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,其特征在于:包括以下步骤:
1)在基底上蒸镀隔离层,然后蒸镀镍层和金层,蒸镀后置于火焰内焰中进行燃烧,基底上形成金属纳米球阵列即镍金纳米球阵列;
2)在金属纳米球阵列的表面进行石墨烯的转移,在石墨烯层的表面旋涂高分子溶液并成膜,随后去除基底和隔离层,获得金属纳米球阵列/石墨烯层/高分子薄膜;
3)在砷化镓衬底的一表面蒸镀背面电极,退火处理,获得砷化镓衬底/背面电极;当太阳电池中含有绝缘层时,在砷化镓衬底表面制备绝缘层,该表面与蒸镀背面电极的表面为对立面;绝缘层位于砷化镓衬底表面的两端;或者步骤2)中隔离层未完全去除,所述绝缘层为未去除的隔离层,未去除的隔离层位于金属纳米球阵列的两端;
4)将金属纳米球阵列/石墨烯层/高分子薄膜转移至砷化镓衬底/背面电极上,其中金属纳米球阵列设置在砷化镓衬底的表面上,该表面与蒸镀背面电极的表面为对立面;去除高分子薄膜,获得背面电极/砷化镓衬底/金属纳米球阵列/石墨烯层;
5)在石墨烯层上制备正面电极,获得化镓太阳电池。
6.根据权利要求5所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,其特征在于:步骤1)中所述基底为不锈钢片、铜片或铁片;
步骤1)所述镍层和金层,其蒸镀厚度分别为2-10nm、2-10nm,步骤1)所述火焰温度为450-1000℃,步骤1)所述燃烧的时间为1-10min;
步骤1)所述金属纳米球阵列直径为50-100nm;
步骤2)中所述石墨烯层的层数为2~4层。
7.根据权利要求6所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,其特征在于:步骤1)所述镍层和金层,其蒸镀厚度分别为2nm、2nm;所述火焰的温度为600~800℃,所述燃烧的时间为2~4min;
步骤2)中所述石墨烯层的层数为3层。
8.根据权利要求5所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,其特征在于:步骤1)中所述基底在使用前进行清洗,所述清洗是指采用有机溶剂和水依次对基底进行超声清洗,吹干;所述有机溶剂为丙酮、乙醇、异丙醇中一种以上;
所述火焰为酒精燃烧的火焰;
步骤1)所述隔离层为SiO2,其蒸镀厚度为2-1000nm。
9.根据权利要求5所述含有火焰合成镍金纳米球阵列的砷化镓太阳电池的制备方法,其特征在于:
步骤2)中所述去除基底和隔离层是指依次采用FeCl3与HCl混合溶液,KOH水溶液刻蚀掉去除基底和隔离层;
步骤3)中所述背面电极为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极;
步骤4)中所述去除高分子薄膜是指采用有机溶剂去除,有机溶剂为丙酮和异丙醇中一种以上;
步骤5)所述正面电极为金、银、钛、铜、镍、铂、氧化锡锑和铝掺氧化锌单一电极或复合电极。
CN202111207027.4A 2021-10-15 2021-10-15 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备 Pending CN114122155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111207027.4A CN114122155A (zh) 2021-10-15 2021-10-15 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111207027.4A CN114122155A (zh) 2021-10-15 2021-10-15 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备

Publications (1)

Publication Number Publication Date
CN114122155A true CN114122155A (zh) 2022-03-01

Family

ID=80375846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111207027.4A Pending CN114122155A (zh) 2021-10-15 2021-10-15 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备

Country Status (1)

Country Link
CN (1) CN114122155A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823962A (zh) * 2022-04-22 2022-07-29 华南理工大学 一种Au纳米颗粒修饰TiO2纳米管陷光结构及其砷化镓肖特基结太阳能电池和制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100053260A (ko) * 2008-11-12 2010-05-20 한국원자력연구원 이온빔 또는 방사선을 이용한 금속 나노입자 함유 고분자 패턴 및 금속 입자 패턴의 형성 방법
WO2010088726A1 (en) * 2009-02-04 2010-08-12 University Of South Australia Fabrication of nanoparticles on solid surfaces
US20150321162A1 (en) * 2012-12-14 2015-11-12 Leibniz-Institut fuer neue Materialien gemeinnuetzige Gesellschaft mit Metal-nanoparticle-arrays and production of metal-nanoparticle-arrays
CN105679861A (zh) * 2016-01-20 2016-06-15 浙江大学 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN109004037A (zh) * 2017-06-07 2018-12-14 中国科学院物理研究所 光电子器件及其制造方法
CN110660871A (zh) * 2019-09-23 2020-01-07 华南理工大学 一种InAs量子点的远程外延结构及制备与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100053260A (ko) * 2008-11-12 2010-05-20 한국원자력연구원 이온빔 또는 방사선을 이용한 금속 나노입자 함유 고분자 패턴 및 금속 입자 패턴의 형성 방법
WO2010088726A1 (en) * 2009-02-04 2010-08-12 University Of South Australia Fabrication of nanoparticles on solid surfaces
US20150321162A1 (en) * 2012-12-14 2015-11-12 Leibniz-Institut fuer neue Materialien gemeinnuetzige Gesellschaft mit Metal-nanoparticle-arrays and production of metal-nanoparticle-arrays
CN105679861A (zh) * 2016-01-20 2016-06-15 浙江大学 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN109004037A (zh) * 2017-06-07 2018-12-14 中国科学院物理研究所 光电子器件及其制造方法
CN110660871A (zh) * 2019-09-23 2020-01-07 华南理工大学 一种InAs量子点的远程外延结构及制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZHENG 等: ""In situ growing CNTs encapsulating nickel compounds on Ni foils with ethanol flame method as superior counter electrodes of dye-sensitized solar cells"", 《CARBON》, vol. 133, 20 March 2018 (2018-03-20) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823962A (zh) * 2022-04-22 2022-07-29 华南理工大学 一种Au纳米颗粒修饰TiO2纳米管陷光结构及其砷化镓肖特基结太阳能电池和制备方法

Similar Documents

Publication Publication Date Title
CN105469996B (zh) 一种基于金属纳米粒子界面修饰的钙钛矿太阳能电池及其制备方法
CN105428438B (zh) 一种高效钙钛矿太阳能电池及其制备方法
CN110246967B (zh) 一种低温制备柔性钙钛矿太阳能电池的方法
CN108832002B (zh) 一种基于pva修饰空穴传输层的钙钛矿太阳能电池
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN102544378B (zh) 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
CN107946470A (zh) 一种异质结太阳能电池及其制备方法
CN108767113B (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN109065724B (zh) 一种Mo-二氧化钛-AgNWs柔性钙钛矿太阳能电池及其制备方法
CN108649124B (zh) 一种高效率无机钙钛矿太阳电池及其制备方法
WO2023184966A1 (zh) 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法
CN115117247B (zh) 一种钙钛矿太阳能电池及其制备方法
CN111939935A (zh) 一种SnS2量子点/Si二元纳米阵列光电催化剂及其制备方法
Xie et al. GaP/GaPN core/shell nanowire array on silicon for enhanced photoelectrochemical hydrogen production
CN114122155A (zh) 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
Luo et al. Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT: PSS
CN103904217B (zh) 一种多元有机/无机杂化太阳电池及其制备方法
CN109851571B (zh) 一种共轭有机小分子界面修饰材料、制备方法及其构成的有机太阳电池
CN103489941A (zh) 一种硅纳米线阵列结构硅薄膜太阳电池及其制备方法
CN114093955B (zh) 一种碳纳米纤维掺杂氧化镍空穴传输层的砷化镓太阳电池及其制备
Kim et al. Low-temperature thermally evaporated SnO2 based electron transporting layer for perovskite solar cells with annealing process
CN111036263A (zh) 一种Si衬底上InGaN纳米柱@Ti-Ni纳米粒子复合结构及其制备方法与应用
CN111081805A (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination