CN110098272B - 一种柔性空间三结太阳能电池外延片的制造方法 - Google Patents

一种柔性空间三结太阳能电池外延片的制造方法 Download PDF

Info

Publication number
CN110098272B
CN110098272B CN201910385128.7A CN201910385128A CN110098272B CN 110098272 B CN110098272 B CN 110098272B CN 201910385128 A CN201910385128 A CN 201910385128A CN 110098272 B CN110098272 B CN 110098272B
Authority
CN
China
Prior art keywords
layer
gaas
depositing
thickness
doping concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910385128.7A
Other languages
English (en)
Other versions
CN110098272A (zh
Inventor
万智
徐培强
林晓珊
汪洋
张银桥
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun photoelectric Co.,Ltd.
Original Assignee
Nanchang Kaixun Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co ltd filed Critical Nanchang Kaixun Photoelectric Co ltd
Priority to CN201910385128.7A priority Critical patent/CN110098272B/zh
Publication of CN110098272A publication Critical patent/CN110098272A/zh
Application granted granted Critical
Publication of CN110098272B publication Critical patent/CN110098272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明揭示了一种柔性空间三结太阳能电池外延片的制造方法,属于空间飞行器电池的技术领域,适用于空间飞行器电源,同时也可应用于地面移动电源。该外延片包括不锈钢基底及其上外延的三个串联的子电池,子电池带系组合为1.10eV/1.42eV/1.90eV。本发明以柔性不锈钢作为最终衬底,能获得极大的比功率(>1000W/Kg),大幅降低空间电源的发射成本,同时其柔性的特性也能应用于地面移动电源。

Description

一种柔性空间三结太阳能电池外延片的制造方法
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种柔性空间三结太阳能电池外延片的制造方法。
背景技术
GaAs太阳电池是目前航天工程中最常使用的太阳能电池。空间用GaAs太阳电池具有光电转换效率高、抗辐照性能强、温度特性好等特点。常规空间GaAs电池采用GaAs或Ge为基底,成本高昂、柔性差、比功率低。
近年来,各国竞相开发高效、轻质的空间用GaAs柔性太阳能电池,相比传统刚性太阳能电池,柔性太阳能电池具有柔性可弯曲、功率质量比高等优点。
目前,空间用GaAs柔性电池加工工艺为在GaAs衬底上生长倒装电池外延层,经过芯片剥离、键合技术将外延层转移至柔性衬底,同时在Ge衬底上生长正装外延电池外延层,后将Ge衬底机械减薄,贴合至柔性衬底上。但由于键合工艺的良率目前较低,以及衬底成本高等因素阻碍其发展。
因此,如何提供一种成本低、柔性且比功率高的空间电池仍是目前亟待解决的问题。
发明内容
本发明的目的在于提供一种柔性空间三结太阳能电池外延片的制造方法,制备出成本低廉、柔性且比功率高的空间三结太阳能电池外延片。
为实现上述目的,本发明采用的技术方案如下:
一种柔性空间三结太阳能电池外延片的制造方法,在不锈钢基底及其上外延的三个串联的子电池,三个子电池分别为CuInGaSe子电池、GaAs子电池和GaInP子电池,CuInGaSe和GaAs子电池通过缓冲层、超晶格层和双异质结结构的隧穿结层连接,CuInGaSe子电池沉积缓冲层后进行退火处理。
一种柔性空间三结太阳能电池外延片的制造方法,其中:所述的CuInGaSe子电池、GaAs子电池和GaInP子电池禁带宽度组合为1.10eV/1.42eV/1.90eV。
一种柔性空间三结太阳能电池外延片的制造方法,其中:所述的CuInGaSe和GaAs子电池之间的缓冲层为GaAs,超晶格层为GaAs/GaInAs,穿插重复沉积2次,DH结构的隧穿结层为n-AlGaAs/n++-GaAs/p++-GaAs双异质结结构。
一种柔性空间三结太阳能电池外延片的制造方法,其中:CuInGaSe子电池沉积缓冲层后进行退火处理,退火温度720℃,循环3次。
本发明由于采用以上技术方案,使之与现有技术相比,具有以下的优点和积极效果:
1.本发明提供的空间三结太阳能电池外延片用不锈钢取代目前的Ge或GaAs作为衬底,能大大降低电池的制造成本,且柔性可卷曲。
2.本发明提供的空间三结太阳能电池外延片,子电池采用带缝组合为1.10eV/1.42eV/1.90eV的CuInGaSe、GaAs和GaInP,能获得转化效率超过30%、比功率大于1000W/Kg的高效电池,大大降低空间电源的发射成本。
3.本发明的方法制备的电池由于转化效率高、抗辐照性能好等特点在空间电源领域有着独特的优势,同时其转化效率高、柔性的特点也可在地面移动电源领域应用。
附图说明
图1是柔性空间三结太阳能电池外延片结构示意图;
附图标识如下:
100:不锈钢衬底;
101:MoNa层;
102:Mo层;
103:CuInGaSe层;
104:CdS缓冲层;
105:高阻ZnO层;
106:低阻ZnO层;
107:GaAs缓冲层;
108:GaAs/GaInAs超晶格层;
109:GaAs缓冲层;
110:GaAs/GaInAs超晶格层;
111:GaAs隧穿结层;
112:AlGaAs/AlGaInAs(DBR)反射层;
113:GaInP背场层;
114:GaAs基区层;
115:GaAs发射区层;
116:AlInP窗口层;
117:GaInP/AlGaAs隧穿结层;
118:AlGaInP背场层;
119:GaInP基区层;
120:GaInP发射区层;
121:AlInP窗口层;
122:GaAs欧姆接触层。
具体实施方式
下面结合附图和具体实例对本发明提出的柔性空间三结太阳能电池外延片做进一步的详细说明。
如图1所示,为本发明一实施方式的一种柔性空间三结太阳能电池外延片制造方法,包括步骤:
S1:提供一不锈钢衬底100;
具体的,步骤S1为:提供一不锈钢衬底100,厚度50μm,并将不锈钢衬底100放置于磁控溅射反应室中。
S2:在不锈钢衬底100上溅射MoNa层101和Mo层102;
具体的,步骤S2为:运用交流溅射沉积0.5~1μm厚度MoNa层101,然后用交流溅射1~2μm厚度Mo层102。
S3:在Mo层102上溅射CuInGaSe吸收层103和CdS缓冲层104;
具体的,步骤S3为:采用交流溅射CuInGaSe吸收层103,厚度1~2μm。然后采用同样的方法溅射0.5μm厚度的CdS缓冲层104。
S4:在CdS缓冲层104上溅射ZnO窗口层;
具体的,步骤S4为:采用中频磁控溅射ZnO靶材,沉积厚度0.05~0.1μm的高阻ZnO层105。再采用直流溅射掺杂Al2O3的ZnO陶瓷靶材,沉积厚度0.5~0.9μm低阻ZnO层106。
S5:在ZnO窗口层106上沉积GaAs缓冲层107;
具体的,步骤S5为:将薄膜转移至MOCVD设备中,沉积n-GaAs缓冲层107,GaAs缓冲层厚度1μm,掺杂浓度为≥1×1018cm-3
S6:退火;
具体的,步骤S6为:沉积完GaAs缓冲层后,退火,退火温度720℃,循环3次。
S7:在GaAs缓冲层107上沉积GaAs/GaInAs超晶格层108;
具体的,步骤S7为:沉积完GaAs缓冲层107后再沉积n-GaAs/n-GaInAs超晶格层108,其中先沉积GaAs层,厚度20nm,再沉积GaInAs层,厚度20nm,掺杂浓度都为≥1×1018cm-3,循环10次。
S8:在GaAs/GaInAs超晶格层108上再重复沉积GaAs缓冲层109和GaAs/GaInAs超晶格层110;
具体的,步骤S8为:沉积完在GaAs/GaInAs超晶格层上再沉积n-GaAs缓冲层109,沉积厚度1μm,掺杂浓度为≥1×1018cm-3。再沉积同样的n-GaAs/n-GaInAs超晶格层110,GaAs厚度20nm,GaInAs厚度20nm,掺杂浓度都为≥1×1018cm-3,循环10次。
S9:在GaAs/GaInAs超晶格层110上沉积GaAs隧穿结层111;
具体的,步骤S9为:在GaAs/GaInAs超晶格层110上沉积GaAs隧穿结层111,GaAs隧穿结层包含n-AlGaAs层和n++-GaAs/p++-GaAs隧穿结层,构成了双异质结(DH)结构。先沉积n-AlGaAs层,厚度0.02~0.05μm,掺杂浓度为≥1×1018cm-3。再沉积n++-GaAs层,n++-GaAs层厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3。然后沉积p++-GaAs层,厚度为0.01~0.03μm,掺杂浓度为≥1×1019cm-3
S10:在GaAs隧穿结层111上沉积AlGaAs/AlGaInAs(DBR)反射层112;
具体的,步骤S10为:沉积完GaAs隧穿结层111再沉积p-AlGaAs/p-AlGaInAs(DBR)反射层112,p-AlGaAs/p-AlGaInAs反射层的厚度为1.8μm,掺杂浓度为5×1017cm-3
S11:在AlGaAs/AlGaInAs(DBR)反射层112上沉积GaAs子电池;
具体的,步骤S11为:沉积完AlGaAs/AlGaInAs(DBR)反射层112再沉积GaAs子电池,即依次沉积GaInP背场层113、GaAs基区层114、GaAs发射区层115和AlInP窗口层116。p-GaInP背场层的厚度为0.07μm,掺杂浓度为1~2×1018cm-3。p-GaAs基区层114厚度为2μm,掺杂浓度为2~8×1016cm-3。n-GaAs发射区层115,n-GaAs发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3。n-AlInP窗口层116,n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
S12:在AlInP窗口层116上沉积GaInP/AlGaAs隧穿结层117;
具体的,步骤S12为:首先沉积n++-GaInP层,厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3。然后沉积p++-AlGaAs层,厚度为0.01~0.03μm,掺杂浓度为≥5×1019cm-3
S13:在GaInP/AlGaAs隧穿结层117上沉积GaInP子电池;
具体的,步骤S13为:沉积完GaInP/AlGaAs隧穿结层117再沉积GaInP子电池,即依次沉积AlGaInP背场层118、GaInP基区层119、GaInP发射区层120和AlInP窗口层121。p-AlGaInP背场层118厚度为0.1μm,掺杂浓度为1~2×1018cm-3。p-GaInP基区层119厚度0.8μm,掺杂浓度为1~8×1016cm-3。n-GaInP发射区层120,n-GaInP发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3。n-AlInP窗口层121厚度为0.1μm,掺杂浓度为1×1018cm-3
S14:在AlInP窗口层121上沉积GaAs欧姆接触层122;
具体的,步骤S14为:在AlInP窗口层上沉积n+-GaAs欧姆接触层122,n+-GaAs欧姆接触层的厚度为0.5μm,掺杂浓度≥5×1018cm-3
本实施例所述的柔性GaInP/GaAs/CuInGaSe三结太阳能电池外延片,通过采用不锈钢作为衬底,在不锈钢衬底上运用磁控溅射带隙宽度约1.10eV的CuInGaSe子电池,然后采用MOCVD在CuInGaSe子电池上沉积带隙约为1.42eV的GaAs子电池和带隙约为1.90eV的GaInP子电池,实现了带隙组合1.90eV/1.42eV/1.10eV的柔性空间三结太阳能电池。与目前最常应用的1.90eV/1.40eV/0.67eV带隙组合、Ge为衬底的GaInP/GaInAs/Ge三结太阳能电池相比,太阳光谱得到更有效的分割利用,获得了更高的电池的光电转化效率。为了抑制CuInGaSe多晶晶体上生长单晶外延层带来的位错,采用了退火以及生长多个超晶格的方法,使得生长中电池时位错密度降低到了较低水平。同时在GaAs隧穿结层中插入宽带隙的双异质结n-AlGaAs/n++-GaAs/p++-GaAs结构,防止CuInGaSe子电池杂质对隧穿结的影响,最终得到了成本低、柔性、比功率高的空间用GaAs电池。
需要说明的是,虽然以上描述了本发明的具体实施方式,但是本领域技术人员可以在不脱离本发明原理和实质前提下进行若干改进和润饰,这些改进和润饰也应视为本发明的权利要求保护范围。

Claims (2)

1.一种柔性空间三结太阳能电池外延片的制造方法,其特征在于,外延片结构包括不锈钢基底及其上外延的三个串联的子电池,所述的三个子电池分别为CuInGaSe子电池、GaAs子电池和GaInP子电池,所述的CuInGaSe子电池和所述的GaAs子电池通过缓冲层、超晶格层和双异质结结构的隧穿结层连接,所述的CuInGaSe子电池沉积缓冲层后进行退火处理;所述的CuInGaSe子电池和所述的GaAs子电池之间的缓冲层为GaAs,超晶格层为GaAs/GaInAs,穿插重复沉积2次,隧穿结层为n-AlGaAs/n++-GaAs/p++-GaAs双异质结结构;所述的CuInGaSe子电池沉积缓冲层后进行退火处理,退火温度为720℃,循环3次。
2.根据权利要求1所述一种柔性空间三结太阳能电池外延片的制造方法,其特征在于:包括以下步骤:
S1:提供一不锈钢衬底100;
具体的,步骤S1为:提供一不锈钢衬底100,厚度50μm,并将不锈钢衬底100放置于磁控溅射反应室中;
S2:在不锈钢衬底100上溅射MoNa层101和Mo层102;
具体的,步骤S2为:运用交流溅射沉积0.5~1μm厚度MoNa层101,然后用交流溅射1~2μm厚度Mo层102;
S3:在Mo层102上溅射CuInGaSe吸收层103和CdS缓冲层104;
具体的,步骤S3为:采用交流溅射CuInGaSe吸收层103,厚度1~2μm;然后采用同样的方法溅射0.5μm厚度的CdS缓冲层104;
S4:在CdS缓冲层104上溅射ZnO窗口层;
具体的,步骤S4为:采用中频磁控溅射ZnO靶材,沉积厚度0.05~0.1μm的高阻ZnO层105,再采用直流溅射掺杂Al2O3的ZnO陶瓷靶材,沉积厚度0.5~0.9μm低阻ZnO层106;
S5:在ZnO窗口层106上沉积GaAs缓冲层107;
具体的,步骤S5为:将薄膜转移至MOCVD设备中,沉积n-GaAs缓冲层107,GaAs缓冲层厚度1μm,掺杂浓度为≥1×1018cm-3
S6:退火;
具体的,步骤S6为:沉积完GaAs缓冲层后,退火,退火温度720℃,循环3次;
S7:在GaAs缓冲层107上沉积GaAs/GaInAs超晶格层108;
具体的,步骤S7为:沉积完GaAs缓冲层107后再沉积n-GaAs/n-GaInAs超晶格层108,其中先沉积GaAs层,厚度20nm,再沉积GaInAs层,厚度20nm,掺杂浓度都为≥1×1018cm-3,循环10次;
S8:在GaAs/GaInAs超晶格层108上再重复沉积GaAs缓冲层109和GaAs/GaInAs超晶格层110;
具体的,步骤S8为:沉积完在GaAs/GaInAs超晶格层上再沉积n-GaAs缓冲层109,沉积厚度1μm,掺杂浓度为≥1×1018cm-3;再沉积同样的n-GaAs/n-GaInAs超晶格层110,GaAs厚度20nm,GaInAs厚度20nm,掺杂浓度都为≥1×1018cm-3,循环10次;
S9:在GaAs/GaInAs超晶格层110上沉积GaAs隧穿结层111;
具体的,步骤S9为:在GaAs/GaInAs超晶格层110上沉积GaAs隧穿结层111,GaAs隧穿结层包含n-AlGaAs层和n++-GaAs/p++-GaAs隧穿结层,构成了双异质结(DH)结构;先沉积n-AlGaAs层,厚度0.02~0.05μm,掺杂浓度为≥1×1018cm-3;再沉积n++-GaAs层,n++-GaAs层厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3;然后沉积p++-GaAs层,厚度为0.01~0.03μm,掺杂浓度为≥1×1019cm-3
S10:在GaAs隧穿结层111上沉积AlGaAs/AlGaInAs(DBR)反射层112;
具体的,步骤S10为:沉积完GaAs隧穿结层111再沉积p-AlGaAs/p-AlGaInAs(DBR)反射层112,p-AlGaAs/p-AlGaInAs反射层的厚度为1.8μm,掺杂浓度为5×1017cm-3
S11:在AlGaAs/AlGaInAs(DBR)反射层112上沉积GaAs子电池;
具体的,步骤S11为:沉积完AlGaAs/AlGaInAs(DBR)反射层112再沉积GaAs子电池,即依次沉积GaInP背场层113、GaAs基区层114、GaAs发射区层115和AlInP窗口层116;p-GaInP背场层的厚度为0.07μm,掺杂浓度为1~2×1018cm-3;p-GaAs基区层114厚度为2μm,掺杂浓度为2~8×1016cm-3;n-GaAs发射区层115,n-GaAs发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3;n-AlInP窗口层116,n-AlInP窗口层的厚度为0.1μm,掺杂浓度为1×1018cm-3
S12:在AlInP窗口层116上沉积GaInP/AlGaAs隧穿结层117;
具体的,步骤S12为:首先沉积n++-GaInP层,厚度为0.01~0.03μm,掺杂浓度为≥5×1018cm-3;然后沉积p++-AlGaAs层,厚度为0.01~0.03μm,掺杂浓度为≥5×1019cm-3
S13:在GaInP/AlGaAs隧穿结层117上沉积GaInP子电池;
具体的,步骤S13为:沉积完GaInP/AlGaAs隧穿结层117再沉积GaInP子电池,即依次沉积AlGaInP背场层118、GaInP基区层119、GaInP发射区层120和AlInP窗口层121;p-AlGaInP背场层118厚度为0.1μm,掺杂浓度为1~2×1018cm-3;p-GaInP基区层119厚度0.8μm,掺杂浓度为1~8×1016cm-3;n-GaInP发射区层120,n-GaInP发射区层的厚度为0.1μm,掺杂浓度为1×1018cm-3;n-AlInP窗口层121厚度为0.1μm,掺杂浓度为1×1018cm-3
S14:在AlInP窗口层121上沉积GaAs欧姆接触层122;
具体的,步骤S14为:在AlInP窗口层上沉积n+-GaAs欧姆接触层122,n+-GaAs欧姆接触层的厚度为0.5μm,掺杂浓度≥5×1018cm-3
CN201910385128.7A 2019-05-09 2019-05-09 一种柔性空间三结太阳能电池外延片的制造方法 Active CN110098272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910385128.7A CN110098272B (zh) 2019-05-09 2019-05-09 一种柔性空间三结太阳能电池外延片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910385128.7A CN110098272B (zh) 2019-05-09 2019-05-09 一种柔性空间三结太阳能电池外延片的制造方法

Publications (2)

Publication Number Publication Date
CN110098272A CN110098272A (zh) 2019-08-06
CN110098272B true CN110098272B (zh) 2020-10-27

Family

ID=67447552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910385128.7A Active CN110098272B (zh) 2019-05-09 2019-05-09 一种柔性空间三结太阳能电池外延片的制造方法

Country Status (1)

Country Link
CN (1) CN110098272B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117344B (zh) * 2020-09-23 2022-05-31 扬州乾照光电有限公司 一种太阳能电池以及制作方法
CN112951938B (zh) * 2021-02-24 2022-04-12 中山德华芯片技术有限公司 一种空间太阳能电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795854B2 (en) * 2005-08-01 2014-08-05 Amit Goyal Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates
WO2010151340A1 (en) * 2009-06-26 2010-12-29 Sol Array Llc Thin film solar module fabrication
CN102983204B (zh) * 2012-12-18 2015-09-30 深圳市创益科技发展有限公司 一种三结叠层薄膜太阳能电池及其制造方法
CN104835869B (zh) * 2015-05-13 2018-01-23 清华大学 铜铟镓硒薄膜太阳能电池及其制备方法
CN109638089A (zh) * 2018-11-26 2019-04-16 南昌凯迅光电有限公司 一种空间GaInP/GaAs/CuInGaSe三结电池外延片的制造方法

Also Published As

Publication number Publication date
CN110098272A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
TWI482300B (zh) 具有iv/iii-v族混合合金之反轉多接面太陽能單元
CN102184980B (zh) 基于晶片键合的三结太阳能电池及其制备方法
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
CN107527967B (zh) 一种具有抗辐照结构的高效三结级联砷化镓太阳电池及其制造方法
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
JP2003218374A (ja) Iii−v族太陽電池
JP2001524760A (ja) 高効率ソーラセルとその製造方法
CN108493284B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN109920874B (zh) 一种具有高抗辐照能力的四结太阳电池结构及其制备方法
CN110098272B (zh) 一种柔性空间三结太阳能电池外延片的制造方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
WO2016145936A1 (zh) 倒装多结太阳能电池及其制备方法
CN103258872A (zh) 高效三结太阳能电池及其制作方法
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN109560166A (zh) 一种超晶格空间GaInP/InGaAs/Ge电池外延片的制造方法
CN107316909A (zh) 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN210692559U (zh) 一种倒装生长的双异质结四结柔性太阳能电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
JP5231142B2 (ja) 多接合型太陽電池の製造方法
CN111341872B (zh) 一种砷化镓太阳能电池外延结构及其生长方法
CN107403850B (zh) 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN109638089A (zh) 一种空间GaInP/GaAs/CuInGaSe三结电池外延片的制造方法
CN111276560B (zh) 砷化镓太阳电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000

Patentee after: Nanchang Kaixun photoelectric Co.,Ltd.

Address before: 330100 second floor, office building, small and medium sized enterprises Park, Airport Economic Zone, Xinjian District, Nanchang City, Jiangxi Province

Patentee before: NANCHANG KAIXUN PHOTOELECTRIC Co.,Ltd.