CN110639374B - 一种高mof填料含量气体分离膜的制备方法 - Google Patents

一种高mof填料含量气体分离膜的制备方法 Download PDF

Info

Publication number
CN110639374B
CN110639374B CN201910827044.4A CN201910827044A CN110639374B CN 110639374 B CN110639374 B CN 110639374B CN 201910827044 A CN201910827044 A CN 201910827044A CN 110639374 B CN110639374 B CN 110639374B
Authority
CN
China
Prior art keywords
mof
solvent
membrane
film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910827044.4A
Other languages
English (en)
Other versions
CN110639374A (zh
Inventor
郑文姬
郭自兴
孙天奇
焉晓明
代岩
贺高红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910827044.4A priority Critical patent/CN110639374B/zh
Publication of CN110639374A publication Critical patent/CN110639374A/zh
Application granted granted Critical
Publication of CN110639374B publication Critical patent/CN110639374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开一种高MOF填料含量气体分离膜的制备方法,属于膜分离技术领域。将MOF颗粒分散于溶剂中制备MOF“油墨”,再将“油墨”与聚合物溶液混合水浴超声使两者形成良好相容。溶剂挥发后得到的膜液倒在玻璃板上刮涂,除去溶剂,得到高MOF填料含量膜。最后将得到膜浸入适量聚合物溶液,溶剂彻底挥发得到具有高气体分离性能的高MOF填料气体分离膜。该膜可以避免传统混合基质膜中填料含量过高发生团聚从而导致分离性能下降的问题,其MOF填料含量最高可达70%,并且表现出对CO2/N2、CO2/CH4、H2/N2、H2/CO2等气体对的适中选择性,其气体渗透系数可达到上千barrer,有望满足实际工业应用要求。

Description

一种高MOF填料含量气体分离膜的制备方法
技术领域
本发明属于膜分离技术领域,具体涉及一种高MOF填料含量气体分离膜的制备方法。
背景技术
CO2作为一种温室气体,在不同的工业生产过程中与N2,H2,CH4等气体的分离具有十分重大的意义。传统的气体分离领域中,高能耗和操作复杂的缺点促使人们寻找新的替代分离技术。膜分离技术是一种可用于气体捕集的新型分离技术,相对于传统分离方法,它具有无相变、无需质量分离剂的再生过程、工艺条件温和、操作成本低、占地面积小等优点,近年来得到迅猛发展。
膜材料是膜分离技术的关键部分。无机膜一般具有规整孔道,且孔径和亲疏性可调,主要依靠尺寸筛分和表面扩散机制实现分离,因而易实现较高的分离性能。相对而言聚合物膜分离性能受到trade-off限制,但拥有较好的机械柔性,是目前工业化应用的主流。因此,研究能同时满足分离要求和机械性能要求的膜材料是该领域的重点。
混合基质膜(MixedMatrixMembranes)是将无机膜的高分离性能和聚合物膜的机械性能及成本优势结合起来,是膜分离领域未来的发展趋势。传统的混合基质膜中聚合物为基体,研究者优选无机填料提高膜分离性能。但这样制备的膜材料中填料含量不可能过高(一般小于30%),当填料量超越“阈值”,膜的分离选择性会出现大幅降低,此外机械性能表现令人不满意。因此制备高填料含量且具备高气体分离性能的膜材料将在实际工业生产中具有非常重要的意义。
发明内容
基于现有技术中存在的问题,本发明的目的在于制备一种高MOF填料含量气体分离膜的具有普适性的方法。
本发明的技术方案:
一种高MOF填料含量气体分离膜的制备方法,步骤如下:
(1)将活化完成的MOF粉末加入到溶剂A中,水浴超声30min使得MOF完全分散在溶剂A中,制备得到MOF“油墨”,其中,MOF在溶剂A的浓度为5~30g/L;将聚合物C加入其溶剂B中,搅拌使溶解为膜液,膜液浓度为6~10wt%,以形成粘稠膜液为准;
所述的MOF为UiO-66、UiO-66-NH2、ZIF-8、MIL-101(Fe)、MIL-101(Cr)或HKUST-1。
所述的溶剂A为丙酮、氯仿、二氯甲烷或1,1-二氯乙烷。
所述的溶剂B为水、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲基亚砜。
所述的聚合物C为聚偏氟乙烯(PVDF)、聚乙二醇(PEG)或聚砜(PS)。
(2)将膜液加入到步骤(1)得到的MOF“油墨”中,继续超声60min;采用搅拌挥发的方式使该混合溶液中的溶剂A充分挥发得到粘稠的铸膜液;将配置好的铸膜液倾倒在玻璃板上,刮出厚度在200~300μm的膜,然后将玻璃板放进60~80℃的预热烘箱中,等到溶剂B挥发后取下膜;
(3)将步骤(2)中得到的膜放在四氟板上的
Figure BDA0002189428040000021
玻璃圈中,加入预配置好的3wt%聚合物D溶液;将四氟板放入60~90℃预热烘箱中除去聚合物D的溶剂,得到高MOF含量气体分离膜。
所述的聚合物D为聚醚共聚酰胺1657(Pebax1657)、聚酰亚胺、聚醚酰亚胺、聚砜、聚醚砜或聚二甲基硅氧烷。
所述的聚合物D和步骤(2)中得到的膜质量比为1:5~15。
本发明的有益效果:本发明所制备的高MOF填料含量气体分离膜,MOF填料含量为50%~70%。对于制备的ZIF-8-PVDF-Pebax1657膜,在25℃,0.3MPa的测试条件下,CO2渗透系数可达1529.9Barrer,H2渗透系数可达1344.2Barrer,CO2/N2选择性为51.93,H2/N2选择性为46.25,H2/N2选择性为46.25。
附图说明
图1是59.5%ZIF-8/PVDF/Pebax 1657膜断面电镜图。
图2是61.2%UiO-66/PEG/PDMS膜断面电镜图。
图3是69.4%UiO-66/PVDF/PEI膜断面电镜图。
具体实施方式
以下结合技术方案,进一步说明本发明的具体实施方式。
实施例1
将活化完成的ZIF-8粉末0.5g加入20mL二氯甲烷中,水浴超声30分钟使得ZIF-8完全分散在二氯甲烷中。将一定量PVDF加入二甲基亚砜中,搅拌使溶解以配置7.5wt%的膜液。取3.33g膜液加入上述UiO-66分散液中,继续超声60分钟。采用搅拌挥发的方式使该混合溶液中的二氯甲烷充分挥发得到粘稠的铸膜液。将配置好的铸膜液倾倒在准备好的玻璃板上,用刮刀以一定速度刮出一张厚度为200μm的膜,然后将玻璃板放进70℃的预热烘箱中,等到二甲基亚砜挥发后取下制备好的膜。将干燥的膜放在放在四氟板上的
Figure BDA0002189428040000031
玻璃圈中,加入3g配置好3wt%的Pebax 1657溶液。将四氟板放入预热烘箱中除去的溶剂得到高MOF含量气体分离膜。
经测试表明,本实施例中所制备的高MOF填料含量气体分离膜,填料含量可达59.5%,在25℃,0.3MPa的测试条件下,CO2渗透系数可达1529.9Barrer,H2渗透系数可达1344.2Barrer,CO2/N2选择性为51.8,H2/N2选择性为46.25,超过2008年CO2/N2的Robeson上限。
实施例2
将活化完成的UiO-66粉末0.6g加入30mL氯仿中,水浴超声30分钟使得UiO-66完全分散在氯仿中。将一定量PEG600000加入水中,搅拌使溶解以配置8wt%的膜液。取3.25g膜液加入上述UiO-66分散液中,继续超声60分钟。采用搅拌挥发的方式使该混合溶液中的氯仿充分挥发得到粘稠的铸膜液。将配置好的铸膜液倾倒在准备好的玻璃板上,用刮刀以一定速度刮出一张厚度为250μm的膜,然后将玻璃板放进70℃的预热烘箱中,等到DMF挥发后取下制备好的膜。将干燥的膜放在放在四氟板上的
Figure BDA0002189428040000032
玻璃圈中,加入4g配置好3wt%的聚二甲基硅氧烷溶液。将四氟板放入预热烘箱中除去的溶剂得到高MOF含量气体分离膜。
经测试表明,本实施例中所制备的高MOF填料含量气体分离膜,填料含量可达61.2%,在25℃,0.3MPa的测试条件下,CO2渗透系数可达2215.5Barrer,H2渗透系数可达1731.2Barrer,CO2/N2选择性为29.9,H2/N2选择性为23.4。
实施例3
将活化完成的UiO-66粉末0.5g加入20mL丙酮中,水浴超声30分钟使得UiO-66完全分散在丙酮中。将一定量PVDF加入DMF中,搅拌使溶解以配置7.5wt%的膜液。取1.3g膜液加入上述UiO-66分散液中,继续超声60分钟。采用搅拌挥发的方式使该混合溶液中的丙酮充分挥发得到粘稠的铸膜液。将配置好的铸膜液倾倒在准备好的玻璃板上,用刮刀以一定速度刮出一张厚度为300μm的膜,然后将玻璃板放进70℃的预热烘箱中,等到DMF挥发后取下制备好的膜。将干燥的膜放在放在四氟板上的
Figure BDA0002189428040000041
玻璃圈中,加入4g配置好3wt%的聚醚酰亚胺溶液。将四氟板放入预热烘箱中除去的溶剂得到高MOF含量气体分离膜。
经测试表明,本实施例中所制备的高MOF填料含量气体分离膜,填料含量可达69.4%,在25℃,0.3MPa的测试条件下,CO2渗透系数可达2438.1Barrer,H2渗透系数可达2274.3Barrer,CO2/N2选择性为24.1,H2/N2选择性为22.4。

Claims (5)

1.一种高MOF填料含量气体分离膜的制备方法,其特征在于,步骤如下:
(1)将活化完成的MOF粉末加入到溶剂A中,水浴超声30min使得MOF完全分散在溶剂A中,制备得到MOF“油墨”,其中,MOF在溶剂A的浓度为5~30g/L;将聚合物C加入其溶剂B中,搅拌使溶解为膜液,膜液浓度为6~10wt%,以形成粘稠膜液为准;
(2)将膜液加入到步骤(1)得到的MOF“油墨”中,继续超声60min;采用搅拌挥发的方式使该混合溶液中的溶剂A充分挥发得到粘稠的铸膜液;将配置好的铸膜液倾倒在玻璃板上,刮出厚度在200~300μm的膜,然后将玻璃板放进60~80℃的预热烘箱中,等到溶剂B挥发后取下膜;
(3)将步骤(2)中得到的膜放在四氟板上的
Figure FDA0003178978710000011
玻璃圈中,加入预配置好的3wt%聚合物D溶液;将四氟板放入60~90℃预热烘箱中除去聚合物D的溶剂,得到高MOF含量气体分离膜;
所述的MOF为UiO-66或UiO-66-NH2
所述的聚合物C为聚乙二醇。
2.根据权利要求1所述的制备方法,其特征在于,所述的聚合物D和步骤(2)中得到的膜质量比为1:5~15。
3.根据权利要求2所述的制备方法,其特征在于,所述的溶剂A为丙酮、氯仿、二氯甲烷或1,1-二氯乙烷。
4.根据权利要求3所述的制备方法,其特征在于,所述的溶剂B为水、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲基亚砜。
5.根据权利要求4所述的制备方法,其特征在于,所述的聚合物D为聚醚共聚酰胺1657、聚酰亚胺、聚醚酰亚胺、聚砜、聚醚砜或聚二甲基硅氧烷。
CN201910827044.4A 2019-09-03 2019-09-03 一种高mof填料含量气体分离膜的制备方法 Active CN110639374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910827044.4A CN110639374B (zh) 2019-09-03 2019-09-03 一种高mof填料含量气体分离膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910827044.4A CN110639374B (zh) 2019-09-03 2019-09-03 一种高mof填料含量气体分离膜的制备方法

Publications (2)

Publication Number Publication Date
CN110639374A CN110639374A (zh) 2020-01-03
CN110639374B true CN110639374B (zh) 2021-09-24

Family

ID=69010093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910827044.4A Active CN110639374B (zh) 2019-09-03 2019-09-03 一种高mof填料含量气体分离膜的制备方法

Country Status (1)

Country Link
CN (1) CN110639374B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354380B (zh) * 2020-11-09 2021-08-06 大连理工大学 一种静电纺丝纳米纤维气体分离膜的制备方法
US20220280918A1 (en) * 2021-03-03 2022-09-08 Battelle Memorial Institute Hydrophobic and Porous Sorbent Polymer Composites and Methods for CO2 Capture
CN113385055B (zh) * 2021-06-18 2022-06-14 大连理工大学 一种基于复合材料UiO-66@HNT的混合基质膜的制备方法
CN114588793B (zh) * 2022-03-11 2022-12-30 中国石油大学(华东) 用于甲烷/氮气分离的混合基质膜及其制备方法
CN115253611B (zh) * 2022-07-23 2023-05-26 大连理工大学盘锦产业技术研究院 一种利用填料比表面积精确调控混合基质膜co2分离性能的方法
CN115350605A (zh) * 2022-09-06 2022-11-18 苏州零碳膜科技有限公司 一种新型二氧化碳膜的制备方法
CN115445455B (zh) * 2022-09-26 2023-11-21 大连理工大学 一种MOFs梯度分布的超薄混合基质非对称膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846013A (zh) * 2012-12-05 2014-06-11 中国科学院大连化学物理研究所 一种多孔材料-聚合物气体分离复合膜
WO2015183831A1 (en) * 2014-05-24 2015-12-03 Georgia Tech Research Corporation Mixed matrix hollow fiber membranes
CN107684837A (zh) * 2017-08-31 2018-02-13 南京工业大学 一种含有zif‑8的混合基质膜及其制备和应用
CN110052182A (zh) * 2019-04-28 2019-07-26 北京理工大学 一种多孔材料超高负载量混合基质膜的制备方法
CN110523300A (zh) * 2019-07-23 2019-12-03 西北大学 一种用水基工艺制备PEG/Cu-BTC/PVDF脱硫混合基质膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110138999A1 (en) * 2009-12-15 2011-06-16 Uop Llc Metal organic framework polymer mixed matrix membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846013A (zh) * 2012-12-05 2014-06-11 中国科学院大连化学物理研究所 一种多孔材料-聚合物气体分离复合膜
WO2015183831A1 (en) * 2014-05-24 2015-12-03 Georgia Tech Research Corporation Mixed matrix hollow fiber membranes
CN107684837A (zh) * 2017-08-31 2018-02-13 南京工业大学 一种含有zif‑8的混合基质膜及其制备和应用
CN110052182A (zh) * 2019-04-28 2019-07-26 北京理工大学 一种多孔材料超高负载量混合基质膜的制备方法
CN110523300A (zh) * 2019-07-23 2019-12-03 西北大学 一种用水基工艺制备PEG/Cu-BTC/PVDF脱硫混合基质膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《改善MOFs/聚合物混合基质膜气体分离性能的策略》;瞿媛媛等人;《膜科学与技术》;20190425;第39卷(第2期);第135-142 *

Also Published As

Publication number Publication date
CN110639374A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110639374B (zh) 一种高mof填料含量气体分离膜的制备方法
CN107638816A (zh) 一种多巴胺助分散氧化石墨烯改性聚偏氟乙烯超滤膜的制备方法
CN103480281A (zh) 一种有机-无机超滤复合膜及制备方法
CN104117297B (zh) 一种疏水改性纳米碳酸钙填充渗透汽化复合膜的制备方法
CN104941466B (zh) 一种用于去除水中大分子肝毒素的介孔碳有机复合膜的制备方法
CN110479109B (zh) 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN108246124B (zh) 一种具有催化自清洁功能的pvdf膜的制备方法
CN111760461A (zh) 一种聚偏氟乙烯混合基质膜的制备方法
CN103223309A (zh) 一种碳纳米管填充优先透醇复合膜及其制备方法
CN105903359A (zh) 一种壳聚糖功能化氧化石墨烯/聚偏氟乙烯杂化超滤膜及其制备方法
CN107126849A (zh) 一种亲水化聚偏氟乙烯杂化膜的制备方法
CN110180402A (zh) 一种基于界面聚合制备松散纳滤膜的方法
CN102327747A (zh) 含氟聚硅氧烷橡胶态复合气体分离膜、制备方法及其应用
CN112717711A (zh) 一种聚酰亚胺基混合基质中空纤维膜的制备方法
CN107376673A (zh) 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用
CN104014255B (zh) 一种自组装改性硅橡胶/无机粒子优先透醇杂化膜的制备方法
CN105797605B (zh) 一种基于聚多巴胺功能化石墨烯杂化复合膜及制备和应用
CN107694356B (zh) 一种β-CD/HNTs共混聚偏氟乙烯膜及制备方法
CN113509847A (zh) 一种通过水面铺展制备多孔纳米粒子/聚二甲基硅氧烷膜的方法
Zhou et al. Preparation of a novel sulfonated polyphenlene sulfone with flexible side chain for ultrafiltration membrane application
Gao et al. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method
CN104107644B (zh) 一种优先透醇硅橡胶复合膜的制备方法
CN115646196A (zh) 一种两亲性接枝聚合物亲水改性的聚合物超滤膜及其制备方法
CN104437141A (zh) 一种耐溶剂纳滤膜的制备方法
CN111186880A (zh) 一种壳聚糖改性的纳米TiO2光催化超滤膜在有机废水处理中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant