CN110634760B - 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法 - Google Patents

一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法 Download PDF

Info

Publication number
CN110634760B
CN110634760B CN201910863980.0A CN201910863980A CN110634760B CN 110634760 B CN110634760 B CN 110634760B CN 201910863980 A CN201910863980 A CN 201910863980A CN 110634760 B CN110634760 B CN 110634760B
Authority
CN
China
Prior art keywords
etching
channel hole
layer
stack structure
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910863980.0A
Other languages
English (en)
Other versions
CN110634760A (zh
Inventor
卢峰
王恩博
高晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Memory Technologies Co Ltd
Original Assignee
Yangtze Memory Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co Ltd filed Critical Yangtze Memory Technologies Co Ltd
Priority to CN201910863980.0A priority Critical patent/CN110634760B/zh
Publication of CN110634760A publication Critical patent/CN110634760A/zh
Application granted granted Critical
Publication of CN110634760B publication Critical patent/CN110634760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及半导体技术领域,提供了一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法。包括刻蚀出辅助沟道孔结构;其中,所述辅助沟道孔的深度与上堆叠结构中的堆叠结构厚度偏差在预设范围内;通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,露出可供检测的下沟道结构中的存储膜;其中,所述下沟道结构位于所述下堆叠结构中;以及检测所述下沟道结构中的存储膜的侧壁轮廓。本发明选择了影响沟道孔侧壁结构完整性的关键步骤,并设计了一套不仅能够去除上沟道结构,露出可供检测的下沟道结构中的存储膜,而且,还能够保持整个过程不至于破坏下沟道结构中的存储膜,使得在双堆叠结构中检测沟道孔侧壁刻蚀损伤成为了可能。

Description

一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法
【技术领域】
本发明涉及半导体技术领域,特别是涉及一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法。
【背景技术】
3D NAND叠加的层数越多,越能获得更多的存储单元,但是层数越多,沟道通孔刻蚀(Channel Hole Etch Through,简写为CH ET)的难度越大,因此双堆叠(dual deck)工艺被开发出来,即采用两次CH ET以降低一次CH ET的难度。同时,随着叠加层数的增多,缺陷检测难度亦相应增加,现有检测方法已经不能满足128层,以及大于128层的缺陷检测需求。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明要解决的技术问题是如何在高层数的双堆叠结构中,进行缺陷检测。
本发明进一步要解决的技术问题是提供一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法。
本发明采用如下技术方案:
一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,包括:
刻蚀出辅助沟道孔结构;其中,所述辅助沟道孔的深度与上堆叠结构中的堆叠结构厚度偏差在预设范围内;
通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,露出可供检测的下沟道结构中的存储膜;其中,所述下沟道结构位于所述下堆叠结构中;以及
检测所述下沟道结构中的存储膜的侧壁轮廓。
优选的,在刻蚀出辅助沟道孔结构之前,所述方法还包括:
获取对存储膜完成深孔打穿刻蚀的半导体结构,对于沟道孔内的存储膜表面沉积保护层。
优选的,所述保护层材料具体为无定型硅、氧化硅、多晶硅中的一种或者多种。
优选的,所述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,具体包括:
利用电介质层和牺牲层选择比,以及电介质层和保护层选择比均满足预设条件的刻蚀工艺,刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,露出可供检测的下沟道结构中的存储膜。
优选的,所述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,具体包括:
利用电介质层和牺牲层选择比满足预设条件的刻蚀工艺;通过控制刻蚀时间,使得上堆叠层中的电介质层被刻蚀掉。
优选的,所述上堆叠结构和下堆叠结构之间沉积有刻蚀停止层;所述刻蚀停止层具体包括:具有预设厚度的电介质层构成。
优选的,所述预设厚度具体为:位于区间[25nm,200nm]中。
优选的,所述存储膜表面在进行深孔打穿刻蚀前生成有保护用的表层,则所述获取对存储膜完成深孔打穿刻蚀的半导体结构,还包括:
移除存储膜表面上起深孔打穿刻蚀过程保护用的表层,得到存储膜侧壁的轮廓。
优选的,所述刻蚀出辅助沟道孔结构,具体包括:
进行前栅自对准结构光刻、后栅自对准结构光刻、栅线缝隙或者定制化图形的栅对准光刻,并刻蚀得到所述的辅助沟道孔结构。
优选的,所述下沟道结构周围的堆叠结构的上表面层为牺牲层。
优选的,所述利用电介质层和牺牲层选择比,以及电介质层和保护层选择比均满足预设条件的刻蚀工艺,具体包括:使用浓度为40%-60%的氢氟酸进行湿法刻蚀。
优选的,所述刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,方法具体包括:
在刻蚀的过程中或者刻蚀结束后,使用超声处理,以便去除掉在所述刻蚀过程中,仍然遗留下来的位于上沟道结构的保护层。
优选的,所述检测所述下沟道结构中的存储膜的侧壁轮廓,方法还包括:
通过晶圆扫明场像,获取所述下沟道结构中存储膜的侧壁轮廓以检测侧壁损伤情况。
优选的,所述双堆叠结构中堆叠结构的层数包括96、128、160或者256。与现有技术相比,本发明实施例的有益效果在于:
本发明选择了影响沟道孔侧壁结构完整性的关键步骤,并设计了一套不仅能够去除上沟道结构,露出可供检测的下沟道结构中的存储膜,而且,还能够保持整个过程不至于破坏下沟道结构中的存储膜,使得在双堆叠结构中检测沟道孔侧壁刻蚀损伤成为了可能,并且还能达到检测准确度的要求。
在本发明优选方案中,通过选择刻蚀停止层材料,保证了整个方案执行过程中的简洁和效率,在无需较大程度上改变已有方案结构的基础上,提高了整个解决方案的实用性。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种双堆叠结构中对位准确的沟道孔结构示意图;
图2是本发明实施例提供的一种双堆叠结构中发生对位偏差的沟道孔结构示意图;
图3是本发明实施例提供的一种双堆叠结构中检测沟道孔侧壁刻蚀损失的方法流程图;
图4是本发明实施例提供的一种双堆叠结构中检测沟道孔侧壁刻蚀损失的方法流程图;
图5是本发明实施例提供的一种双堆叠结构中刻蚀出下沟道结构示意图;
图6是本发明实施例提供的一种双堆叠结构中填充下沟道结构示意图;
图7是本发明实施例提供的一种双堆叠结构中在下堆叠结构上沉积刻蚀停止层的结构示意图;
图8是本发明实施例提供的一种双堆叠结构中在完成了上沟道孔刻蚀的结构示意图;
图9是本发明实施例提供的一种双堆叠结构中在刻蚀通上沟道孔和下沟道孔后的结构示意图;
图10是本发明实施例提供的一种双堆叠结构中在沟道孔中沉积完成存储膜后的沟道结构示意图;
图11是本发明实施例提供的一种双堆叠结构中在沟道孔中沉积完成深孔打穿刻蚀后的沟道结构示意图;
图12是本发明实施例提供的一种双堆叠结构中在刻蚀出辅助沟道孔后的结构示意图;
图13是本发明实施例提供的一种双堆叠结构中在刻蚀掉上堆叠结构后的结构示意图;
图14是本发明实施例提供的一种双堆叠结构中在去掉刻蚀上堆叠结构时留下的保护层后的结构示意图;
图15是本发明实施例提供的一种双堆叠结构中存在存储膜侧壁损伤的效果示意图;
图16是本发明实施例提供的一种对存在存储膜侧壁损伤的结构进行本发明方法后得到的晶圆扫明场像示意图。
【具体实施方式】
在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。附图中的流程图、框图图示了本发明实施例的系统、装置的可能的体系框架、功能和操作,附图的方框以及方框顺序只是用来更好的图示实施例的过程和步骤,而不应以此作为对发明本身的限制。
在本发明各实施例中,符号“/”表示同时具有两种功能的含义,而对于符号“A和/或B”则表明由该符号连接的前后对象之间的组合包括“A”、“B”、“A和B”三种情况。
如果为了描述直接位于另一层、另一个区域上面的情形本申请将采用“A直接在B上面”或“A在B上面并与之邻接”的表述方式。在本申请中,“A直接位于B中”标识A位于B中,并且A与B直接邻接,而非A位于B中形成的掺杂区中。
要指出的是,在说明书中提到“一个实施例”、“实施例”、“示例性实施例”、“一些实施例”等指示所述的实施例可以包括特定特征、结构或特性,但未必每个实施例都包括该特定特征、结构或特性。此外,这样的短语未必是指同一个实施例。另外,在结合实施例描述特定特征、结构或特性时,结合其它实施例(无论是否明确描述)实现这种特征、结构或特性应在相关领域技术人员的知识范围内。
通常,可以至少部分从上下文中的使用来理解术语。例如,至少部分取决于上下文,本发明各实施例中使用的术语“一个或多个”可以用于描述单数意义的任何特征、结构或特性,或者可以用于描述复数意义的特征、结构或特性的组合。类似地,至少部分取决于上下文,诸如“一”或“所述”的术语可以被理解为传达单数使用或传达复数使用。此外,同样至少部分取决于上下文,术语“基于”可以被理解为未必旨在传达排他的一组因素,并且相反可以允许存在未必明确表述的额外因素。
应当容易理解,本发明申请文件公开中的“在…上”、“在…上方”和“在…之上”的含义应当以最宽方式被解读,以使得“在…上”不仅表示“直接在”某物“上”而且还包括在某物“上”且其间有居间特征或层的含义,并且“在…上方”或“在…之上”不仅表示“在”某物“上方”或“之上”的含义,而且还可以包括其“在”某物“上方”或“之上”且其间没有居间特征或层(即,直接在某物上)的含义。
此外,诸如“在…之下”、“在…下方”、“下部”、“在…上方”、“上部”等空间相关术语在本发明各实施例中为了描述方便可以用于描述一个元件或特征与另一个或多个元件或特征的关系,如在附图中示出的。空间相关术语旨在涵盖除了在附图所描绘的取向之外的在设备使用或操作中的不同取向。设备可以以另外的方式被定向(旋转90度或在其它取向),并且本发明各实施例中使用的空间相关描述词可以类似地被相应解释。
如本发明各实施例中使用的,术语“衬底”是指向其上增加后续材料层的材料。可以对衬底自身进行图案化。增加在衬底的顶部上的材料可以被图案化或可以保持不被图案化。此外,衬底可以包括宽范围的半导体材料,例如硅、锗、砷化镓、磷化铟等。替代地,衬底可以由诸如玻璃、塑料或蓝宝石晶圆的非导电材料制成。
如本发明各实施例中使用的,术语“层”是指包括具有厚度的区域的材料部分。层可以在下方或上方结构的整体之上延伸,或者可以具有小于下方或上方结构范围的范围。此外,层可以是厚度小于连续结构的厚度的均质或非均质连续结构的区域。例如,层可以位于在连续结构的顶表面和底表面之间或在顶表面和底表面处的任何水平面对之间。层可以水平、竖直和/或沿倾斜表面延伸。衬底可以是层,其中可以包括一个或多个层,和/或可以在其上、其上方和/或其下方具有一个或多个层。层可以包括多个层。例如,互连层可以包括一个或多个导体和接触层(其中形成触点、互连线和/或通孔)和一个或多个电介质层。
如本发明各实施例使用的,术语“大约”指示可以基于与主题半导体器件相关联的特定技术节点而变化的给定量的值。基于特定技术节点,术语“大约”可以指示给定量的值,例如在值的10%-30%(例如,值的±10%、±20%或±30%)内变化。
如本发明各实施例使用的,术语“3D存储器件”是指一种半导体器件,其在横向取向的衬底上具有竖直取向的存储单元晶体管串(在本发明各实施例中被称为“存储器串”,例如NAND存储器串),以使得所述存储器串相对于衬底在竖直方向上延伸。如本发明各实施例使用的,术语“竖直/竖直地”是指标称地垂直于衬底的横向表面。
如图1示,为本发明提供的一种正常结构下的由双堆叠结构构成的,在制造阶段的示例性3D存储器100的截面,该制造阶段用于形成在衬底102上方垂直延伸穿过双堆叠结构104(包括下堆叠结构104A和上堆叠结构104B)的NAND存储器串110。下堆叠结构104A和上堆叠结构104B中的每一个包括多个电介质层对,每电介质层对包括牺牲层106(例如,氮化物)和电介质层108(例如,氧化物)。一旦完成如图1中存储器串110的所有制造过程,通过栅极替换工艺用存储器叠层(例如,金属)替换堆叠结构104,其用导电层替换每个牺牲层106。NAND存储器串110包括分别穿过下堆叠结构104A和上堆叠结构104B形成的下沟道结构112A和上沟道结构112B。NAND存储器串110还包括位于其下端的半导体插塞114和位于其上端的沟道插塞116。如图1所示,半导体插塞114延伸到衬底102的一部分中,即在衬底102的顶表面下方。
下沟道结构112A和上沟道结构112B(统称为“沟道结构”112)包括沿其侧壁和在其底表面上的存储膜118和半导体沟道120。为了使半导体沟道120接触存储膜118下面的半导体插塞114,需要执行深孔打穿刻蚀(也被称为SONO穿孔工艺)以刻蚀穿过在下沟道结构112A的底表面上形成的存储膜118,所述存储膜118包括阻挡层122、储存层124(例如Si3N4)和隧穿层126(例如SiO2)。由于深孔打穿刻蚀使用高能刻蚀剂等离子体,因此对于上沟道结构112B和下沟道结构112A存在窄工艺裕度(例如,小于10nm)以在其接合位置处叠置(overlay)从而避免在接合位置处的侧壁损坏和/或底表面上的刻蚀不足(under-etch)。
然而,实际情况则是,由于晶圆自身的翘曲、对准精准度等影响因素存在,还是会存在如图2所示的无法准确对准问题发生,从而造成下沟道结构112A和上沟道结构112B在衔接处发生衔接位置错位。会在刻蚀穿过底部存储膜118抵达半导体插塞114过程中,造成如图2所示的虚线区域的侧壁磨损。直接原因是下沟道结构112A和上沟道结构112B在衔接处发生衔接位置错位,使得部分侧壁暴露在了“SONO穿孔”工艺的刻蚀通道中。现有技术中,却存在堆叠层数达到一定值后,对晶圆扫明场像(Bright Field Image,简写为:BFI),无法发现相应的下堆叠结构上侧壁磨损的问题。
所述深孔打穿刻蚀包括:干法刻蚀工艺沿沟道孔119竖直方向刻蚀沟道孔119底部的存储膜118,以使半导体插塞114(也被描述为外延结构)暴露出;通常在进行所述干法刻蚀工艺之前,会在存储膜118表面沉积一层非晶硅(α-Si)保护层,并在刻蚀完后,去除沟道孔119侧壁上的非晶硅保护层;之后再生长所述半导体沟道120。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
本发明实施例1提供了一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,如图3所示,包括:
在步骤202中,刻蚀出辅助沟道孔结构;其中,所述辅助沟道孔的深度与上堆叠结构中的堆叠结构厚度偏差在预设范围内。
其中,所述辅助沟道孔结构生成的作用就是帮助去除上沟道结构和上堆叠结构,因此,将其命名为辅助沟道孔结构。在实现过程中,所述辅助沟道孔结构具有多种选择方案,包括:
方式一、进行前栅自对准结构光刻;方式二、后栅自对准结构光刻;方式三、栅线缝隙;方式四、定制化图形的栅对准光刻。上述四种方式中的前三种,复用了已有存储区的相关沟道孔/沟槽工艺(包括光刻图形),而方式四则采用定制化图形方式,跳出已有的相关沟道孔/沟槽工艺,从而进一步改善检测效率,因为去除上堆叠结构对于半导体结构来说就是破坏性的,因此,所述定制化图形可以是条形、圆形、方形等等,通常会根据已经制作的沟道孔结构进行布局,而其形状大小和密集程度,可在考虑效率的情况下制作的比前三种方式规模更大。
上述四种方式共同特点是,它们所制作得到沟道孔或沟槽所在区域是上堆叠结构104B区域;由此,也可以已知悉,方式二相比较方式一而言,同样数量沟道孔情况下,其得到的辅助沟道孔结构对应执行后续步骤203来说,相应完成步骤203的效率更高。
其中,所述偏差在预设范围内,具体在上堆叠结构和下堆叠结构之间不包含刻蚀停止层时,通常设定辅助沟道孔结构厚度要达到上堆叠结构自身厚度,并且超出的厚度范围要控制在1-3个介质层的厚度或者牺牲层的厚度内。而在上堆叠结构和下堆叠结构之间包括刻蚀停止层时,通常设定辅助沟道孔结构厚度要达到所述刻蚀停止层,且达到所述刻蚀停止层的部分不超过所述刻蚀停止层厚度。
在步骤203中,通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,露出可供检测的下沟道结构中的存储膜;其中,所述下沟道结构位于所述下堆叠结构中。
其中,在步骤203中所描述的所述下堆叠结构以上的上堆叠结构,尤其指代的是上述布局有包含存储膜的沟道结构的上堆叠结构区域。也就是说,除了布局有包含存储膜的沟道结构以外的上堆叠结构区域,是否被刻蚀掉并不影响本发明实施例方法的完整实现。
在步骤204中,检测所述下沟道结构中的存储膜的侧壁轮廓。
优选的是采用晶圆扫明场像,获取所述下沟道结构中存储膜的侧壁轮廓以检测侧壁损伤情况。
本发明实施例选择了影响沟道孔侧壁结构完整性的关键步骤,并设计了一套不仅能够去除上沟道结构,露出可供检测的下沟道结构中的存储膜,而且,还能够保持整个过程不至于破坏下沟道结构中的存储膜,使得在双堆叠结构中检测沟道孔侧壁刻蚀损伤成为了可能,并且还能达到检测准确度的要求(即下沟道结构的存储膜不被破坏)。
结合本发明实施例,对于上述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,至少存在两种可选的实现方式,接下来将分别以实现方式一和实现方式二加以区别称呼。
在实现方式一中,具体表现为首先在步骤202之前还包括以下步骤201,如图4所示,在所述步骤201中包括:
获取对存储膜完成深孔打穿刻蚀的半导体结构,对于沟道孔内的存储膜表面沉积保护层。
其中,存储膜在业内也被描述为ONO(全称为:OXIDE NITRIDE OXIDE)结构;所述深孔打穿刻蚀也被描述为SONO穿孔工艺;所述沟道孔内的存储膜表面沉积保护层的意义在于,保护可能受损伤的侧壁形貌。
其中,所述保护层材料具体为无定型硅、氧化硅、多晶硅中的一种或者多种,例如7nm的非晶硅。除此以外,所述保护层材料还可以是其他材料,但是,需要保证至少存在一种刻蚀工艺,能够使得所述保护层所选择的材料与电介质层108的选择比,要与该刻蚀工艺下牺牲层106与电介质层108的选择比近似或者更高。
其次,在方式一中,对应的步骤203中的特征内容“通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构”具体实现为:
利用电介质层和牺牲层选择比,以及电介质层和保护层选择比均满足预设条件的刻蚀工艺,刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,露出可供检测的下沟道结构中的存储膜。
其核心原理就在于,利用特定的刻蚀工艺,能够保证对牺牲层和保护层刻蚀速率远低于对电介质层的刻蚀速率,从而能够刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,露出可供检测的下沟道结构的存储膜(ONO结构)。例如:采用湿法刻蚀工艺中,使用浓度为40%-60%的氢氟酸进行刻蚀(优选的为49%浓度),最终能够获得如图14所示的效果图。在具体实现过程中,还可以是包含其它刻蚀液成分的氢氟酸混合溶液。
在不同的场景中,考虑到加工生产线的完整性,所述存储膜表面在进行深孔打穿刻蚀前生成有保护用的表层(如图2所示的半导体沟道120),则所述获取对存储膜完成深孔打穿刻蚀的半导体结构,还包括:移除存储膜表面上起深孔打穿刻蚀过程保护用的表层,得到存储膜侧壁的轮廓。在该场景中,之所以要移除存储膜上起保护用的表层,是为了避免在深孔打穿刻蚀过程中仅存储膜上的表层受到损伤,而存储膜的轮廓还是完整,此时,若不移除存储膜上的表层,而直接在存储膜上的表层上沉积保护层,形成了存储膜上的表层的图形(而非实际的存储膜的轮廓图形),就会造成ONO受到损伤的误判结果(因为,此时的图形是源自所述起保护作用的表层的轮廓而并非存储膜的轮廓)。
相比较方式一而言,方式二则在操作步骤上显得更为简洁,所述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,具体实现为:利用电介质层和牺牲层选择比满足预设条件的刻蚀工艺;通过控制刻蚀时间,使得上堆叠层中的电介质层刚好被刻蚀掉。但是,相比较方式一而言,方式二自身的刻蚀控制精确度和难度相比较方式一而言更高。具体采用哪种方式可以根据实际工艺水平和生产加工周期综合考虑后进行选择。由于存在后续扩展方案中,使用的超声处理,因此,此处刻蚀时间的控制上也是允许有一定的偏差,即在控制刻蚀时间上,还可以遗留部分上堆叠层的存储膜,并通过后续的超声处理来配合去除。
在已有的双堆叠结构中,通常会在所述上堆叠结构和下堆叠结构之间沉积有刻蚀停止层,在现有技术中,例如专利CN109496355A公开的,其“刻蚀停止层208可包括金属,例如W、Co、Cu、Al或其任何组合。在一个示例中,刻蚀停止层208是钨层。刻蚀停止层208还可以包括半导体,例如多晶硅、非晶硅、硅化物或其任何组合。刻蚀停止层208可以包括与形成电介质层205的材料(例如,氧化硅)不同的任何其他合适的材料和由导电层203替换的另一种类型的电介质层(例如,氮化硅)。刻蚀停止层208的厚度可以在约20nm和约30nm之间,例如在20nm和30nm之间(例如,20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm、30nm,由这些值中的任何一个为下端界定的任何范围,或由这些值中的任何两个限定的任何范围)”然而,要完成本发明实施例1所提出的方案,除了可以选择上述结构以外,本发明实施例还提供了一种优选的实现方案,具体的:采用预设厚度的电介质层构成,所述预设厚度具体为:位于区间[25nm,200nm]中,例如100nm。本发明实施例采用上述优选实现方案,可以保证刻蚀停止层在执行步骤203过程中一并被刻蚀掉,从而能够将下沟道结构中的存储膜完整的展现出来,而除此以外的步骤或多或少需要增加去除刻蚀停止层的附加步骤,影响了整个检测过程的效率。在本发明实施例中,对于上堆叠结构和下堆叠结构之间存在刻蚀停止层的情况下,所述刻蚀停止层也是要被一并刻蚀掉的,这样暴露出来的才是下堆叠结构最表层牺牲层,才是完整下沟道结构。因为,刻蚀停止层314在产生上沟道孔和下沟道孔偏移时,如图9所示,会覆盖部分偏移部分,影响最后的图片采集的。
结合本发明实施例,为了进一步提高保留的下沟道结构的完整性,并考虑本发明实施例中刻蚀掉上堆叠结构的原理,优选的,所述下沟道结构周围的堆叠结构的上表面层(与上沟道结构相邻)为牺牲层。由于,本发明实施例所提出的方案,会在刻蚀上堆叠结构过程中,停止在辅助沟道孔结构底部最先遇到的牺牲层(即下沟道结构周围的堆叠结构的上表面牺牲层)上,因此,上述优选的方案可以更精准的保留下沟道孔中的存储膜。
直接采用步骤203中所描述的内容,最后可能执行完后呈现如图13的结构示意图。虽然,可以将所述保护层沉积的很薄,但是,出于刻蚀过程中保守考虑,或多或少还会存在保护层和/或存储膜的残留,因此,排除手动去除的可选方式以外,结合本发明实施例还采用了一种优选的实现方式,可以提高去除的安全性和效率。优选方式体现为:在刻蚀的过程中或者刻蚀结束后,使用超声处理,以便去除掉在所述刻蚀过程中,仍然遗留下来的位于上沟道结构的保护层和/或存储膜。最终的效果图如图14所示,其中突兀在下沟道结构以外的保护层在超声作用下自然脱落。
基于本发明实施例已经得到的如图14所示的结构图,此时可以通过晶圆扫明场像,获取所述下沟道结构中存储膜的侧壁轮廓以检测侧壁损伤情况。以图15为例,如果下沟道结构侧壁的存储膜存在损伤,则相应的图15所示损伤结果的拍摄效果图如图16所示,当中间区域中出现不规则的图形330,则可认定存储膜受到了损伤。
本发明实施例所提出的方案尤其适用于,所述双堆叠结构中堆叠结构的层数为96、128、160或者256,甚至更高层数场景。
实施例2:
图5-图16示出了根据本发明实施例1实现方法,且以实施例1中的方式一作为手段,在一典型的双堆叠结构的3D存储器加工过程中的示例实现过程。在本发明实施例中将如图实施例1中相关方法步骤,并且,会基于本发明实施例的特性实现环境,进行必要的扩展约束。需要说明书的是,本发明实施例是为了更好的展示实施例1中部分实施方式在特定场景下的实现而做到更为详尽的描述,因此,不应当作为本发明可获得保护范围的限缩依据。在本发明实施例中,深孔打穿刻蚀被称为SONO穿孔工艺,而存储膜则被描述为ONO结构。
在衬底上形成第一堆叠结构。衬底可以是硅衬底。第一堆叠结构可包括多个交错的牺牲层和电介质层。参考图5,在硅衬底302的正面上形成包括多对第一电介质层308和第二电介质层(也被称为“牺牲层”)306的第一堆叠结构304A(即实施例1中的下堆叠结构)。在一些实施例中,通过在形成第一堆叠结构304A之前在硅衬底302上沉积诸如氧化硅的电介质材料或热氧化,在第一堆叠结构304A和硅衬底302之间形成绝缘层303。根据一些实施例,第一堆叠结构304A包括交错的牺牲层306和电介质层308。可替换地,可以在硅衬底302上沉积电介质层308和牺牲层306,以形成第一堆叠结构304A。在一些实施例中,每个电介质层308包括氧化硅层,并且每个牺牲层306包括氮化硅层。第一堆叠结构304A可以通过一种或多种薄膜沉积工艺形成,包括但不限于化学气相沉积(Chemical Vapor Deposition,简写为:CVD)、物理气相沉积(Physical Vapor Deposition,简写为:PVD)、原子层沉积(AtomicLayer Deposition,简写为:ALD)或其任何组合。
如图5所示,第一沟道孔310A(即实施例1中的下沟道孔)是垂直延伸穿过第一堆叠结构304A形成的开口。在一些实施例中,穿过第一堆叠结构304A形成多个开口,使得每个开口成为在后面的过程中形成个体NAND存储器串的位置。在一些实施例中,用于形成第一沟道孔310A的制造工艺包括湿法刻蚀和/或干法刻蚀,例如深度离子反应刻蚀(DeepReactive Ion Etching,简写为:DRIE)。
在一些实施例中,第一沟道孔310A进一步延伸到硅衬底302的顶部中以形成第一沟道孔310A的开槽311。穿过第一堆叠结构304A的刻蚀过程可以不在硅衬底302的顶表面处停止并且可以继续刻蚀硅衬底302的一部分。在一些实施例中,在刻蚀穿过第一堆叠结构304A之后,使用单独的刻蚀工艺来刻蚀硅衬底302的一部分以形成开槽311。如下面详细描述的,第一沟道孔310A的开槽311的深度大于穿过硅衬底302的任何其他结构的开槽,例如狭缝开口和触点开口,以确保后面的背面衬底减薄工艺不会损坏其他结构。
如图6中所示,使用一个或多个薄膜沉积工艺(例如PVD、CVD、ALD、电镀、无电镀或其任何组合)沉积牺牲结构312,以部分或完全填充第一沟道孔310A(包括开槽311,如图5所示)。牺牲结构312可包括在后续工艺中去除的任何合适材料,例如多晶硅、碳、光致抗蚀剂等。在一些实施例中,使用化学机械抛光(Chemical Mechanical Polishing,简写为:CMP)工艺平面化牺牲结构312以使其顶表面与第一堆叠结构304A的顶表面齐平。
如图7中所示,在第一堆叠结构层304A和牺牲结构312上形成刻蚀停止层314,以完全覆盖第一堆叠结构层304A和牺牲结构312。在本实施例中,所述刻蚀停止层314与电介质层308选用同样材料,并控制沉积厚度为100埃。此处,之所以选择100埃参数,是因为选择了电介质层材料作为刻蚀停止层314是为了便于后续去除第二堆叠解耦股304B时,容易选择腐蚀液(需要考虑的刻蚀选择比对象少了,也就容易选择腐蚀液了);那么其在制作上沟道孔310B结构时,本身也会被腐蚀掉,因此,其厚度不宜选择的太薄。
参考图8,在第一堆叠结构304A上方的刻蚀停止层314上形成包括多个电介质层对的第二堆叠结构304B。第二堆叠结构304B可以通过一种或多种薄膜沉积工艺形成,包括但不限于CVD、PVD、ALD或其任何组合。
如图8所示,第二沟道孔310B是形成为垂直穿过第二堆叠结构304B延伸直到被刻蚀停止层314停止的另一个开口。第二沟道孔310B可以与第一沟道孔310A(图5中所示)对准,以便与第一沟道孔310A的至少一部分叠置,使得一旦去除牺牲结构312,就可以连接第一沟道孔310A和第二沟道孔310B。在一些实施例中,用于形成第二沟道孔310B的制造工艺包括湿法刻蚀和/或干法刻蚀,例如DRIE。因为刻蚀停止层314可以保护第一堆叠结构304A的结构免受由于第二沟道孔310B的刻蚀而造成的损坏。
如图9中所示,例如使用干法刻蚀和/或湿法刻蚀工艺去除其中叠置第一开口310A和第二开口310B的刻蚀停止层314的一部分。由于各向同性刻蚀(例如,通过湿法刻蚀)而可以回刻蚀所述刻蚀停止层314的附加部分(未示出)。一旦去除了刻蚀停止层314的一部分,就可以从第二沟道孔310B暴露牺牲结构312(图8中所示)。如图9所示,通过湿法刻蚀和/或干法刻蚀工艺在第一堆叠结构304A中去除牺牲结构312。在去除牺牲结构312之后,第一沟道孔310A再次开放并与第二沟道孔310B连接以形成沟道孔310,如图9所示,其垂直延伸穿过第一堆叠结构304A和第二堆叠结构304B以及刻蚀停止层314。
如图10所示,先在沟道孔310制作半导体插塞315,并沿沟道孔310的侧壁和半导体插塞315的表面形成存储膜318(包括阻挡层322、储存层324和隧穿层326)和半导体沟道320。在一些实施例中,首先沿沟道孔310的侧壁和底表面沉积存储膜318,然后在存储膜318上方沉积半导体沟道320。具体,可以使用一个或多个薄膜沉积工艺(例如ALD、CVD、PVD、任何其他合适的工艺或其任何组合)依次沉积阻挡层322、储存层324和隧穿层326,以形成存储膜318。然后可以通过使用一个或多个薄膜沉积工艺(例如ALD、CVD、PVD、任何其他合适的工艺或其任何组合)在隧穿层326上沉积多晶硅或任何其他合适的半导体材料来形成半导体沟道320。
如图10所示,存储膜318和半导体沟道320可以覆盖沟道孔310的底表面和侧壁两者。在一些实施例中,随后沉积氧化硅层、氮化硅层、氧化硅层和多晶硅层(一起构成“ONO结构”,其中所述多晶硅层即实施例1所述的存储膜表面上形成用于在SONO穿孔工艺中保护存储膜的表层)以形成存储膜318和半导体沟道320。
如图11中所示,执行SONO穿孔工艺以刻蚀穿过在第一沟道孔310A的底表面上形成的存储膜318,所述存储膜318包括阻挡层322、储存层324(例如Si3N4)和隧穿层326(例如SiO2)。在一些实施例中,通过CMP、湿法刻蚀和/或干法刻蚀去除并平面化存储膜318、半导体沟道320和覆盖层A326A的位于第二堆叠结构304B的顶表面上的部分。
如图12中所示,在沟道孔310内部,位于存储膜318或者半导体沟道320表面沉积保护层328,所述保护层328采用和牺牲层306相同的材料制作,使用湿法刻蚀和/或干法刻蚀工艺(例如DRIE)穿过电介质叠层304B形成狭缝开口316(例如,栅极线狭缝)或者沟道孔(例如第二沟道孔301B),并停止在刻蚀停止层314。在本发明实施例中,对于上堆叠结构和下堆叠结构之间存在刻蚀停止层的情况下,所述刻蚀停止层也是要被一并刻蚀掉的,这样暴露出来的是下堆叠结构最表层的牺牲层,此时才是完整下沟道结构。因为,刻蚀停止层314在产生上沟道孔和下沟道孔偏移时,如图9所示,会覆盖部分偏移部分,影响最后的图片采集的。
如图13所示,例如使用浓度为49%的氢氟酸进行湿法刻蚀。所述氢氟酸对于介质层308和牺牲层306之间具有高选择比,并且,所述氢氟酸对于刻蚀停止层314和保护层328之间也具有高选择比。从而将3D存储器300浸泡在浓度为49%的氢氟酸中时,能够得到如图13的刻蚀效果;此时,在刻蚀的同时使用超声处理,通过振动去掉如图13所示的暴露在第一堆叠结构304A之上的保护层材料,得到如图14所示的效果图。在上述图5-图14中,并未去刻意的呈现,若第一沟道孔中的侧壁SONO结构受到刻蚀损伤时的效果,于是,在本实施例中特意补充了说明书附图15和附图16来呈现上述存在刻蚀损伤时的第一沟道孔中的结构示意图,和进一步通过晶圆扫明场像得到的检测结果示意图。
通过图15不难发现,一旦第一沟道孔中的侧壁ONO结构受到刻蚀损伤,则在衬底保护层的时候,便会表现出表面的凹槽特性,并且在通过晶圆扫明场像时,呈现出如图16中330所标注的不协调的图案效果;需要指出的是,图16中的图案效果仅仅是一种示意性呈现,实际的效果可能比这更复杂,但是,共性的特点是:一旦受到了刻蚀损伤,则形成一个或者多个凹槽图案是主要的表征形式。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,包括:
刻蚀出辅助沟道孔结构;其中,所述辅助沟道孔的深度与上堆叠结构中的堆叠结构厚度偏差在预设范围内;
通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,露出可供检测的下沟道结构中的存储膜;其中,所述下沟道结构位于所述下堆叠结构中;以及
检测所述下沟道结构中的存储膜的侧壁轮廓。
2.根据权利要求1所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,在刻蚀出辅助沟道孔结构之前,所述方法还包括:
获取对存储膜完成深孔打穿刻蚀的半导体结构,对于沟道孔内的存储膜表面沉积保护层。
3.根据权利要求2所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述保护层材料具体为无定型硅、氧化硅、多晶硅中的一种或者多种。
4.根据权利要求2所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,具体包括:
利用电介质层和牺牲层选择比,以及电介质层和保护层选择比均满足预设条件的刻蚀工艺,刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,露出可供检测的下沟道结构中的存储膜。
5.根据权利要求1所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述通过所述辅助沟道孔结构,刻蚀掉位于下堆叠结构以上的上堆叠结构,具体包括:
利用电介质层和牺牲层选择比满足预设条件的刻蚀工艺;通过控制刻蚀时间,使得上堆叠层中的电介质层被刻蚀掉。
6.根据权利要求4所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述上堆叠结构和下堆叠结构之间沉积有刻蚀停止层;所述刻蚀停止层具体包括:具有预设厚度的电介质层构成。
7.根据权利要求6所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述预设厚度具体为:位于区间[25nm,200nm]中。
8.根据权利要求2所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述存储膜表面在进行深孔打穿刻蚀前生成有保护用的表层,则所述获取对存储膜完成深孔打穿刻蚀的半导体结构,还包括:
移除存储膜表面上起深孔打穿刻蚀过程保护用的表层,得到存储膜侧壁的轮廓。
9.根据权利要求1所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述刻蚀出辅助沟道孔结构,具体包括:
进行前栅自对准结构光刻、后栅自对准结构光刻、栅线缝隙或者定制化图形的栅对准光刻,并刻蚀得到所述的辅助沟道孔结构。
10.根据权利要求1所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述下沟道结构周围的堆叠结构的上表面层为牺牲层。
11.根据权利要求4、6或7所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述利用电介质层和牺牲层选择比,以及电介质层和保护层选择比均满足预设条件的刻蚀工艺,具体包括:使用浓度为40%-60%的氢氟酸进行湿法刻蚀。
12.根据权利要求4-10任一所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述刻蚀掉位于下堆叠结构最上层牺牲层以上的堆叠结构,方法具体包括:
在刻蚀的过程中或者刻蚀结束后,使用超声处理,以便去除掉在所述刻蚀过程中,仍然遗留下来的位于上沟道结构的保护层。
13.根据权利要求1-10任一所述的双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法,其特征在于,所述检测所述下沟道结构中的存储膜的侧壁轮廓,方法还包括:
通过晶圆扫明场像,获取所述下沟道结构中存储膜的侧壁轮廓以检测侧壁损伤情况。
CN201910863980.0A 2019-09-12 2019-09-12 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法 Active CN110634760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910863980.0A CN110634760B (zh) 2019-09-12 2019-09-12 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910863980.0A CN110634760B (zh) 2019-09-12 2019-09-12 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法

Publications (2)

Publication Number Publication Date
CN110634760A CN110634760A (zh) 2019-12-31
CN110634760B true CN110634760B (zh) 2022-04-15

Family

ID=68972763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910863980.0A Active CN110634760B (zh) 2019-09-12 2019-09-12 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法

Country Status (1)

Country Link
CN (1) CN110634760B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244102A (zh) * 2020-01-16 2020-06-05 长江存储科技有限责任公司 三维存储器及其制备方法
CN111323443B (zh) * 2020-03-04 2023-12-01 武汉新芯集成电路制造有限公司 Sono刻蚀样品制备及检测方法
CN111640761B (zh) * 2020-06-09 2021-06-22 长江存储科技有限责任公司 三维存储器的制作方法
CN111653496B (zh) * 2020-06-11 2021-04-27 长江存储科技有限责任公司 用于检测沟道结构刻蚀缺陷的方法
CN112289803A (zh) * 2020-10-22 2021-01-29 长江存储科技有限责任公司 3d存储器件及其制造方法
CN114623777B (zh) * 2022-02-21 2022-11-18 武汉大学 一种堆叠纳米片结构的测量模型构建方法、测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311301A1 (en) * 2010-03-26 2015-10-29 Kwang Soo SEOL Three-dimensional semiconductor memory devices and methods of fabricating the same
CN107863305A (zh) * 2017-11-21 2018-03-30 长江存储科技有限责任公司 一种sono刻蚀工艺的检测方法
CN108140643A (zh) * 2015-11-20 2018-06-08 桑迪士克科技有限责任公司 用于埋入源极线的包含支撑基座结构的三维nand设备及制造其的方法
CN109830483A (zh) * 2019-02-14 2019-05-31 长江存储科技有限责任公司 3d nand存储器及其形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613033B2 (ja) * 2010-05-19 2014-10-22 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311301A1 (en) * 2010-03-26 2015-10-29 Kwang Soo SEOL Three-dimensional semiconductor memory devices and methods of fabricating the same
CN108140643A (zh) * 2015-11-20 2018-06-08 桑迪士克科技有限责任公司 用于埋入源极线的包含支撑基座结构的三维nand设备及制造其的方法
CN107863305A (zh) * 2017-11-21 2018-03-30 长江存储科技有限责任公司 一种sono刻蚀工艺的检测方法
CN109830483A (zh) * 2019-02-14 2019-05-31 长江存储科技有限责任公司 3d nand存储器及其形成方法

Also Published As

Publication number Publication date
CN110634760A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN110634760B (zh) 一种双堆叠结构中检测沟道孔侧壁刻蚀损伤的方法
US7119005B2 (en) Semiconductor local interconnect and contact
US9041087B2 (en) Semiconductor devices having dielectric caps on contacts and related fabrication methods
CN108649033B (zh) 半导体器件及其制造方法
US20050233584A1 (en) Semiconductor device having a contact window including a lower with a wider to provide a lower contact resistance
US8623727B2 (en) Method for fabricating semiconductor device with buried gate
US8304834B2 (en) Semiconductor local interconnect and contact
CN111463219A (zh) 一种3d nand存储器件及其制造方法
KR101078732B1 (ko) 반도체 소자의 제조방법
KR20100008942A (ko) 반도체 소자 및 그 제조 방법
US20100052048A1 (en) Semiconductor device and method of manufacturing the same
JP3547279B2 (ja) 半導体装置の製造方法
JP2012119631A (ja) 半導体装置の製造方法
US7018927B2 (en) Method for forming isolation film for semiconductor devices
CN112437983A (zh) 三维存储器件和用于形成三维存储器件的方法
TWI788656B (zh) 用於在三維記憶體元件中形成溝道結構的方法
KR100832018B1 (ko) 반도체 소자 및 그 제조 방법
KR100766211B1 (ko) 플래시 메모리 소자의 콘택 형성방법
KR100849773B1 (ko) 반도체 소자의 제조 방법
KR20070090359A (ko) 반도체 소자의 제조방법
KR100324330B1 (ko) 반도체소자의 콘택 형성방법
KR100917639B1 (ko) 반도체 소자 제조 방법
JP2008166326A (ja) 半導体装置の製造方法
KR100792372B1 (ko) 반도체 소자 제조 방법
KR20080024365A (ko) 반도체소자의 게이트 형성방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant