CN110629100A - 一种氧化物弥散强化镍基高温合金的制备方法 - Google Patents

一种氧化物弥散强化镍基高温合金的制备方法 Download PDF

Info

Publication number
CN110629100A
CN110629100A CN201911039783.3A CN201911039783A CN110629100A CN 110629100 A CN110629100 A CN 110629100A CN 201911039783 A CN201911039783 A CN 201911039783A CN 110629100 A CN110629100 A CN 110629100A
Authority
CN
China
Prior art keywords
powder
nickel
oxide dispersion
laser deposition
dispersion strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911039783.3A
Other languages
English (en)
Other versions
CN110629100B (zh
Inventor
王国伟
黄岚
刘锋
肖祥友
刘泽程
谭黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201911039783.3A priority Critical patent/CN110629100B/zh
Publication of CN110629100A publication Critical patent/CN110629100A/zh
Application granted granted Critical
Publication of CN110629100B publication Critical patent/CN110629100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供了一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:将预合金粉末与YH2粉末在氩气保护下球磨,得到机械合金化粉末;预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;将机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金;激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。本发明通过调控送粉式激光沉积过程中的工艺参数,使得到的合金具有优异高温热压缩性能。

Description

一种氧化物弥散强化镍基高温合金的制备方法
技术领域
本发明属于合金技术领域,尤其涉及一种氧化物弥散强化镍基高温合金的制备方法。
背景技术
氧化物弥散强化(Oxide Dispersion Strengthening,ODS)镍基高温合金在高温下表现出良好的性能,是核工业结构材料的候选材料。设计这种抗辐射合金微观结构的一个重要方法是引入均匀的高密度和热辐射稳定的纳米颗粒,这些纳米粒子(主要Y-Ti-O等)分布在成分通常为合金基体中。纳米粒子被认为同时作为阻止位错运动,提供高蠕变强度,并作为辐射诱发点缺陷的下沉,提供良好的抗辐射损伤能力。
ODS合金的制造涉及到金属粉末和超细氧化物粉末的机械合金化(MA),通过在高能球磨机中重复破碎和焊接粉末颗粒混合物,从而形成具有过饱和固溶体,大量空位和位错结构的粉末。随后,通过热机械加工(如热挤压、轧制或热等静压)使机械合金化粉末热固结成型。通过机械、化学以及物理等方法制得的ODS合金粉末需要进一步热固化成形方可形成块体ODS合金。目前,ODS合金主要的热固化成形工艺有:热挤压(HE)、热等静压(HIP)以及放电等离子烧结(SPS)。
随着现代工业地不断发展,对于ODS镍基高温合金材料在结构、尺寸精度、生产周期等方面的要求也不断提高,使用传统的方法加工工件,会使得加工难度不断提高,以至于造成生产成本与周期变高,这将不能满足现代工业发展的需求,严重制约ODS镍基高温合金在实际中的应用。因此,亟需一种新型低成本的加工方法来促进与解决生产问题,从而进一步拓展ODS镍基高温合金的应用。
发明内容
有鉴于此,本发明的目的在于提供一种氧化物弥散强化镍基高温合金的制备方法,该方法制备的镍基高温合金具有优异的高温热压缩性能。
本发明提供了一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:
将预合金粉末与YH2粉末在氩气保护下球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;
将所述机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金;所述激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。
优选地,所述预合金粉末的粒径小于150μm;
所述YH2粉末的粒径小于75μm。
优选地,所述预合金粉末与YH2粉末的质量比为100:0.58~0.62。
优选地,所述预合金粉末按照以下方法制得:
将Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍制备母合金,经过雾化,得到预合金粉末。
本发明提供了一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:将预合金粉末与YH2粉末在氩气保护下球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;将所述机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金;所述激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。本发明采用送粉式激光沉积法对上述组成的预合金粉末机械合金化,通过调控送粉式激光沉积过程中的工艺参数,得到均匀弥散分布的氧化物析出相,使得镍基高温合金具有优异的高温热压缩性能。实验结果表明:应变速率为0.001s-1,压缩率为30%,合金在800℃压缩强度为326~420MPa,900℃压缩强度为212~231MPa,1000℃压缩强度为132~181MPa。
附图说明
图1为本发明实施例1制备的镍基高温合金试样图;
图2为本发明实施例1制备的镍基高温合金试样的尺寸示意图;
图3为本发明实施例2制备的镍基高温合金试样的尺寸示意图。
具体实施方式
本发明提供了一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:
将预合金粉末与YH2粉末氩气保护下球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;
将所述机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金。
采用送粉式激光沉积法对上述组成的预合金粉末机械合金化,通过调控送粉式激光沉积过程中的工艺参数,得到均匀弥散分布的氧化物析出相,使得镍基高温合金具有优异的高温热压缩性能。本发明提供的方法有效避免了传统方法加工复杂、成本昂贵、效率低下等缺点,为制备ODS镍基高温合金的大尺寸,高精度,复杂化提供新的技术方案。
本发明将预合金粉末与YH2粉末氩气保护球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍上。
在本发明中,YH2粉末的纯度为99%。在本发明中,所述预合金粉末的粒径小于150μm;所述YH2粉末的粒径小于75μm。
在本发明中,所述预合金粉末与YH2粉末的质量比为100:0.58~0.62。
在本发明中,所述预合金粉末优选按照以下方法制得:
将Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍制备母合金,经过雾化,得到预合金粉末。
球磨时,原料和磨球的质量比优选为1:8。在本发明中,所述球磨的时间为33~38h;球磨的转速为340~360rpm;球磨的气氛为氩气。
得到机械合金化粉末后,本发明将所述机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金。本发明综合考虑激光的功率、光斑尺度、扫描速度和送粉量等工艺参数的合理搭配,以使制备的镍基高温合金具有优异的高温热压缩强度。
在本发明中,用激光沉积制备ODS镍基高温合金的具体实施步骤为:
1.合适的工艺参数球磨制备粉末,筛选一定粒径范围的粉末;
2.使用建模软件设置样品的三维模型;
3.将三维模型输入激光沉积设备,文件根据层厚转换成加工路径;
4.激光沉积根据层状方式逐层打印粉末成立体试样。
在本发明中,所述激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。在本发明具体实施例中,所述激光功率为1.6kW,光斑直径为200μm,扫描速度为600mm/min,送粉速率为25g/min,激光单层熔覆厚度为0.3mm。
为了进一步说明本发明,下面结合实施例对本发明提供的一种氧化物弥散强化镍基高温合金及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
送粉式激光沉积(LMD)制备ODS镍基高温合金
以Cr:20%~21%、Fe:0.8%~0.9%、Ti:0.5%~0.6%、Al:0.2%~0.3%和余量为Ni的预合金粉末为原料;将占预合金粉末质量的0.6%的YH2放入行星式球磨机中,按照350转/分钟的转速氩气保护球磨36小时,球料比(磨球质量比材料的质量)为8:1,并过100目筛子,获得粉末粒径<150μm的球磨预合金粉末。
3D打印的激光功率1.6kW,光斑直径200μm,扫描速度600mm/min,送粉率25g/min,激光单层熔覆厚度0.3mm。当工件打印到一定尺度时停止激光沉积,如图1所示,图1为本发明实施例1制备的镍基高温合金试样图。对比传统制备的ODS镍基高温合金,切成直径6mm,高9mm的圆柱体试样,试样的方向为平行于成形方向,如图2所示,图2为本发明实施例1制备的镍基高温合金试样的尺寸示意图。本发明测试实施例1制备的镍基高温合金试样的高温热压缩性能,测试条件为:应变速率为0.001s-1,压缩率为30%,800℃压缩强度为326MPa,900℃压缩强度为212MPa,1000℃压缩强度为181MPa,如表1所示,表1为本发明实施例1和对比例1制备的镍基高温合金的性能对比表,从表1看出:实施例1优于采用的传统方法制备的同样成分的ODS镍基高温合金的对比例1相应指标。
表1本发明实施例1和对比例1制备的镍基高温合金的性能测试结果
实施例2
送粉式激光沉积(LMD)制备ODS镍基高温合金
以Cr:20%~21%、Fe:0.8%~0.9%、Ti:0.5%~0.6%、Al:0.2%~0.3%和余量为Ni的预合金粉末为原料;将占预合金粉末质量的0.6%的YH2放入行星式球磨机中,按照350转/分钟的转速氩气保护球磨36小时,球料比(磨球质量比材料的质量)为8:1,并过100目筛子,获得粉末粒径<150μm的球磨预合金粉末。
3D打印的激光功率1.6kW,光斑直径200μm,扫描速度600mm/min,送粉率25g/min,激光单层熔覆厚度0.3mm。当工件打印到一定尺度时停止激光沉积。对比传统制备的ODS镍基高温合金,切成直径6mm,高9mm的圆柱体试样,试样的方向为垂直于成形方向,如图3所示,图3为本发明实施例2制备的镍基高温合金试样的尺寸示意图。本发明测试实施例2制备的镍基高温合金试样的高温热压缩性能,测试条件为:应变速率为0.001s-1,压缩率为30%,800℃压缩强度为420MPa,900℃压缩强度为231MPa,1000℃压缩强度为132MPa,如表1所示,表1为本发明实施例2和对比例1制备的镍基高温合金的性能对比表,从表1看出:实施例2优于采用的传统方法制备的同样成分的ODS镍基高温合金的对比例1相应指标。
对比例1
按照传统方法热挤压(HE)制备ODS镍基高温合金,合金成分相同,以Cr:20%~21%、Fe:0.8%~0.9%、Ti:0.5%~0.6%、Al:0.2%~0.3%和余量为Ni的预合金粉末为原料;将占预合金粉末质量的0.6%的0.6%YH2放入行星式球磨机中,按照350转/分钟的转速氩气保护球磨36小时,球料比(磨球质量比材料的质量)为8:1,得到ODS镍基高温合金粉末。将球磨粉末装入包套抽真空封焊,挤压温度为1130℃,挤压比为16:1,然后热挤压固结成形获得致密的合金棒材,切成直径6mm,高9mm的圆柱体试样,测试高温热压缩性能,测试条件为:应变速率为0.001s-1,压缩率为30%,800℃压缩强度为316MPa,900℃压缩强度高出116MPa,1000℃压缩强度为97MPa。
由以上实施例可知,本发明提供了一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:将预合金粉末与YH2粉末在氩气保护下球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;将所述机械合金化采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金;所述激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。本发明采用送粉式激光沉积法对上述组成的预合金粉末机械合金化,通过调控送粉式激光沉积过程中的工艺参数,得到均匀弥散分布的氧化物析出相,使得镍基高温合金具有优异的高温热压缩性能。实验结果表明:应变速率为0.001s-1,压缩率为30%,800℃压缩强度为326~420MPa,900℃压缩强度为212~231MPa,1000℃压缩强度为132~181MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种氧化物弥散强化镍基高温合金的方法,包括以下步骤:
将预合金粉末与YH2粉末在氩气保护下球磨,得到机械合金化粉末;所述预合金粉末的组成为Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍;
将所述机械合金化粉末采用送粉式激光沉积法,得到氧化物弥散强化镍基高温合金;所述激光沉积的功率为1600~2000W,扫描速度为400~600mm/min,光斑直径为200~300μm,扫描间距为<1mm,层厚为<0.3mm,每层激光旋转角度为67°,送粉速率为20~25g/min。
2.根据权利要求1所述的方法,其特征在于,所述预合金粉末的粒径小于150μm;
所述YH2粉末的粒径小于75μm。
3.根据权利要求1所述的方法,其特征在于,所述预合金粉末与YH2粉末的质量比为100:0.58~0.62。
4.根据权利要求1所述的方法,其特征在于,所述预合金粉末按照以下方法制得:
将Cr 20~21%,Fe 0.8~0.9%,Ti 0.5~0.6%,Al 0.2~0.3%和余量镍制备母合金,经过雾化,得到预合金粉末。
5.根据权利要求1所述的方法,其特征在于,所述球磨的时间为33~38h;球磨的转速为340~360rpm。
CN201911039783.3A 2019-10-29 2019-10-29 一种氧化物弥散强化镍基高温合金的制备方法 Active CN110629100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911039783.3A CN110629100B (zh) 2019-10-29 2019-10-29 一种氧化物弥散强化镍基高温合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911039783.3A CN110629100B (zh) 2019-10-29 2019-10-29 一种氧化物弥散强化镍基高温合金的制备方法

Publications (2)

Publication Number Publication Date
CN110629100A true CN110629100A (zh) 2019-12-31
CN110629100B CN110629100B (zh) 2021-05-04

Family

ID=68978444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911039783.3A Active CN110629100B (zh) 2019-10-29 2019-10-29 一种氧化物弥散强化镍基高温合金的制备方法

Country Status (1)

Country Link
CN (1) CN110629100B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531173A (zh) * 2020-06-17 2020-08-14 中南大学 一种含钇粉末冶金高速钢及其制备方法
CN115029587A (zh) * 2022-05-11 2022-09-09 中南大学深圳研究院 一种增材制造氧化物弥散强化镍基高温合金及其制备方法
CN115449659A (zh) * 2022-08-01 2022-12-09 中南大学深圳研究院 氧化物弥散强化镍基高温合金及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565530A (ja) * 1991-09-10 1993-03-19 Hitachi Ltd 耐応力腐食割れ性オーステナイト系材料及びその製造方法
CN102414331A (zh) * 2009-04-27 2012-04-11 西门子公司 具有多活性元素的镍基γ/γ'超合金和所述超合金在复杂材料体系中的用途
CN103521761A (zh) * 2013-10-22 2014-01-22 江苏盛伟模具材料有限公司 微纳米氧化物颗粒增强高耐磨镍基合金粉末及其制备方法
CN105458259A (zh) * 2015-12-08 2016-04-06 湖北工业大学 一种Cr3C2-NiCr复合材料构件的激光成形方法
CN107760930A (zh) * 2017-12-07 2018-03-06 山西鑫盛激光技术发展有限公司 一种用于修复离心球磨管模内壁的半导体激光熔覆镍基合金粉末
CN109312428A (zh) * 2016-06-27 2019-02-05 贺利氏传感器科技有限公司 用于遮盖温度传感器的套管,具有这种套管的测温装置,将这种套管与测温装置连接在一起的方法以及合金的应用
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565530A (ja) * 1991-09-10 1993-03-19 Hitachi Ltd 耐応力腐食割れ性オーステナイト系材料及びその製造方法
CN102414331A (zh) * 2009-04-27 2012-04-11 西门子公司 具有多活性元素的镍基γ/γ'超合金和所述超合金在复杂材料体系中的用途
CN103521761A (zh) * 2013-10-22 2014-01-22 江苏盛伟模具材料有限公司 微纳米氧化物颗粒增强高耐磨镍基合金粉末及其制备方法
CN105458259A (zh) * 2015-12-08 2016-04-06 湖北工业大学 一种Cr3C2-NiCr复合材料构件的激光成形方法
CN109312428A (zh) * 2016-06-27 2019-02-05 贺利氏传感器科技有限公司 用于遮盖温度传感器的套管,具有这种套管的测温装置,将这种套管与测温装置连接在一起的方法以及合金的应用
CN107760930A (zh) * 2017-12-07 2018-03-06 山西鑫盛激光技术发展有限公司 一种用于修复离心球磨管模内壁的半导体激光熔覆镍基合金粉末
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531173A (zh) * 2020-06-17 2020-08-14 中南大学 一种含钇粉末冶金高速钢及其制备方法
CN111531173B (zh) * 2020-06-17 2021-09-07 中南大学 一种含钇粉末冶金高速钢及其制备方法
CN115029587A (zh) * 2022-05-11 2022-09-09 中南大学深圳研究院 一种增材制造氧化物弥散强化镍基高温合金及其制备方法
CN115449659A (zh) * 2022-08-01 2022-12-09 中南大学深圳研究院 氧化物弥散强化镍基高温合金及其制备方法和应用
CN115449659B (zh) * 2022-08-01 2024-01-30 中南大学深圳研究院 氧化物弥散强化镍基高温合金及其制备方法和应用

Also Published As

Publication number Publication date
CN110629100B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN110629100B (zh) 一种氧化物弥散强化镍基高温合金的制备方法
CN108421985B (zh) 一种制备氧化物弥散强化中熵合金的方法
AU2015294055A1 (en) Method for manufacturing machine components by additive manufacturing
CN104759830B (zh) 生产性能增强的金属材料的方法
US3902862A (en) Nickel-base superalloy articles and method for producing the same
CN110355367B (zh) 一种Al3Ti/316L不锈钢复合材料的增材制造方法
WO2019064641A1 (ja) 合金部材及びそれを用いた製造物
CN108941537B (zh) 一种电子束3d打印特种高温合金的方法
CN112157261A (zh) 激光熔化沉积反应结构高熵合金部件的制备方法及其应用
CN113385689A (zh) 一种高熵合金及其制备方法和应用
CN113634756B (zh) 一种高温合金球形粉体材料的制备方法
CN101125367A (zh) 一种用机械合金化制造CrW合金粉末的方法
CN107876783B (zh) 基于激光定点间隔扫描的激光增材制造用金属粉末制备方法
Huang et al. Microstructure and mechanical properties of the Nb37. 7Mo14. 5Ta12. 6Ni28. 16Cr7. 04 multi-principal alloys fabricated by gas tungsten wire arc welding additive manufacturing
CN115029587B (zh) 一种增材制造氧化物弥散强化镍基高温合金及其制备方法
Xiong et al. (Ti, W) C–Ni cermets by laser engineered net shaping
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
EP3031939B1 (en) Ni-group superalloy strengthened by oxide-particle dispersion
WO2019074059A1 (ja) チタン基合金部材、該チタン基合金部材の製造方法、及び該チタン基合金部材を用いた製造物
CN114480901B (zh) 一种通过碳化物增强增材制造镍基高温合金性能的方法、镍基高温合金粉末及其应用
CN113909480B (zh) 一种原位纳米氧化锆粒子弥散增强钨合金的制备方法
Egorova et al. Formation of technological properties and structure of high-speed powder steels and the influence of alloying components on the processes of diffusion and splicing during sintering and hot stamping
Makhmutov et al. Microstructure and mechanical properties of powder steel 16Cr-2Ni-Mn-Mo obtained by mechanical alloying and spark plasma sintering
Sim et al. Enhanced ductility of a bimodal grain structure Ti–22Al–25Nb alloy fabricated by spark plasma sintering
CN113652586A (zh) 一种选区激光熔化专用纳米改性钨合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Liu Feng

Inventor after: Wang Guowei

Inventor after: Huang Lan

Inventor after: Xiao Xiangyou

Inventor after: Liu Zecheng

Inventor after: Tan Liming

Inventor before: Wang Guowei

Inventor before: Huang Lan

Inventor before: Liu Feng

Inventor before: Xiao Xiangyou

Inventor before: Liu Zecheng

Inventor before: Tan Liming

CB03 Change of inventor or designer information