CN110627667A - 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池 - Google Patents

一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池 Download PDF

Info

Publication number
CN110627667A
CN110627667A CN201910899414.5A CN201910899414A CN110627667A CN 110627667 A CN110627667 A CN 110627667A CN 201910899414 A CN201910899414 A CN 201910899414A CN 110627667 A CN110627667 A CN 110627667A
Authority
CN
China
Prior art keywords
hole transport
solar cell
perovskite solar
layer
dumbbell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910899414.5A
Other languages
English (en)
Other versions
CN110627667B (zh
Inventor
李公强
杜梦真
赖雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Shile Photoelectric Technology Co Ltd
Original Assignee
Nanjing Shile Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Shile Photoelectric Technology Co Ltd filed Critical Nanjing Shile Photoelectric Technology Co Ltd
Priority to CN201910899414.5A priority Critical patent/CN110627667B/zh
Publication of CN110627667A publication Critical patent/CN110627667A/zh
Application granted granted Critical
Publication of CN110627667B publication Critical patent/CN110627667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/66Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池。其中钙钛矿太阳能电池的结构包括衬底、阳极、空穴传输层、活性层、电子传输层和阴极。其中活性层为传统的三维钙钛矿结构,空穴传输层为“哑铃型”结构的新型有机小分子。相比传统PEDOT:PSS,PTAA作为空穴传输材料,该类空穴传输材料具有合成步骤简单、成本低廉、用量少且无需任何掺杂的优势,该类新型空穴传输材料在反式平面结构钙太矿太阳能电池器件中能够减少空气中的水、氧气等对钙钛矿层结构的破坏,从而有效提高电池寿命,同时可以获得有更高开路电压(VOC)、短路电流(JSC)、和填充因子(FF),最终获得更高的光电转换效率(PCE),最高PCE达到18.61%。

Description

一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池
技术领域
本发明涉及一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池。
背景技术
随着不可再生能源的不断消耗,人类社会面临日益严峻的能源危机以及由此产生的环境压力,发展绿色可再生能源技术迫在眉睫。太阳能作为一种绿色的可再生能源,取之不尽用之不竭。如果能把照射在地球上太阳光的约0.3%转换成电能或者其他可以使用的能源,即可满足人类的全部需求。因而,自从1954年第一块单晶硅太阳能电池问世以来,人们就对利用半导体太阳能电池解决将来由于矿物燃料枯竭而引起的能源危机寄予了很大希望。传统的基于硅等无机半导体材料太阳能电池虽然已经商品化,但因其生产工艺复杂,成本过高,加之无机材料不可降解以及不易柔性加工等缺陷,其应用受到了限制。
近年来,开发新型的高效太阳能电池受到了越来越多的关注,其中具有代表性的太阳能电池主要有燃料敏化电池,有机太阳能电池,量子点敏化电池和有机-无机杂化电池。有机-无机钙钛矿太阳能电池作为有机-无机杂化电池中的重要分支,近年来得到迅猛的发展。至2019年,研究报道的有机-无机钙钛矿太阳能电池最高效率已经突破25.2%,展示了钙钛矿太阳能电池巨大的商业化潜力。
空穴传输材料,作为制备高效稳定钙钛矿太阳能电池的关键材料之一,一直是钙钛矿电池研究的重点,但截至目前,在高效钙钛矿太阳能电池中应用最广泛的空穴传输材料仍局限于2,2’,7,7’-四[N,N-二(4-甲氧基苯基)氨基]-9,9’-螺二芴(spiro-MeOTAD)、聚三芳苯胺(PTAA)和PEDOT:PSS等材料。其中,使用spiro-MeOTAD和PTAA作为钙钛矿太阳能电池的空穴传输材料,不仅成本高昂,还通常需要添加剂如:TCNQ、双(三氟甲磺酰)亚胺(Li-TFSI)和叔丁基吡啶(tBP)等提高材料迁移率,而这类离子添加剂造成空穴传输层不稳定、极易吸水,使钙钛矿活性层受到破坏,导致器件稳定性降低;而PEDOT:PSS作为空穴传输材料,虽然不需要掺杂,但是由于本身的酸性会腐蚀电极材料,也会影响太阳能电池的性能。所以开发新型、高效、无需掺杂的空穴传输层材料对钙钛矿太阳能电池具有重要意义。
发明内容
本发明提供了一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池。该新型“哑铃型”空穴传输材料合成工艺简单,成本低廉,来源广泛;并且参与制备的钙钛矿太阳能电池器件稳定性好,可以在不需要任何掺杂的情况下获得高的光电转换效率。
本发明采用的技术方案如下:
一类哑铃型空穴传输材料,空穴传输材料的化学结构通式为:
所述的哑铃型空穴传输材料,其结构式为A1-A4之一所示:
所述的空穴传输材料的合成方法,在史莱克瓶中加入三种原料,再加入有机溶剂如:N,N-二甲基甲酰胺(DMF)、甲苯、乙酸乙酯、二氯甲烷、氯仿、正己烷、丙酮、石油醚等,将其溶解,在氮气保护下,加入金属钯作为催化剂(如四(三苯基膦)钯、dba钯、氯化钯等);在氮气保护下,加热70-130℃,反应12-48小时;反应结束后,用二氯甲烷和水萃取,并用无水硫酸镁干燥、过滤并浓缩,最后用洗脱剂(二氯甲烷+石油醚)在硅胶柱色谱上进行纯化得到目标产物;
三种原料组合为2,2',7,7'-四溴-9,9’-二氢-9,9'-联亚芴基,碱(如碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、氢氧化钠、醋酸钠、甲醇钠、乙醇钠等)、取代芳基硼酸酯衍生物;
一种基于所述的哑铃型空穴传输材料的钙钛矿太阳能电池,其电池器件结构包括基底(1)、透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6);从基底(1)自下而上依次为透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6)。
所述的钙钛矿太阳能电池,所述的基底(1)为石英或者玻璃。
所述的钙钛矿太阳能电池,所述的透明金属电极(2)为氧化铟锡或氟掺杂的氧化铟锡。
所述的钙钛矿太阳能电池,所述的空穴传输层(3)为哑铃型空穴传输材料,厚度为1.9~300nm。
所述的钙钛矿太阳能电池,所述活性层(4)化学结构通式为CH3NH3PbI3、CH3NH3PbI3-xBrx或CH3NH3PbI3-xClx,其中0≤x≤3。
所述的钙钛矿太阳能电池,所述电子传输层(5)为PC61BM,PC61BM/PC71BM或氧化锌纳米颗粒。
所述的钙钛矿太阳能电池,所述金属电极层(6)银、铝、镁、铜、金、铬、氧化铟锡或者为氟掺杂的氧化铟锡,厚度为10-300nm。
本发明的优点在于:
该类空穴传输材料具有合成步骤简单,成本低廉,原料来源广泛,无需任何掺杂的优势,在钙钛矿太阳能电池中作为空穴传输层能够有效减少空气中的水、氧气等对钙钛矿层结构的破坏,从而在提高电池光电转化效率的同时,有效提高电池稳定性和器件寿命。相比传统PEDOT:PSS,PTAA作为空穴传输材料,该类空穴传输材料具有合成步骤简单、成本低廉、用量少且无需任何掺杂的优势,同时,由于分子中的两个芴核结构是通过具有一定平面结构的“碳-碳”双键相连,相比目前报道的螺环骨架,三蝶烯结构和马鞍型结构具有更好的平面型,使得分子在固态薄膜中的三苯胺结构边臂具有更好的分子间堆积,更利于空穴的传输,同时这种良好的固态平面性分子堆积,使空穴传输层德表面更加平整,有利于钙太矿层的结晶和高质量薄膜的形成,因此该类新型空穴传输材料在反式平面结构钙太矿太阳能电池器件中具有更大的优势,能够提高钙钛矿层的晶体生长和薄膜形貌质量,能够减少空气中的水、氧气等对钙钛矿层结构的破坏,从而有效提高电池寿命,同时可以获得有更高开路电压(VOC)、短路电流(JSC)、和填充因子(FF),最终获得更高的光电转换效率(PCE),最高PCE达到18.61%
附图说明
图1是本发明的有机-无机杂化钙钛矿太阳能电池结构示意图;
图2是有机空穴传输材料DMZ的核磁共振氢谱图(1H NMR);
图3和图4是有机空穴传输材料DMZ的低分辨和高分辨质谱;
图5是有机空穴传输材料DMZ的薄膜与溶液的紫外-可见光谱吸收(UV-vis);
图6是有机空穴传输材料DMZ的差示扫描量热曲线(DSC);
图7是有机空穴传输材料DMZ的差热分析曲线(TGA);
图8是有机空穴传输材料DMZ的电化学测试曲线(CV);
图9是本发明有机-无机杂化钙钛矿太阳能电池的电流-电压图;
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
如图1所示,本发明的钙钛矿电池结构包括基底(1)、透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6);从基底(1)自下而上依次为透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6);空穴传输层(3)为有机空穴传输材料DMZ及其衍生物,其分子的具体化学结构为:
本发明的哑铃型有机空穴传输材料DMZ及其衍生物具体的化学结构式为:
本发明在联亚芴基为核的基础上,引入芳基和杂芳基作为连接中心核和端基的π桥;咔唑及其衍生物作为主要的给电子单元,决定了整个分子具有合适的HOMO能级;又在端基上引入不同类型的烷基调节空穴传输层的溶解性。其中联亚芴基是一类平面的刚性分子,可以将与之相连的边臂咔唑及其衍生物向空间立体方向伸展,有利于激子在空穴传输层和钙钛矿层界面处分离,抑制电荷复合,从而提高钙钛矿太阳能电池效率。
本发明合成的哑铃型空穴传输材料如下式A1-A4所示,其中以A1为例,详述如下:
实施例1.
有机空穴传输材料A1的合成路线:
其中4-硼酸酯-4',4'-二甲氧基三苯胺和2,2',7,7'-四溴-9,9-联亚芴基均可以通过商业化购买,其空穴传输材料的合成步骤如下:
在史莱克瓶中加入(200mg,0.31mmol)的2,2',7,7'-四溴-9,9-联亚芴基,(801mg,1.86mmol)的4-硼酸酯-4',4'-二甲氧基三苯胺,2M K2CO3溶液(1.5mL),再加入20mL的N,N-二甲基甲酰胺将其溶解,在氮气保护下,加入(107mg,0.09mmol)的Pd(PPh3)4作为催化剂;再进行三次抽换气,氮气保护下70℃反应48小时;反应结束后,用二氯甲烷和水萃取,收集有机相,并用无水硫酸镁干燥、过滤并浓缩,最后用洗脱剂(CH2Cl2/hexanes=1:2)在硅胶柱色谱上进行纯化,得到棕色固体A1(310mg,64.9%)。
图2是有机空穴传输材料A1的核磁共振氢谱图。以四分之一结构分析,我们可以知道单峰3.75的峰位对应的是材料A1上的甲氧基峰的位置,8.75,7.70,7.75峰位对应的是联亚芴基上的氢的位置,7.50、7.27、6.99和6.81的峰位对应的是三苯胺上的峰位,通过峰位以及氢的数目与之相对应,可以确定材料A1的结构。
图3和图4分别是有机空穴传输材料A1的低分辨和高分辨质谱。通过质谱进一步证明了结构的正确性以及纯度。
图5是有机空穴传输材料A1的薄膜与溶液的紫外-可见吸收光谱。如图所示,在溶液中,该材料的吸光范围是317nm-537nm,最大吸收在373nm处;在薄膜中,该材料的吸光范围是323nm-526nm,最大吸收峰在376nm处。说明该材料与钙钛矿层的吸光范围有较好的互补。
图6是有机空穴传输材料A1的差示扫描量热曲线。如图所示,该材料的玻璃转化温度在125℃-150℃,图7是有机空穴传输材料A1的差热分析曲线。如图所示,该材料的分解温度在431℃,说明该材料的热稳定性很好。
图8是有机空穴传输材料A1的循环伏安(CV)曲线。通过计算,得到该材料的HOMO能级为-5.15eV。
实施例2.以有机空穴传输材料A1作为空穴传输层制备钙钛矿太阳能电池
将表面刻蚀有ITO(阳极)的导电玻璃依次用清洗剂、去离子水、丙酮和异丙酮超声震荡清洗后,烘干,再用氧等离子处理15min;然后在导电玻璃表面旋涂上有机空穴传输材料DMZ的氯仿溶液,浓度为0.5-10mg/mL,转速为5000rpm,之后再150℃的热台上退火10min。接着采用一步法在空穴传输层上面旋涂CH3NH3PbI3的DMF和DMSO(4:1)的混合溶液,转速为4000rpm,接着将基底放在100℃的热台上退火10min完成钙钛矿薄膜的制备。冷却之后,在钙钛矿薄膜上面旋涂20mg/mL的PC61BM/PC71BM的氯苯溶液作为电子传输层,转速为1000rpm,最后在表面蒸镀上一层100nm的Ag完成整个器件的制备。
参考图9,测试得到器件的VOC为1.02V;JSC为22.62mA/cm2,FF为81.05%,PCE为18.61%。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一类哑铃型空穴传输材料,其具有以下特征的化学结构通式:
其中:Ar为芳基和杂芳基,其结构式为a,b,c,d,e的任意一种,其中R为烷基链;
结构式中的-*为中心核扭曲的连二芴结构与取代基R1的连接位置;R1为芳基胺类化合物或取代的咔唑类衍生物,其结构式为f,g的任意一种,R2可以为烷基,甲氧基,硫氧基等,结构式如h所示:
2.根据权利要求1所述的哑铃型空穴传输材料,其特征在于,其结构式为A1-A4之一所示:
3.根据权利要求1所述的哑铃型空穴传输材料的合成方法,其特征在于,在容器中加入三种原料,再加入有机溶剂;在氮气保护下,加热70-130℃,反应12-48小时;反应结束后,用二氯甲烷和水萃取,并用无水硫酸镁干燥、过滤并浓缩,最后用洗脱剂在硅胶柱色谱上进行纯化得到目标产物;
三种原料组合为2,2',7,7'-四溴-9,9’-二氢-9,9'-联亚芴基,碱、取代芳基硼酸酯衍生物。
4.一类基于权利要求1所述的哑铃型空穴传输材料的钙钛矿太阳能电池,其特征在于:钙钛矿太阳能电池器件结构包括基底(1)、透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6);从基底(1)自下而上依次为透明金属电极层(2)、空穴传输层(3)、活性层(4)、电子传输层(5)和金属电极层(6)。
5.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述的基底(1)为石英或者玻璃。
6.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述的透明金属电极(2)为氧化铟锡或氟掺杂的氧化铟锡。
7.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述的空穴传输层(3)为哑铃型空穴传输材料,厚度为1.9~300nm。
8.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述活性层(4)化学结构通式为CH3NH3PbI3、CH3NH3PbI3-xBrx或CH3NH3PbI3-xClx,其中0≤x≤3。
9.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述电子传输层(5)为PC61BM,PC61BM/PC71BM或氧化锌纳米颗粒。
10.根据权利要求2所述的钙钛矿太阳能电池,其特征在于:所述金属电极层(6)银、铝、镁、铜、金、铬、氧化铟锡或者为氟掺杂的氧化铟锡,厚度为10-300nm。
CN201910899414.5A 2019-09-23 2019-09-23 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池 Active CN110627667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910899414.5A CN110627667B (zh) 2019-09-23 2019-09-23 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910899414.5A CN110627667B (zh) 2019-09-23 2019-09-23 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池

Publications (2)

Publication Number Publication Date
CN110627667A true CN110627667A (zh) 2019-12-31
CN110627667B CN110627667B (zh) 2022-08-30

Family

ID=68972371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910899414.5A Active CN110627667B (zh) 2019-09-23 2019-09-23 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池

Country Status (1)

Country Link
CN (1) CN110627667B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153962A1 (ja) * 2021-01-12 2022-07-21 保土谷化学工業株式会社 化合物、正孔輸送材料、およびそれを用いた光電変換素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154284A (ja) * 1997-08-04 1999-02-26 Canon Inc 電界発光素子
WO2010038251A1 (en) * 2008-10-02 2010-04-08 Università Degli Studi Di Roma La Sapienza Bifluorenylidene derivatives, their preparation and uses thereof
CN105541644A (zh) * 2015-12-15 2016-05-04 浙江大学 一种新型空穴传输层材料及其构成的钙钛矿太阳电池
CN106876589A (zh) * 2017-01-16 2017-06-20 浙江大学 新型空穴传输层材料及其构成的钙钛矿太阳电池
CN106893082A (zh) * 2017-01-25 2017-06-27 浙江大学 新型聚合物空穴提取层材料及其构成的钙钛矿太阳电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154284A (ja) * 1997-08-04 1999-02-26 Canon Inc 電界発光素子
WO2010038251A1 (en) * 2008-10-02 2010-04-08 Università Degli Studi Di Roma La Sapienza Bifluorenylidene derivatives, their preparation and uses thereof
CN105541644A (zh) * 2015-12-15 2016-05-04 浙江大学 一种新型空穴传输层材料及其构成的钙钛矿太阳电池
CN106876589A (zh) * 2017-01-16 2017-06-20 浙江大学 新型空穴传输层材料及其构成的钙钛矿太阳电池
CN106893082A (zh) * 2017-01-25 2017-06-27 浙江大学 新型聚合物空穴提取层材料及其构成的钙钛矿太阳电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKHIL GUPTA等: "An H-shaped, small molecular non-fullerene acceptor for efficient organic solar cells with an impressive open-circuit voltage of 1.17 V", 《MATERIALS CHEMISTRY FRONTIERS》 *
F. G. BRUNETTI等: "Strain and Huckel Aromaticity: Driving Forces for a Promising New Reneration of Electron Acceptors in Organic Electronics", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
KASPARAS RAKSTYS等: "Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylidene-Based Hole-Transporting Material", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153962A1 (ja) * 2021-01-12 2022-07-21 保土谷化学工業株式会社 化合物、正孔輸送材料、およびそれを用いた光電変換素子

Also Published As

Publication number Publication date
CN110627667B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
Li et al. A facilely synthesized ‘spiro’hole-transporting material based on spiro [3.3] heptane-2, 6-dispirofluorene for efficient planar perovskite solar cells
CN112300057B (zh) 一种d-a-d型空穴传输材料及其合成方法和应用
CN115215901B (zh) 基于7h-二苯并咔唑的自组装空穴传输材料及合成方法
CN113637015A (zh) 一种季铵盐功能化的苝二酰亚胺类小分子界面层及其制备方法
JP2011165963A (ja) 有機色素及び有機薄膜太陽電池
CN110156616B (zh) 基于芴乙烯桥联芳香环核的免掺杂空穴传输材料的合成方法及其在钙钛矿电池中的应用
CN110143976B (zh) 基于支化卟啉-苝二酰亚胺小分子受体的合成方法及应用
CN113292583B (zh) 一类二苯胺基-三聚茚-bodipy衍生物三元体系有机染料及其制备方法和应用
CN111689867B (zh) 一种空穴传输层材料及其制备方法、钙钛矿太阳电池及其制备方法
CN112442034B (zh) 一种含磺酸根季铵盐的共轭小分子内盐及其制备方法与应用
CN110627667B (zh) 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池
CN109134515B (zh) 苝二酰亚胺六聚体化合物及制备方法、组合物和有机太阳能电池
CN116375732A (zh) 一种非富勒烯受体材料及其制备方法和应用
CN113173936B (zh) 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
CN113336772B (zh) 一种空穴传输材料及其合成方法与应用
CN111138454B (zh) 一种基于茚并[1,2-b]咔唑的空穴传输材料及其制备方法和应用
CN111171046B (zh) 一种基于四噻吩并吡咯的免掺杂空穴传输材料及其合成方法和应用
CN109053676B (zh) 一种无掺杂有机空穴传输材料、制备方法及钙钛矿太阳能电池
CN114249746A (zh) 一种螺芴氧杂蒽三芳胺类空穴传输材料及其制备方法和应用
CN111153914A (zh) 一种非对称空穴传输材料及其制备方法和应用
CN115322164B (zh) 一种新型d1-d2-a化合物及其应用
CN110540761A (zh) 一类咔唑-吩噻嗪有机染料及其在染料敏化太阳能电池中的应用
CN113105464B (zh) 一类基于卟啉和富勒烯的单组分光伏材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant