CN110624424A - 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法 - Google Patents

一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法 Download PDF

Info

Publication number
CN110624424A
CN110624424A CN201910773801.4A CN201910773801A CN110624424A CN 110624424 A CN110624424 A CN 110624424A CN 201910773801 A CN201910773801 A CN 201910773801A CN 110624424 A CN110624424 A CN 110624424A
Authority
CN
China
Prior art keywords
membrane material
carbon dioxide
membrane
porous
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910773801.4A
Other languages
English (en)
Other versions
CN110624424B (zh
Inventor
范益群
徐鹏
邱鸣慧
符开云
陈献富
孔祥力
龚大为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910773801.4A priority Critical patent/CN110624424B/zh
Publication of CN110624424A publication Critical patent/CN110624424A/zh
Priority to PCT/CN2020/096504 priority patent/WO2021031675A1/zh
Priority to DE112020002779.1T priority patent/DE112020002779T5/de
Priority to US17/623,274 priority patent/US11628410B2/en
Application granted granted Critical
Publication of CN110624424B publication Critical patent/CN110624424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21834Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种用于增强液膜分离二氧化碳的膜改性方法,该方法是将含有胺类基团的有机物接枝在膜材料上,然后在多孔膜的孔道内负载水制得支撑液膜用于二氧化碳的混合气分离实验。本发明通过化学接枝反应引入胺类基团,使水作为膜液时具有一定的碱性,相比较于碱性溶液作为膜液,可以避免有效碱性物质的流失,同时二氧化碳的渗透通量也得到了提高。

Description

一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离 方法
技术领域
本发明属于膜材料的改性,具体涉及一种支撑液膜的膜材料的胺化改性及其在增强二氧化碳分离上的应用。
背景技术
近几年来,温室效应是人们最为关心的环境问题之一,而引起温室效应的主要来源是CO2,这主要由发电厂、钢铁厂及化工厂等排放出来。从防止全球变暖的角度考虑,二氧化碳的高效捕集回收技术的开发成为当务之急。除此之外,以CH4为主要成分的天然气开采中也含有CO2,需要从天然气中回收除去CO2,防止CO2等在气体输送过程中对气体管道的腐蚀。此外,还有很多含有CO2且需要除去CO2的待处理体系。
目前,CO2的分离和捕集主要有低温液化分离、吸收剂分离、吸附法捕集、膜分离等等。其中CO2胺类化学吸收法较为成熟,已经实现了工业应用,然而醇胺类吸收CO2之后需要升温解吸,同时温度过高还会导致其的降解(CN103638780A),从而降低吸收剂的再生度和循环率。除此之外,气体解吸塔能耗占了整个CO2捕集成本的~75%,再加上胺类溶剂对设备的强腐蚀作用,已经严重降低了CO2捕集的经济性,胺吸收法也因其自身的特点很难在技术上进一步的突破;低温液化分离虽然原理较为简单,但所需能耗非常巨大,成本较高且所用的装置规模较大;吸附法需要变压、变温或两者连用,所需步骤比较繁琐;膜分离法是比较新型的分离技术,但其所得的CO2纯度有限且难以突破的“Robeson上限”,即膜材料不可以同时达到较高的渗透速率和高选择性。
目前由于支撑液膜在实现高选择性和高渗透性有很好的突破,所以该技术用于气体分离方面的研究逐渐被研究者所重视。离子液体由于其较高的CO2溶解选择性和自身难挥发性在支撑液膜中有很好的应用,但由于其表面张力比较小,对膜孔径分布和大小有很高的要求,不能承受很高的跨膜压差,导致离子液体容易流失,从而对环境造成二次污染且离子液体价格昂贵造成一定的经济损失。
另外,采用现有技术中的采用离子液体的多孔膜自支撑的液膜分离方法时,在实际操作过程中,步骤繁琐。将分离设备更换使用场地之后,需要重新配制液膜,导致了增加了操作步骤,并且也存在着原料的获取等问题。
发明内容
本发明的目的是为了解决支撑液膜膜液流失的问题,同时又要保留离子液体的二氧化碳高效果,提出了一种增强水支撑液膜分离二氧化碳的膜材料胺化改性方法。
本发明的第一个方面,提供了:
一种改性多孔膜材料,所述的膜材料是指无机多孔材料,在膜材料的孔道内修饰有含胺类的基团。
在一个实施方式中,所述的胺类基团为含有伯胺、仲胺或者叔胺基团中的一种。
在一个实施方式中,所述的无机多孔材料为多孔氧化铝、多孔氧化钛、多孔氧化锆或者多孔氧化硅。
在一个实施方式中,所述的膜材料平均孔径为1~200 nm。
在一个实施方式中,所述的膜材料几何结构为平板式或管式。
本发明的第二个方面,提供了:
上述的改性多孔膜材料的制备方法,包括如下步骤:
将含胺类基团的硅烷偶联剂溶解在有机溶剂中,作为改性剂;将多孔膜材料浸没于改性剂中进行接枝反应,反应完成后,经过清洗、烘干,得到改性多孔膜材料。
在一个实施方式中,含胺类基团的硅烷偶联剂:选自例如N,N-二甲基-3-氨丙基三甲氧基硅烷、(3-氨丙基)三甲氧基硅烷等等。
在一个实施方式中,有机溶剂为至少含有乙醇、丙酮、二甲基乙酰胺(DMAC)、四氢呋喃(THF)中的一种。
在一个实施方式中,反应的条件为温度为20~40 ℃,反应时间1~24 h。
本发明的第三个方面,提供了:
一种二氧化碳的液膜分离方法,包括如下步骤:
用水作为溶剂,负载于上述的改性多孔膜材料的孔道中,形成液膜;再与含二氧化碳的混合气接触,使二氧化碳透过膜层。
在一个实施方式中,含二氧化碳的混合气为CO2与至少为N2、CH4、H2、O2、He、CO等气体中的一种。
本发明的第四个方面,提供了:
改性多孔膜材料在用于提高二氧化碳的液膜分离过程中的分离因子或者渗透通量中的应用。
有益效果
本发明中发现通过对多孔陶瓷材料的表面经过修饰胺类基团之后,一方面能够使胺类基团固定于材料表面,另一方面,利用这种结构也能够实现液膜分离二氧化碳的效果。
本发明中,在膜材料上接枝含胺类基团的高分子功能材料既可以满足液膜选择分离和渗透增强的需要,又可以避免因为使用离子液体带来的膜液流失的问题。
本发明是对多孔膜材料进行胺化改性,可以使增强传递的载体以固载的形式接枝在膜表面上,这样可以避免有效碱性物质的流失,并且本实验采用的膜溶剂为环境友好的水。除此之外,在膜液流失的情况下,液膜的修复可以利用膜材料亲水性质和孔结构大小,很容易在含有水汽的二氧化碳混合气条件下,通过毛细冷凝作用进行修复,可以提高支撑液膜的稳定性且操作方便。
采用本发明的方法,直接将胺类基团固载于多孔材料的内部,当需要将分离设备更换使用场地时,直接可以将设备移动位置,并不再需要重新准备复杂的液膜,直接采用简便易得的水作为介质即可,大大提高了装置设备的使用方便性。
附图说明
图1为胺化改性的多孔膜材料的红外图谱。
图2为胺化改性前后的多孔膜材料所制得的水支撑液膜对二氧化碳分离体系中气体渗透率的影响。
图3为未胺化改性的多孔膜,温度对二氧化碳渗透率的影响。
具体实施方式
本发明的技术方案,是将含有胺类基团的硅烷偶联剂滴加到有机溶剂中溶解配成改性溶液,将多孔膜材料浸没在改性溶液中反应,待反应完成后清洗烘干,得到富含胺基基团的膜材料。然后在表面张力的作用下,使水负载在膜孔道内,制得的支撑液膜用于分离二氧化碳混合气。
本发明对支撑材料的改性方法简单易行,可以避免使用离子液体带来的膜液流失问题(对孔径有较高的要求),并且胺类基团的引入可以提高水支撑液膜对二氧化碳的选择分离性。
本发明制备的水支撑液膜所用的膜液为绿色溶剂水,对环境无污染且价格便宜易得。
本发明采用的多孔膜材料自身具有亲水性,便于在二氧化碳混合气中加入水汽,通过毛细冷凝作用实现液膜的修复。
本发明提供的改性多孔膜材料,其膜材料的孔道内修饰有含胺类的基团。
在一个实施方式中,所述的胺类基团为含有伯胺、仲胺或者叔胺基团中的一种。
在一个实施方式中,所述的膜材料的材质是无机多孔膜材料或高分子多孔膜材料。
在一个实施方式中,所述的无机多孔材料为多孔氧化铝、多孔氧化钛、多孔氧化锆或者多孔氧化硅。
在一个实施方式中,所述的膜材料平均孔径为1~200 nm。
在一个实施方式中,所述的膜材料几何结构为平板式或管式。
上述的改性多孔膜材料的制备方法,包括如下步骤:
将含胺类基团的硅烷偶联剂溶解在有机溶剂中,作为改性剂;将多孔膜材料浸没于改性剂中进行接枝反应,反应完成后,经过清洗、烘干,得到改性多孔膜材料。
在一个实施方式中,含胺类基团的硅烷偶联剂:选自例如N,N-二甲基-3-氨丙基三甲氧基硅烷、(3-氨丙基)三甲氧基硅烷等等。
在一个实施方式中,有机溶剂为至少含有乙醇、丙酮、二甲基乙酰胺(DMAC)、四氢呋喃(THF)中的一种。
在一个实施方式中,反应的条件为温度为20~40 ℃,反应时间1~24 h。
实施例1
将平均孔径为100 nm的管式陶瓷膜内膜(几何尺寸:膜有效长度为8cm,外径为12cm、内径为8cm,孔隙率约为40%)洗干净放在干燥箱干燥1~2小时,将含有胺类基团的硅烷偶联剂(N,N-二甲基-3-氨丙基三甲氧基硅烷(DMAPS))滴加到无水乙醇中溶解配成15 mmol/L的改性溶液,将多孔膜材料浸没在改性溶液中,在恒温水浴温度为35℃下反应12h,待充分反应完成后清洗烘干,得到表面带有叔胺基团的膜材料。改性得到的膜材料的表面红外图谱如图1所示。(N,N-二甲基-3-氨丙基)三甲氧基硅烷(DMAPS)的结构如下:
对比改性前后膜的红外光谱图,可以看出改性后的陶瓷膜出现新的特征峰,分别为图中所标注的-CH2-、N-C、-CH3、Si-O-Al的特征峰,尤其是在1610cm-1处的N-C是DMAPS所特有的峰,而且在810cm-1处有证明Si-OH和Al-OH反应生成的Si-O-Al的特征峰。
然后将膜材料放在水中浸泡,通过表面张力的作用使水负载在膜孔里,此过程可以通过抽真空的方式加快,当没有气泡出来的时候,取出来用滤纸轻轻擦去膜表面残留的水,即制得可分离二氧化碳混合气的支撑液膜。
将准备好的水支撑液膜装在膜组件中,用于测定纯气体的渗透率和理想分离因子,在0.6Mpa和25℃的条件下进行渗透测试,结果是:CO2/N2理想分离因子为无穷大,未改性二氧化碳的渗透率约为2.5±0.15GPU,改性后二氧化碳的渗透率约为3.83±0.19GPU,相比于未改性的提高了约为53%。如图2所示。
实施例2
将平均孔径为200nm的管式陶瓷膜内膜(几何尺寸:膜有效长度为8cm,外径为12cm、内径为8cm,孔隙率约为40%)洗干净放在干燥箱干燥1~2小时,将含有胺类基团的硅烷偶联剂((3-氨丙基)三甲氧基硅烷)滴加到丙酮中溶解配成50 mmol/L的改性溶液,将多孔膜材料浸没在改性溶液中,在恒温水浴温度为30℃下反应24h,待充分反应完成后清洗烘干,得到表面带有叔胺基团的膜材料。将该膜材料用在气液膜接触器的气体吸收中,用水作为吸收剂,发现二氧化碳的传质通量从原来的0.15mol/(m2·h)提高到了0.209 mol/(m2·h),相对原来通量提高了约40%。
实施例3
考察了不同操作温度条件下对二氧化碳渗透速率的影响,如图3所示。
对于未改性的膜(使用平均孔径为20nm管式陶瓷膜,几何尺寸:膜有效长度为8cm,外径为12.5cm、内径为7.5cm,孔隙率约为30%),采用水为膜液,
支撑液膜中气体的渗透行为符合溶解-扩散模型:D(扩散系数),S(溶解度系数),J(气体渗透率),l(液膜厚度)
扩散系数随着温度的升高而上升,溶解度系数随着温度的升高而下降,所以气体渗透率J会有一个最佳值点。

Claims (10)

1.一种改性多孔膜材料,其特征在于,所述的膜材料是指无机多孔材料,在膜材料的孔道内修饰有含胺类的基团。
2.根据权利要求1所述的改性多孔膜材料,其特征在于,在一个实施方式中,所述的胺类基团为含有伯胺、仲胺或者叔胺基团中的一种。
3.根据权利要求1所述的改性多孔膜材料,其特征在于,在一个实施方式中,所述的无机多孔材料为多孔氧化铝、多孔氧化钛、多孔氧化锆或者多孔氧化硅。
4.根据权利要求1所述的改性多孔膜材料,其特征在于,在一个实施方式中,所述的膜材料平均孔径为1~200 nm;在一个实施方式中,所述的膜材料几何结构为平板式或管式。
5.权利要求1所述的改性多孔膜材料的制备方法,其特征在于,包括如下步骤:将含胺类基团的硅烷偶联剂溶解在有机溶剂中,作为改性剂;将多孔膜材料浸没于改性剂中进行接枝反应,反应完成后,经过清洗、烘干,得到改性多孔膜材料。
6.根据权利要求5所述的改性多孔膜材料的制备方法,其特征在于,在一个实施方式中,含胺类基团的硅烷偶联剂:选自例如N,N-二甲基-3-氨丙基三甲氧基硅烷、(3-氨丙基)三甲氧基硅烷;有机溶剂为至少含有乙醇、丙酮、二甲基乙酰胺(DMAC)、四氢呋喃(THF)中的一种。
7.根据权利要求5所述的改性多孔膜材料的制备方法,其特征在于,反应的条件为温度为20~40 ℃,反应时间1~24 h。
8.一种二氧化碳的液膜分离方法,其特征在于,包括如下步骤:用水作为溶剂,负载于上述的改性多孔膜材料的孔道中,形成液膜;再与含二氧化碳的混合气接触,使二氧化碳透过膜层。
9.根据权利要求8所述的二氧化碳的液膜分离方法,其特征在于,含二氧化碳的混合气为CO2与至少为N2、CH4、H2、O2、He、CO气体中的一种。
10.权利要求1所述的改性多孔膜材料在用于提高二氧化碳的液膜分离过程中的分离因子或者渗透通量中的应用。
CN201910773801.4A 2019-08-21 2019-08-21 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法 Active CN110624424B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910773801.4A CN110624424B (zh) 2019-08-21 2019-08-21 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法
PCT/CN2020/096504 WO2021031675A1 (zh) 2019-08-21 2020-06-17 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法
DE112020002779.1T DE112020002779T5 (de) 2019-08-21 2020-06-17 Modifiziertes poröses membranmaterial, verfahren ihrer herstellung und ein verfahren zur trennung der flüssigmembran von kohlendioxid
US17/623,274 US11628410B2 (en) 2019-08-21 2020-06-17 Modified porous membrane material and preparation method thereof, and liquid membrane separation method of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910773801.4A CN110624424B (zh) 2019-08-21 2019-08-21 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法

Publications (2)

Publication Number Publication Date
CN110624424A true CN110624424A (zh) 2019-12-31
CN110624424B CN110624424B (zh) 2021-03-19

Family

ID=68970625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910773801.4A Active CN110624424B (zh) 2019-08-21 2019-08-21 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法

Country Status (4)

Country Link
US (1) US11628410B2 (zh)
CN (1) CN110624424B (zh)
DE (1) DE112020002779T5 (zh)
WO (1) WO2021031675A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031675A1 (zh) * 2019-08-21 2021-02-25 南京工业大学 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534012A (zh) * 2011-04-08 2014-01-22 道康宁公司 使用环氧官能硅氧烷制备气体选择性膜的方法
CN104801201A (zh) * 2015-04-10 2015-07-29 北京工业大学 一种用于芳烃/烷烃混合物分离渗透汽化膜的绿色制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212581B2 (ja) 2005-08-12 2009-01-21 財団法人地球環境産業技術研究機構 Co2分離用メソポーラス複合体およびそれを用いるco2分離法
CN103638780B (zh) 2013-11-26 2015-08-05 中国华能集团清洁能源技术研究院有限公司 一种二氧化碳捕集溶液强化再生系统与方法
CN104772044A (zh) 2015-03-13 2015-07-15 南京工业大学 一种界面改性提高有机无机复合膜性能的方法
CN105032209B (zh) 2015-07-10 2017-05-03 北京化工大学 一种用于气体分离的金属有机骨架zif‑9膜的制备方法
CN107519772B (zh) 2017-08-17 2019-08-13 河南科技大学 一种高渗透超滤复合陶瓷涂层膜及其制备方法
CN107983173B (zh) 2017-11-01 2020-10-27 北京化工大学 一种高通量共价有机骨架复合膜及其制备方法
CN108126650B (zh) 2017-12-26 2021-01-26 吉林大学 功能化柔性无机多孔纤维膜、制备方法及其在同时去除水中油污及重金属离子方面的应用
CN110624424B (zh) 2019-08-21 2021-03-19 南京工业大学 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534012A (zh) * 2011-04-08 2014-01-22 道康宁公司 使用环氧官能硅氧烷制备气体选择性膜的方法
CN104801201A (zh) * 2015-04-10 2015-07-29 北京工业大学 一种用于芳烃/烷烃混合物分离渗透汽化膜的绿色制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAYUR OSTWAL等: "3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation", 《JOURNAL OF MEMBRANE SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031675A1 (zh) * 2019-08-21 2021-02-25 南京工业大学 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法
US11628410B2 (en) 2019-08-21 2023-04-18 Nanjing Tech University Modified porous membrane material and preparation method thereof, and liquid membrane separation method of carbon dioxide

Also Published As

Publication number Publication date
US11628410B2 (en) 2023-04-18
DE112020002779T5 (de) 2022-02-24
WO2021031675A1 (zh) 2021-02-25
CN110624424B (zh) 2021-03-19
US20220362721A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Dai et al. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review
KR101526096B1 (ko) 폴리이미드 기체 분리막
KR101354680B1 (ko) 실리콘 분리막을 이용한 이산화탄소 분리장치
Iarikov et al. Review of CO2/CH4 separation membranes
KR101063697B1 (ko) Dme 제조 공정에 적용되는 이산화탄소/수소 분리막
Cao et al. Recent advancements in molecular separation of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents
CN101760270B (zh) 脱除并回收天然气中co2的方法
Mohamad et al. Permeation properties of polymeric membranes for biohydrogen purification
CN110252152B (zh) 一种具有较高渗透通量的柔性有机溶剂反渗透膜、制备方法及应用
CN103635248A (zh) Co2的沸石膜分离回收系统
NO345261B1 (en) Method of extracting components of gas mixtures by pertraction on nanoporous membranes
JP2012236155A (ja) ゼオライト複合膜
CN110624424B (zh) 一种改性多孔膜材料、制备方法以及二氧化碳的液膜分离方法
Fajrina et al. A crucial review on the challenges and recent gas membrane development for biogas upgrading
Roozitalab et al. A review of membrane material for biogas and natural gas upgrading
KR101461199B1 (ko) 바이오가스 정제공정의 이산화탄소/메탄 분리용 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법
CN109320760B (zh) 一种碳纳米管/聚氨酯/聚偏氟乙烯吸油泡沫的制备方法
KR20030012224A (ko) 폴리비닐리덴 디플루오라이드 중공사막 접촉기를 이용한이산화탄소의 분리방법
CN105727764B (zh) 光聚合改性的聚烯丙基胺固载膜及其制备方法
CN113058438A (zh) 一种提高聚砜超滤膜性能的改性方法
CN113828168A (zh) 一种耐溶剂正渗透复合膜及其制备方法和应用
CN106544062A (zh) 合成气集成净化方法
Ahmad et al. MEMBRANE WETTING IN CARBON DIOXIDE ABSORPTION PROCESS USING MEMBRANE CONTACTORS: A REVIEW.
Kiamehr et al. Mixed matrix membranes using SAPO-34/APMDES/PES for carbon dioxide/methane separation
CN115138344B (zh) 一种聚氨酯-mof材料中空纤维的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant