CN110612322B - 高介电常数和低介电耗散的聚合物组合物 - Google Patents

高介电常数和低介电耗散的聚合物组合物 Download PDF

Info

Publication number
CN110612322B
CN110612322B CN201880027043.5A CN201880027043A CN110612322B CN 110612322 B CN110612322 B CN 110612322B CN 201880027043 A CN201880027043 A CN 201880027043A CN 110612322 B CN110612322 B CN 110612322B
Authority
CN
China
Prior art keywords
conductive
average diameter
composition
average
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880027043.5A
Other languages
English (en)
Other versions
CN110612322A (zh
Inventor
朱弼忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Publication of CN110612322A publication Critical patent/CN110612322A/zh
Application granted granted Critical
Publication of CN110612322B publication Critical patent/CN110612322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种组合物,所述组合物包含:a)包含碳、导电氧化物或金属的导电纤维;并且该导电纤维的平均直径为1nm至20,000nm且平均长度为平均直径的至少五倍;以及b)平均直径为1nm至20,000nm的非导电颗粒。

Description

高介电常数和低介电耗散的聚合物组合物
本发明涉及包含纤维填料和颗粒填料的聚合物复合材料,尤其是包含纤维导电填料和非导电颗粒填料的聚合物复合材料,其可用于电致动应用中。本发明还涉及将纤维填料掺入聚合物基体中的方法。
除了电致动之外,还存在期望增大聚合物的介电常数的许多其它应用。为此目的已应用了许多技术,包括主链和侧基的化学改性以及掺入高介电常数填料。增大介电常数的一个常见缺点是同时增大了介电损耗。介电损耗的增大可导致更高的能量消耗、设备运行期间的热生成、信号延迟和增大泄漏电流。已在有机硅膜中填充钛酸钡以提供介电薄膜致动器,参见例如,Liu等人,Smart Mater.Struct.,18(2009)095024。然而,该参考文献公开了随着钛酸钡的量增大,介电损耗也增大。
存在这样一个未解决的问题,即充分利用这些方法来增大介电常数,同时采用创新的技术来抑制介电损耗的增大。此外,应当使弹性模量的增大最小化。
发明内容
本发明提供了一种组合物,该组合物包含:
a)包含碳、导电氧化物或金属的导电纤维;并且该导电纤维的平均直径为1nm至20,000nm且平均长度为平均直径的至少五倍;以及
b)平均直径为1nm至20,000nm的非导电颗粒。
本发明还提供了一种方法,该方法包括:
c)通过物理吸附或化学氧化,在纤维材料上产生表面电荷
d)将承载有相反电荷的颗粒材料添加到所述表面上以形成混合物,以及
e)将所述混合物与聚合物混合。
具体实施方式
除非另外指明,百分比为重量百分比(重量%)并且温度以℃为单位。除非另外指明,否则操作在室温下进行。如本文所用,除非另外指明,否则分子量Mn、Mw和Mz具有常规含意并且通过凝胶渗透色谱法确定。分子量在本文中以g/mol为单位报告。如实施例中所述,通过FT-IR确定硅醇指数。
优选地,组合物还包含聚合物基体,优选包含聚硅氧烷的聚合物基体。优选地,聚硅氧烷由可固化有机硅组合物制得,可固化有机硅组合物选自(a)可通过硅氢加成固化的有机硅组合物;(b)可通过缩合反应固化的有机硅组合物;(c)可通过巯基-烯反应固化的有机硅组合物;(d)可通过自由基固化的有机硅组合物;和(e)可通过开环反应固化的有机硅组合物。可使用除所述方法以外的方法或通过方法的组合来固化前述可固化有机硅组合物中的每一种。
可通过硅氢加成固化的有机硅组合物通常包含:(A)每分子平均具有至少两个硅键合的链烯基基团或硅键合的氢原子的有机聚硅氧烷;(B)每分子平均具有至少两个硅键合的氢原子或硅键合的链烯基基团的有机硅化合物,其能够与有机聚硅氧烷(A)中的硅键合的链烯基基团或硅键合的氢原子反应;以及(C)氢化硅烷化催化剂。有机聚硅氧烷(A)和有机硅化合物(B)可独立地为直链的、支链的、环状的或树脂的。具体地,有机聚硅氧烷(A)和有机硅化合物(B)可包含M、D、T和Q单元的任何组合。M表示单官能单元R0 3SiO1/2。D表示双官能单元R0 2SiO2/2。T表示三官能单元R0SiO3/2。Q表示四官能单元SiO4/2。各R0可为任何烃基、芳族基团、脂族基团、烷基、烯基或炔基基团。含有重复的D单元的有机聚硅氧烷基本上是直链的,但是可包括可归因于T单元和/或Q单元的一些支化。当有机聚硅氧烷主要是直链的时,所得结构为弹性体。在优选实施方案中,有机聚硅氧烷(A)具有以下通式:
(R1R2 2SiO1/2)w(R2 2SiO2/2)x(R2SiO3/2)y(SiO4/2)z (I)
其中各R1是独立选择的烃基基团,其可为取代或未取代的并且在烃基基团中可包含杂原子(例如O、N、S),并且各R2独立地选自R1和链烯基基团,前提条件是R2中的至少两个是链烯基基团,并且w、x、y和z是摩尔分数,使得w+x+y+z=1。对于直链有机聚硅氧烷,下标y和z通常为0,而对于树脂,下标y和/或z>0。优选地,下标w的值为0至0.9,优选0至0.6,优选0至0.3,优选0至0.1,优选0.00001至0.001。优选地,下标x的值为0至0.99999,优选0至0.9999,优选0至0.999,优选0至0.99,优选0.9至0.99999,优选0.9至0.9999,优选0.9至0.999。下标y的值优选为0至0.99,优选0至0.45,优选0至0.25,优选0.25至0.8,优选0.5至0.8。下标z的值优选为0至0.99,优选0至0.85,优选0.85至0.95,优选0.6至0.85,优选0.4至0.65,优选0.2至0.5,优选0.1至0.45,优选0至0.5,优选0至0.25,优选0至0.15。优选地,当R1为卤素取代时,其为3,3,3-三氟丙基、3-氯丙基、氯苯基、二氯苯基、2,2,2-三氟乙基、2,2,3,3-四氟丙基或2,2,3,3,4,4,5,5-八氟戊基。优选地,R1为C1至C10烃基基团;优选烷基、芳基或芳烷基。优选地,由R2表示的链烯基基团(其在有机聚硅氧烷(A)内可相同或不同)具有2至10个碳原子,优选2至6个碳原子,优选乙烯基或烯丙基,优选乙烯基。
优选地,有机硅组合物中的至少一种包括可通过缩合反应固化的有机硅组合物,该组合物包含(A′)每分子平均具有至少两个硅键合的羟基或可水解基团的有机聚硅氧烷;任选地(B′)每分子平均具有至少两个硅键合的氢原子、羟基基团或可水解基团的有机硅化合物;和(C′)缩合反应催化剂。优选地,缩合催化剂(C′)是通常用于促进硅键合的羟基(硅醇)基团缩合而形成Si-O-Si键的任意缩合反应催化剂,优选胺;或钛、铅、锡、锌、锆和铁与羧酸、烷基和醇盐基团的化合物;优选锡(II)和锡(IV)化合物,如二月桂酸锡、二辛酸锡、二月桂酸二丁基锡、二乙酸二丁基锡和四丁基锡;以及钛化合物,如钛酸正丁酯。
优选地,至少一种有机硅组合物包括可通过自由基固化的有机硅组合物,其通常包含(A”)平均具有至少两个硅键合的不饱和基团的有机聚硅氧烷和(C”)自由基引发剂。
优选地,至少一种有机硅组合物包括可通过开环反应固化的有机硅组合物,其通常包含(A”’)具有至少两个环氧取代基、硅杂环丁烷环和/或苯并环丁烯环的有机聚硅氧烷,以及(C”’)固化剂。
优选地,至少一种有机硅组合物包括可通过巯基-烯反应固化的有机硅组合物,其包含:(A””)每分子平均具有至少两个硅键合的链烯基基团或硅键合的巯基烷基基团的有机聚硅氧烷;(B””)每分子平均具有至少两个硅键合的巯基烷基基团或硅键合的链烯基基团的有机硅化合物,其能够与有机聚硅氧烷(A””)中的硅键合的链烯基基团或硅键合的巯基烷基基团反应;(C””)催化剂;和(D””)含有两个或更多个巯基基团的任选的有机化合物。催化剂(C””)可以是适于催化有机聚硅氧烷(A””)与有机硅化合物(B””)和/或有机化合物(D””)之间的反应的任意催化剂。通常,催化剂(C””)选自:i)自由基催化剂;ii)亲核试剂;和(iii):(i)和(ii)的组合。用作催化剂(C””)的合适的自由基催化剂包括光活化自由基催化剂、热活化自由基催化剂、室温自由基催化剂(如氧化还原催化剂和烷基硼烷催化剂)以及它们的组合。用作催化剂(C””)的合适亲核试剂包括胺类、膦类以及它们的组合。
优选地,至少一种有机硅组合物包括可通过硅烷-硅醇反应固化的有机硅组合物,其通常包含:(A””’)每分子平均具有至少两个硅键合的氢原子或至少两个有机硅键合的羟基基团的有机聚硅氧烷;(B””’)每分子平均具有至少两个硅键合的羟基基团或至少两个硅键合的氢原子的有机硅化合物,其能够与有机聚硅氧烷(A””’)中的硅键合的氢原子或硅键合的羟基基团反应;(C””’)催化剂;和(D””’)任选的含活性氢化合物。通常,催化剂(C””’)选自:i)含X族金属的催化剂,诸如铂;ii)碱,如金属氢氧化物、胺或膦;以及(iii)它们的组合。
聚合物基体不限于有机硅。其它聚合物也是合适的,包括诸如聚烯烃、聚醚、聚酮、聚酯、聚氨酯、聚酰亚胺、聚丙烯酸酯之类的热塑性聚合物以及诸如环氧化物、氰酸酯、聚酰亚胺、聚氨酯之类的热固性聚合物等。
优选地,导电纤维的电导率为0.1至1×108西门子每米(S/m),优选1S/m至1×108S/m,优选4S/m至1×108S/m,优选10S/m至1×108S/m,优选100S/m至1×108S/m,优选1×103S/m至1×108S/m。优选地,纤维包含碳且表面被氧化。
优选地,非导电颗粒的平均直径为至少1nm,优选至少5nm,优选至少10nm;优选不超过20,000nm,优选不超过10,000nm,优选不超过1,000nm。将平均直径确定为算术平均值,并且可通过许多技术测量,优选透射电子显微镜及随后的图像分析。优选地,纳米颗粒为非导电的,即,纳米颗粒的电导率不大于0.1S/m,优选不大于1×10-2S/m,优选不大于1×10- 3S/m。优选地,纳米颗粒包含无机或有机聚合物组分。无机颗粒包括但不限于钛酸钡和钙钛矿结构、二氧化钛、二氧化锆、二氧化硅的其它氧化物组分以及诸如铪、锗、锡、铅、铝、镓、铟、铌、钪、钇、钒和镧系元素及锕系元素(如铒和铕)之类的其它金属的氧化物、硼化物、氮化物、碳化物和硅化物。有机聚合物颗粒包括但不限于聚苯乙烯、聚丙烯酸酯、聚氯乙烯、丙烯腈-丁二烯-苯乙烯三元共聚物、聚偏二氟乙烯、聚四氟乙烯、聚醋酸乙烯酯和各种共聚物。
优选地,导电纤维的平均直径为至少2nm,优选至少3nm,优选至少5nm,优选至少10nm;优选不超过10,000nm,优选不超过5,000nm,优选不超过1,000nm,优选不超过500nm,优选不超过100nm,优选不超过50nm。优选地,导电纤维的平均长度为直径的至少8倍,优选至少10倍;优选不超过1,000,000倍,优选不超过100,000倍。
优选地,纳米颗粒与导电纤维的重量比为0.01:50至50:1,优选0.1:10至10:1,优选0.2:2至5:1。优选地,当组合物包含聚合物基体时,纳米颗粒和导电纤维的总重量为聚合物基体、纳米颗粒和导电纤维的总重量的0.1重量%至80重量%,优选至少0.5重量%,优选至少1重量%;优选不超过80重量%,优选不超过60重量%。
在本发明的方法中,优选将颗粒和纤维与聚合物树脂混合,然后固化所述聚合物树脂。
实施例
表1:使用的原材料、供应商和说明
Figure BDA0002245361210000051
Figure BDA0002245361210000061
经氧化的碳纳米纤维(CNF)的制备
将2.84g的PYROGRAF III PR-19-XT-PS碳纳米纤维(气相生长,平均直径约150nm,表面上具有CVD沉积的碳)置于配备有机械搅拌器、回流冷凝器和温度计的三颈圆底烧瓶中。用去离子水将90g 70重量%的HNO3稀释至总体积为250ml以制备1M HNO3溶液,并且将该溶液添加至烧瓶中。在搅拌下,将温度升高至105.1℃,并且保持回流110小时。然后将内容物冷却下来,通过1号滤纸过滤。将留在滤纸顶部上的滤饼用去离子水洗涤八次。将75%的滤饼分散在20g去离子水中以制备稳定的浆液。基于热干燥测量,将该浆液中的固体含量确定为~10重量%。将剩余的滤饼在通风烘箱中在95℃下干燥20小时,然后在120℃下干燥1小时。
BaTiO3纳米颗粒的处理和分散
将10g的50nm BaTiO3干燥颗粒置于40ml玻璃小瓶中,添加20g的去离子水,随后添加0.13g的34重量%至37重量%的盐酸。在室温下通过磁力棒将混合物搅拌20小时,然后通过IKA T18Ultra Turrax转子定子搅拌器以20k rpm搅拌60秒。将分散体用于下一步骤中而无需进一步处理。
吸附有BaTiO3的CNF(CNF@BaTiO3)的制备
取出一半质量的上述制备的CNF浆液,并将65g去离子水加入其中。将混合物摇动以制备稳定的分散体。为确保均匀混合,通过IKA T18 UltraTurrax转子定子搅拌器以20krpm搅拌混合物60秒。在由转子定子搅拌器保持搅拌的同时,添加10g上述制备的BaTiO3分散体。再继续混合60秒,然后将内容物置于玻璃容器中,并且通过将顶部敞开的容器在通风烘箱中、在95℃放置20小时,然后在120℃放置1小时,从而除去水。获得4.5g干燥材料,并且据估计由1重量份的经处理的CNF和2/4重量份的经处理的BaTiO3组成。
吸附有二氧化硅纳米颗粒的CNF(CNF@SiO2)的制备
将8.62g上述经处理的CNF浆液置于40ml玻璃小瓶中,并且与8g去离子水混合。将混合物用最大功率为130W的GEX 130型超声处理器和CV18型振动器以及3/8"直径不锈钢尖端以90%振幅混合3分钟。然后添加5g的Nalco DVSZN002胶态二氧化硅,并且用相同的超声处理器和相同的工艺参数进行混合。所得分散体是稳定的。然后将该分散体倾注到培养皿中并置于通风烘箱中进行干燥:3℃/min至95℃,95℃/8h,1℃/min至100℃,100℃/1h,1℃/min至115℃,115℃/2h。获得2.2g的固体材料。据估计CNF与二氧化硅的重量比为1比2.32。
含有ITO的SYLGARD 184有机硅弹性体的制备
在单颈圆底烧瓶中,将适量的100nm ITO颗粒(平均直径,约150nm)的IPA分散体与SYLGARD 184基质聚合物混合。计算后者的量以获得所期望的ITO/有机硅比率。将混合物置于设置为80℃的旋转蒸发器上,并且连续降低真空度以除去IPA。最终压力为1mm Hg。然后使不含IPA的混合物冷却,以初始SYLGARD 184基质重量的1/10的量添加SYLGARD 184固化催化剂,并且充分混合以进行固化。调节不同样品的ITO含量,以得到最终固化组合物中期望的总ITO含量。
用于介电测量的比较样品盘的制备
在FlackTek搅拌器上的10g容量杯中,将5g Sylgard 184基质和0.5gSylgard 184固化催化剂以3500rpm混合2分钟。将2g混合物置于0.8mm厚的垫片的直径为2英寸的开口中,所述垫片从底部的抛光不锈钢板(6"X6")上衬有特氟隆片材的铝板中切出。将另外的特氟隆片材放置在顶部上,然后由另一个抛光的不锈钢板覆盖。将组件置于130℃的温度和4000lb的力下的热压机中。使该组件在该条件下保持30分钟,然后用流动通过压台的冷冻水冷却。收集固化的2英寸直径、0.8mm厚的盘并用于介电测试。改变垫片的厚度以获得用于测试的不同厚度的样品。
用于介电测量的含有ITO颗粒的比较样品盘的制备
按照如上所述的相同规程,使用含有ITO的Sylgard 184基质和催化剂混合物来制备盘。
用于介电测量的含有银纳米颗粒的比较样品盘的制备
将适当量的18nm平均直径的干燥银纳米颗粒置于10g容量的牙科混合器杯中,然后称量5g的Sylgard 184基质。将10个3mm直径的耐腐蚀不锈钢承载球置于杯中,并且在FlackTec搅拌器上将混合物以3500rpm混合2分钟(混合1分钟,等待5分钟,然后混合1分钟,以使加热最小化)。冷却10分钟后,称量0.5g的Sylgard 184固化剂,并且以3500rpm混合30秒。按照上述相同的盘制备规程,取出2g的混合物以制备用于介电测量的盘。调节银纳米颗粒的量以获得盘中所需的银含量。
用于介电测量的含有碳纳米纤维的比较样品盘的制备
使用如上相同的方法制备含有未经处理的Pyrograf III CNF的盘,仅使用未经处理的Pyrograf III CNF代替银纳米颗粒。
用于介电测量的含有MWCNT-TiO2的实施例盘的制备
使用如上相同的方法制备含有MWCNT(多壁碳纳米管,内径5nm至15nm,外径>50nm,长度5微米至20微米)-TiO2的盘,仅使用MWCNT-TiO2代替银纳米颗粒或未经处理的PyrografIII CNF。
用于介电测量的含有CNF@BaTiO3的实施例盘的制备
使用如上相同的方法制备含有CNF@BaTiO3的盘,仅使用上述制备的CNF@BaTiO3代替MWCNT-TiO2、银纳米颗粒或未经处理的Pyrograf IIICNF。
用于介电测量的含有CNF@SiO2的实施例盘的制备
使用如上相同的方法制备含有CNF@SiO2的盘,仅使用上述制备的CNF@SiO2代替MWCNT-TiO2、银纳米颗粒或未经处理的Pyrograf IIICNF。
表2:样品组分和介电测试结果
Figure BDA0002245361210000081
Figure BDA0002245361210000091
Figure BDA0002245361210000101
Figure BDA0002245361210000111
在本发明中,令人惊讶地发现,当吸附到导电纤维的表面上时,本质上非导电的纳米颗粒可非常有效地减轻复合材料变为导电的趋势。此外,该方法能够掺入出人意料地大量的导电纤维以有效地增大介电常数,同时仍保持低介电损耗。
更广泛地,在试图利用越来越多可用的多种组分的纳米纤维时会遇到维持的问题,但常见的挑战在于将纳米纤维均匀分散到聚合物基体中,因为常见的纳米纤维生产技术会得到紧密成束的纤维。令人惊讶地发现,本发明的方法能够使紧密堆积的纳米纤维易于均匀分散到聚合物基体中。

Claims (7)

1.一种组合物,所述组合物包含:
a)包含碳或导电氧化物的导电纤维;并且所述导电纤维的平均直径为1nm至20,000nm且平均长度为所述平均直径的至少五倍;
b)平均直径为1nm至20,000nm的非导电颗粒;以及
c) 围绕所述导电纤维和所述非导电颗粒的聚硅氧烷聚合物基体;
其中所述非导电颗粒被吸附在所述导电纤维上。
2.根据权利要求1所述的组合物,其中所述导电纤维的平均直径为3nm至1,000nm且电导率为10S/m至1×108S/m。
3.根据权利要求2所述的组合物,其中所述非导电颗粒的平均直径为5nm至1,000nm且电导率不大于0.1S/m。
4.一种制备权利要求1所述组合物的方法,所述方法包括:
c)通过物理吸附或化学氧化,在纤维材料上产生表面电荷,
d)将承载有相反电荷的颗粒材料添加到所述表面上以形成混合物,其中,所述颗粒材料被吸附在所述纤维材料上,以及
e)将所述混合物与聚硅氧烷聚合物或聚硅氧烷树脂混合。
5.根据权利要求4所述的方法,其中所述颗粒材料的平均直径为5nm至1,000nm且电导率不大于0.1S/m。
6.根据权利要求5所述的方法,其中所述纤维材料的平均直径为3nm至1,000nm且电导率为10S/m至1×108S/m。
7.根据权利要求5所述的方法,其中通过在导电纤维材料和所述颗粒材料的存在下固化可固化硅氧烷材料来形成聚硅氧烷。
CN201880027043.5A 2017-05-12 2018-04-18 高介电常数和低介电耗散的聚合物组合物 Active CN110612322B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762505270P 2017-05-12 2017-05-12
US62/505270 2017-05-12
PCT/US2018/028088 WO2018208446A1 (en) 2017-05-12 2018-04-18 Polymer composites of high dielectric constant and low dielectric dissipation

Publications (2)

Publication Number Publication Date
CN110612322A CN110612322A (zh) 2019-12-24
CN110612322B true CN110612322B (zh) 2023-05-05

Family

ID=62116618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880027043.5A Active CN110612322B (zh) 2017-05-12 2018-04-18 高介电常数和低介电耗散的聚合物组合物

Country Status (6)

Country Link
US (1) US11124625B2 (zh)
JP (1) JP7231558B2 (zh)
KR (1) KR102500420B1 (zh)
CN (1) CN110612322B (zh)
TW (1) TWI763838B (zh)
WO (1) WO2018208446A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749853A2 (en) * 2005-06-30 2007-02-07 Nissin Kogyo Co., Ltd Composite material
US8143337B1 (en) * 2005-10-18 2012-03-27 The Ohio State University Method of preparing a composite with disperse long fibers and nanoparticles
CN106543731A (zh) * 2015-09-17 2017-03-29 信越化学工业株式会社 硅橡胶组合物和电力电缆

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153264B2 (ja) * 1991-05-17 2001-04-03 ジーイー東芝シリコーン株式会社 スポンジ用シリコーンゴム組成物
JPH09321191A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子成形体
JP3017145B2 (ja) * 1997-10-09 2000-03-06 大塚化学株式会社 樹脂組成物
WO2005012435A1 (en) * 2003-07-31 2005-02-10 World Properties, Inc. Electrically conductive, flame retardant fillers, method of manufacture, and use thereof
US7507472B2 (en) 2004-03-09 2009-03-24 The United States Of America As Represented By The Administator Of National Aeronatics And Space Adminstration Multilayer electroactive polymer composite material comprising carbon nanotubes
JP4245514B2 (ja) * 2004-05-24 2009-03-25 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合金属材料の製造方法、炭素繊維複合非金属材料の製造方法
JP5344451B2 (ja) * 2007-12-28 2013-11-20 独立行政法人産業技術総合研究所 高分子樹脂成形体およびその製造方法
US8048341B2 (en) 2008-05-28 2011-11-01 Applied Sciences, Inc. Nanocarbon-reinforced polymer composite and method of making
KR101095024B1 (ko) 2010-04-27 2011-12-20 한국과학기술연구원 고분자 복합체 액츄에이터
US10978629B2 (en) * 2014-12-05 2021-04-13 Unm Rainforest Innovations Method of dispersing nanoparticles in different mediums and methods to achieve superior thermoelectric performances in carbon nanotube polymer systems
JP6301978B2 (ja) * 2016-01-26 2018-03-28 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
EP3270386A1 (en) * 2016-07-11 2018-01-17 Heraeus Deutschland GmbH & Co. KG Electrically conductive composition for use as an electrically conductive adhesive for mechanically and electrically connecting electrical conductors to electrical contacts of solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749853A2 (en) * 2005-06-30 2007-02-07 Nissin Kogyo Co., Ltd Composite material
US8143337B1 (en) * 2005-10-18 2012-03-27 The Ohio State University Method of preparing a composite with disperse long fibers and nanoparticles
CN106543731A (zh) * 2015-09-17 2017-03-29 信越化学工业株式会社 硅橡胶组合物和电力电缆

Also Published As

Publication number Publication date
KR20200006549A (ko) 2020-01-20
TWI763838B (zh) 2022-05-11
KR102500420B1 (ko) 2023-02-17
JP2020519705A (ja) 2020-07-02
US11124625B2 (en) 2021-09-21
JP7231558B2 (ja) 2023-03-01
WO2018208446A1 (en) 2018-11-15
TW201900750A (zh) 2019-01-01
US20200291202A1 (en) 2020-09-17
CN110612322A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
Ahmad et al. Polyimide− ceramic hybrid composites by the sol− gel route
Sullivan et al. Zirconium tungstate (ZrW2O8)/polyimide nanocomposites exhibiting reduced coefficient of thermal expansion
Chen et al. Synthesis and characterization of polyimide/silica hybrid composites
JP5662580B2 (ja) 樹脂−直鎖状オルガノシロキサンブロックコポリマー
JP5674948B2 (ja) 樹脂−直鎖状オルガノシロキサンブロックコポリマーを含有する高屈折率組成物
Hedrick et al. Polymeric Organic− Inorganic Hybrid Nanocomposites: Preparation of Polyimide-Modified Poly (silsesquioxane) Using Functionalized Poly (amic acid alkyl ester) Precursors
CN110563955B (zh) 一种液态可固化金属基聚碳硅烷及其制备方法
WO2009096501A1 (ja) 含ケイ素粒子、その製造方法、有機ポリマー組成物、セラミック、およびその製造方法
JP5102179B2 (ja) 熱伝導性組成物およびその製造方法
KR20100055319A (ko) 열전도성 시트 및 열전도성 시트의 제조 방법
CN102504258A (zh) 一种由液态碳化硅先驱体制备耐高温有机胶粘剂的方法
Chen et al. In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide
Zhang et al. Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings
WO2011125832A1 (ja) 有機-無機ハイブリッドプレポリマーおよびその製造方法
CN109312216A (zh) 高导热复合材料
Xia et al. Surface-grafting modification of attapulgite nanorods with polysiloxane coupling agents for highly-efficient mechanical and triboelectric performance enhancement of silicone rubbers
Shi et al. Synthesis and thermal properties of novel room temperature vulcanized (RTV) silicone rubber containing POSS units in polysioxane main chains
CN110612322B (zh) 高介电常数和低介电耗散的聚合物组合物
Lu et al. New epoxy/silica‐titania hybrid materials prepared by the sol–gel process
Martin et al. Influence of Thermal Treatment on Preceramic Polymer Grafted Nanoparticle Network Formation: Implications for Thermal Protection Systems and Aerospace Propulsion Components
Shioda et al. Preparation and properties of polyhedral oligomeric silsesquioxane polymers
Yu et al. High-performance piezo-damping materials based on CNTs/BaTiO3/F-PAEK-b-PDMS under high temperature steam conditions
JP2008520803A (ja) オルガノハイドロジェンポリシロキサン樹脂及びシリコーン組成物
Wu et al. Modification of biodegradable polylactide by silica and wood flour through a sol–gel process
JP4606557B2 (ja) 電気化学素子用電解質およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant