CN110592705A - 原位聚合碱溶法制备芳纶纳米纤维的方法 - Google Patents
原位聚合碱溶法制备芳纶纳米纤维的方法 Download PDFInfo
- Publication number
- CN110592705A CN110592705A CN201910937344.8A CN201910937344A CN110592705A CN 110592705 A CN110592705 A CN 110592705A CN 201910937344 A CN201910937344 A CN 201910937344A CN 110592705 A CN110592705 A CN 110592705A
- Authority
- CN
- China
- Prior art keywords
- alkali
- fiber
- aramid
- preparing
- aramid nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/32—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
- D01F6/605—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Artificial Filaments (AREA)
- Polyamides (AREA)
Abstract
本发明公开了一种原位聚合碱溶法制备芳纶纳米纤维的方法,其包括:使包含对苯二胺、对苯二甲酰氯以及聚合溶剂的聚合反应体系发生聚合反应形成芳纶浆料;在空气气氛或保护性气氛中,使包含芳纶浆料、碱以及碱溶溶剂的碱溶反应体系于室温~80℃条件下反应4~100h,获得芳纶纳米纤维散液。本发明实施例提供的原位聚合碱溶法制备芳纶纳米纤维的方法解决了现有技术中存在的反应时间耗时过长、原材料昂贵、反应浓度低、生产效率低下等问题;由本发明提供的方法所获得的芳纶纳米纤维强度高、耐高温性能优异、稳定性好,在复合材料、生物、医药、电子、能源等领域具有广阔的应用前景。
Description
技术领域
本发明涉及一种纳米纤维的制备方法,特别涉及一种原位聚合碱溶法制备芳纶纳米纤维的方法,属于纳米材料技术领域。
背景技术
芳纶纤维(PPTA)是一种高强度、阻燃性能优异、耐热性能好以及化学稳定性好的优异高性能化学纤维,是国防、航空航天、石油化工等领域的重要材料。芳纶纤维内部分子链间的π-π共轭形成的刚性链结构、分子间氢键以及范德华作用力等赋予了芳纶纤维高强耐高温的特性,但同样也导致芳纶纤维表面活性基团少,难以与其他材料复合,限制了其在复合材料、纳米材料、生物医药材料等领域中的应用。芳纶纳米纤维是一种今年来兴起的聚合物纳米纤维材料。首先由美国Nicholas A.Kotov课题组教授提出的化学碱溶法(Yang M,Cao K,Sui L,et al.Dispersions of aramid nanofibers:a new nanoscale buildingblock[J].Acs Nano,2011,5(9):6945-54.),通过将芳纶纤维与KOH和二甲基亚砜混合后在室温条件下连续搅拌7-10天,得到ANFs/DMSO分散液。这种纳米纤维具有独特的大长径比结构,并且具有芳纶材料的优异力学性能与耐高温性能;与芳纶纤维相比,芳纶纳米纤维在复合材料、生物、医药、电子、能源等领域具有更为广阔的应用前景。
但现有的芳纶制备方法是通过KOH/DMSO强碱体系破坏芳纶纤维分子链间的氢键作用,同时是酰胺键上的N-H键发生去质子化,形成氮负离子,由此形成带负电的分子链,使芳纶纳米纤维在静电斥力、π-π共轭形成的刚性链结构、以及范德华作用力互相作用下分散;但是该方法耗时过长(180~300h),原料昂贵(芳纶纤维),并且所得纤维分散液浓度低,因此该方法仅仅具有实验室研究价值,几乎不存在工业化生产与商品化价值。
发明内容
本发明的主要目的在于提供一种原位聚合碱溶法制备芳纶纳米纤维的方法,以克服现有技术中的缺陷。本发明提供的方法耗时短(4~100h)、原料廉价易得,所获得的芳纶纳米纤维分散液浓度高(最高可达20%),可直接于现有芳纶制备生产线上改造连续生产,具有巨大的工业化与商品化潜力。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种原位聚合碱溶法制备芳纶纳米纤维的方法,其包括:
使包含对苯二胺、对苯二甲酰氯以及聚合溶剂的第一混合体系发生聚合反应形成所述的芳纶浆料;
在空气气氛或保护性气氛中,使包含芳纶浆料、碱以及碱溶溶剂的碱溶反应体系于室温~80℃条件下反应4~100h,获得芳纶纳米纤维散液。
进一步的,所述芳纶浆料、碱与碱溶溶剂的用量比为0.5~20g∶0.5~10g∶100ml。
进一步的,所述的碱包括有机碱和无机碱中的任意一种。
优选的,所述无机碱包括氢氧化钙、氢氧化钠、氢氧化钾中的任意一种或两种以上的组合,但不限于此。
优选的,所述有机碱包括含有金属离子或不含金属离子的有机碱。
优选的,所述含有金属离子的有机碱包括叔丁醇钠、叔丁醇钾、正丁基锂、KHMDS(六甲基二硅基氨基钾)、NaHMDS(六甲基二硅基氨基钠)、LDA(二异丙基氨基锂)中的任意一种或两种以上的组合,但不限于此;所述不含金属离子的有机碱包括三乙胺、三乙烯二胺、DBU(1,8-二氮杂二环十一碳-7-烯)、DBN(1,5-二氮杂双环[4.3.0]-5-壬烯)、DMAP(4-二甲氨基吡啶)、吡啶、N-甲基吗啉、四甲基乙二胺、TMG(四甲基胍)中的任意一种或两种以上的组合,但不限于此。
进一步的,所述聚合溶剂包括N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和六甲基磷酰胺类溶剂中的任意一种或两种以上的组合,但不限于此。
进一步的,所述碱溶溶剂包括DMF(二甲基甲酰胺)、DMSO(二甲亚砜)、NMP(N甲基吡咯烷酮)、甲酸、甲醇、乙醇、水中的任意一种或两种以上的组合,但不限于此。
进一步的,所述芳纶浆料为聚合反应的直接产物,无纯化处理以及后续成纤等加工处理过程。
进一步的,所述对苯二胺与对苯二甲酰氯的摩尔比为0.98~1.02∶1。
在一些较为具体的实施方案中,所述第一混合体系还包含助溶盐。
优选的,所述助溶盐包括氯化钙、氯化锂、氯化镁中的任意一种或两种以上的组合,但不限于此。
进一步的,所述助溶盐与对苯二胺的摩尔比为0~2∶1。
在一些较为具体的实施方案中,所述第一混合体系还包含吡啶。
优选的,所述吡啶于所述聚合反应体系中的含量在5wt%以内,所述吡啶主要作为吸水剂和pH调节剂;例如,通过调节聚合反应体系的pH而得到不同分子量产物,第一混合体系得到的产物均可在第二混合体系使用。
进一步的,所述芳纶浆料包括对位芳纶。
进一步的,所述芳纶纳米纤维分散液的浓度为0.1~20%。
进一步的,其中芳纶纳米纤维的直径为20±15nm。
与现有技术相比,本发明的优点至少在于:
1)本发明通过以芳纶制备过程中的中间体PPTA浆料为原料,避免了在芳纶制备过成中由于纯化洗涤纺丝热压等工艺导致的芳纶尺寸增加的问题,提高了芳纶与碱溶体系的接触面积,加快了“去质子化”过程,极大的减少了芳纶纳米纤维的制备流程、显著提高了制备效率,有极大的工业生产化潜力;
2)本发明提供的方法简化了芳纶纳米纤维由单体至成品的生产环节,实现了短流程、快速制备;并且制得的芳纶纳米纤维尺寸均一性好、直径可控、长径比高,可作为优良的复合材料增强材料应用于复合材料、生物、医学、电子、能源等领域;
3)本发明实施例提供的原位聚合碱溶法制备芳纶纳米纤维的方法解决了现有技术中存在的反应时间耗时过长、原材料昂贵、反应浓度低、生产效率低下等问题。
附图说明
图1是本发明实施例1中获得的芳纶纳米纤维的扫描电子显微镜照片。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
芳纶纤维的结构是由皮层包裹大量纳米纤维的皮芯结构,传统芳纶纳米纤维制备工艺是在由粉末溶解纺丝后得到芳纶纤维,然后通过碱溶去除掉皮层结构得到芳纶纳米纤维;由于纺丝形成的芳纶纤维内部纳米纤维堆积紧密,并且外皮厚实,因此传统工艺制备芳纶纳米纤维受到皮层结构影响非常严重,本发明则是绕过了形成皮层结构的步骤,直接得到纳米纤维。
本发明一典型实施案例中提供的一种原位聚合碱溶法制备芳纶纳米纤维的方法,在芳纶高分子(ppta)由良溶剂相转移至不良溶剂相(即洗涤纯化处理)导致芳纶纳米纤维紧密堆积形成皮芯结构和高分子聚集尺寸增大之前加入碱溶体系,显著提高了反应面积并且去除了致密皮层对反应的干扰,使PPTA更容易与碱溶体系发生“去质子化”过程,充分利用了碱溶体系,极大的缩减了反应时间(最短4h即可),同时极大提高了芳纶纳米纤维分散体系的浓度(最大可增至20%),具有极大的工业化与商业化潜力。
下面通过若干实施例并结合附图对本发明的技术方案作进一步详细说明。然而,所选的实施例仅用于解释本发明的技术方案,而不限制本发明的范围。
实施例1
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀形成混合反应体系,将10.96g对苯二甲酰氯溶于20gNMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将15g KOH加入500ml DMSO中搅拌30min得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于室温下搅拌5h得到芳纶纳米纤维;图1示出了本实施例所得芳纶纳米纤维的SEM照片。
实施例2
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20gNMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将15g叔丁醇钾加入500mlDMSO中搅拌30min得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于室温下搅拌5h得到芳纶纳米纤维。
实施例3
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20gNMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将5gKOH加入100mlDMSO中搅拌30min得到碱溶液,将芳纶浆料加入碱溶液中,于室温搅拌30h得到芳纶纳米纤维。
实施例4
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20gNMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)5gKOH加入60mlDMSO中搅拌30min得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于50℃搅拌30h得到芳纶纳米纤维。
实施例5
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20gNMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)5gKOH加入90mlDMSO中搅拌30min后加入10mlNMP得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于室温搅拌30h得到芳纶纳米纤维。
实施例6
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20g NMP中后加入形成混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将15g KOH加入490ml DMSO中搅拌30min后加入10m1甲醇得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于室温搅拌5h得到芳纶纳米纤维。
实施例7
(1)将对苯二胺5.84g,吡啶8.54g,N-甲基吡咯烷酮160g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20g NMP中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将5g KOH与10g三乙胺加入60ml DMSO中搅拌30min得到碱溶液;
(3)将芳纶浆料加入碱溶液中,于室温搅拌80h得到芳纶纳米纤维。
实施例8
(1)将对苯二胺5.84g,吡啶8.54g,DMF 150g混合均匀后形成混合反应体系,将10.96g对苯二甲酰氯溶于20g DMF中后加入前述混合反应体系搅拌反应3h,之后去掉上层清液得到芳纶浆料;
(2)将5g KOH加入60ml DMSO中搅拌30min得到碱溶液:
(3)将芳纶浆料加入碱溶液中,于80℃搅拌30h得到芳纶纳米纤维。
分别测试实施例1-8中获得的芳纶纳米纤维的浓度、平均直径、TG失重10%温度、静置30天后的稳定性,结果如表1中所示:
表1为实施例1-8中的芳纶纳米纤维的表征数据
通过表1可以发现,藉由本发明的上述技术方案获得的芳纶纳米纤维直径为18.5±1.2nm,TG失重10%温度为520℃。本发明实施例制备获得的芳纶纳米纤维尺寸均一性好,耐热性优良,分散液稳定性良好。
此外,本案发明人还参照实施例1-实施例8的方式,以本说明书中列出的其他原料和条件进行了实验,并同样制得了尺寸均一性良好,耐热性能优良,分散液稳定性良好的芳纶纳米纤维。本发明提供的原位聚合碱溶法制备芳纶纳米纤维的方法解决了现有技术中存在的反应时间耗时过长,原材料昂贵,反应浓度低,生产效率低下等问题。
另外,本发明实施例中由芳纶纳米纤维分散液形成芳纶纳米纤维的纺丝工艺为现有工艺,因此,在此不再赘述。
应当理解,以上所述的仅是本发明的一些实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明的创造构思的前提下,还可以做出其它变形和改进,这些都属于本发明的保护范围。
Claims (10)
1.一种原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于包括:
使包含对苯二胺、对苯二甲酰氯以及聚合溶剂的聚合反应体系发生聚合反应形成芳纶浆料;
在空气气氛或保护性气氛中,使包含芳纶浆料、碱以及碱溶溶剂的碱溶反应体系于室温~80℃条件下反应4~100h,获得芳纶纳米纤维散液。
2.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述芳纶浆料、碱与聚合溶剂的用量比为0.5~20g∶0.5~10g∶100ml。
3.根据权利要求1或2所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述的碱包括有机碱和无机碱中的任意一种;优选的,所述无机碱包括氢氧化钙、氢氧化钠、氢氧化钾中的任意一种或两种以上的组合;优选的,所述有机碱包括含有金属离子或不含金属离子的有机碱;优选的,所述含有金属离子的有机碱包括叔丁醇钠、叔丁醇钾、正丁基锂、六甲基二硅基氨基钾、六甲基二硅基氨基钠、二异丙基氨基锂中的任意一种或两种以上的组合;所述不含金属离子的有机碱包括三乙胺、三乙烯二胺、1,8-二氮杂二环十一碳-7-烯、1,5-二氮杂双环[4.3.0]-5-壬烯、4-二甲氨基吡啶、吡啶、N-甲基吗啉、四甲基乙二胺、四甲基胍中的任意一种或两种以上的组合。
4.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于所述聚合溶剂包括N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和六甲基磷酰胺类溶剂中的任意一种或两种以上的组合;和/或,所述碱溶溶剂包括二甲基甲酰胺、二甲亚砜、N甲基吡咯烷酮、甲酸、甲醇、乙醇、水中的任意一种或两种以上的组合。
5.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述聚合反应体系还包含助溶盐,优选的,所述助溶盐包括氯化钙、氯化锂、氯化镁中的任意一种或两种以上的组合。
6.根据权利要求5所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述助溶盐与对苯二胺的摩尔比为0~2∶1。
7.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述聚合反应体系还包含吡啶;优选的,所述吡啶于所述聚合反应体系中的含量在5wt%以内;和/或,所述芳纶浆料包括对位芳纶。
8.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述对苯二胺与对苯二甲酰氯的摩尔比为0.98~1.02∶1。
9.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:所述芳纶纳米纤维分散液的浓度为0.1~20%。
10.根据权利要求1所述原位聚合碱溶法制备芳纶纳米纤维的方法,其特征在于:其中芳纶纳米纤维的直径为20±15nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910937344.8A CN110592705B (zh) | 2019-09-29 | 2019-09-29 | 原位聚合碱溶法制备芳纶纳米纤维的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910937344.8A CN110592705B (zh) | 2019-09-29 | 2019-09-29 | 原位聚合碱溶法制备芳纶纳米纤维的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110592705A true CN110592705A (zh) | 2019-12-20 |
CN110592705B CN110592705B (zh) | 2022-04-08 |
Family
ID=68864839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910937344.8A Active CN110592705B (zh) | 2019-09-29 | 2019-09-29 | 原位聚合碱溶法制备芳纶纳米纤维的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110592705B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112280504A (zh) * | 2020-10-16 | 2021-01-29 | 武汉华星光电技术有限公司 | 一种封框胶及液晶显示面板 |
CN115928242A (zh) * | 2022-11-24 | 2023-04-07 | 清华大学 | 一种超细对位芳纶纳米纤维的制备方法及其分散液 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU197161A1 (ru) * | М. Н. Богданов, И. А. Спирина , С. Н. Харьков | Способ получения полиамидов | ||
CN102702513A (zh) * | 2012-05-31 | 2012-10-03 | 武汉理工大学 | 一种自流动对位芳纶及其制备方法 |
CN109912832A (zh) * | 2017-12-12 | 2019-06-21 | 微宏动力系统(湖州)有限公司 | 一种芳纶浆料、制备方法、芳纶隔膜及锂电池 |
-
2019
- 2019-09-29 CN CN201910937344.8A patent/CN110592705B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU197161A1 (ru) * | М. Н. Богданов, И. А. Спирина , С. Н. Харьков | Способ получения полиамидов | ||
CN102702513A (zh) * | 2012-05-31 | 2012-10-03 | 武汉理工大学 | 一种自流动对位芳纶及其制备方法 |
CN109912832A (zh) * | 2017-12-12 | 2019-06-21 | 微宏动力系统(湖州)有限公司 | 一种芳纶浆料、制备方法、芳纶隔膜及锂电池 |
Non-Patent Citations (2)
Title |
---|
HAN SIK YOON: "Sythesis of fibers by growth-packing", 《NATURE》 * |
ZHAOQING LU ET AL.: "Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers", 《COMPOSITES PART A》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112280504A (zh) * | 2020-10-16 | 2021-01-29 | 武汉华星光电技术有限公司 | 一种封框胶及液晶显示面板 |
CN115928242A (zh) * | 2022-11-24 | 2023-04-07 | 清华大学 | 一种超细对位芳纶纳米纤维的制备方法及其分散液 |
CN115928242B (zh) * | 2022-11-24 | 2023-10-20 | 清华大学 | 一种超细对位芳纶纳米纤维的制备方法及其分散液 |
Also Published As
Publication number | Publication date |
---|---|
CN110592705B (zh) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108285540B (zh) | 一种水分散芳纶纳米纤维及芳纶纳米纸的制备方法 | |
CN102181961B (zh) | 石墨烯功能化海藻纤维的制备方法 | |
CN110592705B (zh) | 原位聚合碱溶法制备芳纶纳米纤维的方法 | |
CN110055807B (zh) | 一种对位芳纶与氧化石墨烯/石墨烯复合纸的制备方法 | |
Du et al. | Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives | |
CN112980044B (zh) | 一种高性能大块芳纶纳米纤维气凝胶及其制备方法和应用 | |
CN113818098B (zh) | 一种聚酰亚胺气凝胶制品的常压干燥制备方法及应用 | |
CN109440216B (zh) | 一种官能化芳纶超细纤维及其制备方法和应用 | |
CN104480702B (zh) | 一种油分散芳纶纳米纤维的制备方法及其应用 | |
CN110656393B (zh) | 成型粉末碱溶法制备芳纶纳米纤维的方法 | |
WO2020082589A1 (zh) | 一种制备高性能聚间苯二甲酰间苯二胺的连续聚合方法 | |
CN113403707A (zh) | 聚酰亚胺气凝胶纤维及其制备方法 | |
CN101967279A (zh) | 一种聚苯胺复合纳米纤维可逆变色膜的制备方法 | |
CN103614863A (zh) | Pva/金属纳米粒子复合纳米纤维膜的制备方法 | |
CN106884218A (zh) | 一种石墨烯‑锦纶复合材料纤维及其制备方法 | |
CN102220652A (zh) | 一种高效制备聚酰亚胺纤维的方法 | |
CN107675283B (zh) | 高强芳香族共聚酰胺纤维及其制备方法 | |
CN102242415A (zh) | 一种改善聚酰亚胺纤维可纺性和后加工特性的方法 | |
CN104231159B (zh) | 一种碳纤维用pan聚合物的制备方法 | |
CN108384047A (zh) | 一种透明、高强度聚酰亚胺气凝胶及其制备方法 | |
Zhang et al. | Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution | |
JP4773902B2 (ja) | ナノファイバー不織布及びその製造方法 | |
CN114479079B (zh) | 一种聚酰亚胺气凝胶及其制备方法 | |
CN111764001A (zh) | 一种高强高模聚酰亚胺纤维的制备方法 | |
CN116575138A (zh) | 一种生物基芳香聚酰胺纤维的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |