CN110590360B - 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法 - Google Patents

一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法 Download PDF

Info

Publication number
CN110590360B
CN110590360B CN201910986241.0A CN201910986241A CN110590360B CN 110590360 B CN110590360 B CN 110590360B CN 201910986241 A CN201910986241 A CN 201910986241A CN 110590360 B CN110590360 B CN 110590360B
Authority
CN
China
Prior art keywords
coo
powder
temperature
sol
xerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910986241.0A
Other languages
English (en)
Other versions
CN110590360A (zh
Inventor
王立秋
徐智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910986241.0A priority Critical patent/CN110590360B/zh
Publication of CN110590360A publication Critical patent/CN110590360A/zh
Application granted granted Critical
Publication of CN110590360B publication Critical patent/CN110590360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法,属于无机非金属材料制备技术领域。以NH4VO3,Ba(CH3COO)2、Mg(CH3COO)2·4H2O和柠檬酸为原料,首先将原料在水浴条件下分别溶解于水中,形成A和B两种溶液,然后将其混合,连续加热搅拌,制备出蓝色溶胶。将蓝色溶胶干燥、研磨后在一定温度下短时间煅烧,得到BaMg2V2O8粉体。本发明通过特定的原料组成和制备途径,在低温下制备出高纯度粉体,煅烧时间短,得到的粉体粒度小、分布均匀,工艺稳定、简单,重现性好,具有很好的应用前景。

Description

一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法
技术领域
本发明属于无机非金属材料制备技术领域,特别涉及一种低温制备微波介质陶瓷粉体的方法。
背景技术
近年来,微波通信事业的快速发展对高性能的雷达系统和高速数据传输等领域的需求日益增加。由于微波信号的频率高、可用频带宽、信息容量大、波长短、方向性强及穿透性强等优点,十分有利于其在通信和军事领域中的应用。作为微波技术的核心,微波介质材料受到研究者的密切关注,其中微波介质陶瓷材料更是得到了人们的广泛研究。但是,目前大多数微波介质陶瓷材料均采用固相法制备,而且制备温度均比较高,并且需要较长的煅烧时间,例如:国外近年文献“Crystal structure refinement and microwavedielectric properties of new low dielectric loss AZrNb2O8(A:Mn,Zn,Mg and Co)ceramics”中的微波陶瓷材料制备温度需要在1200℃以上煅烧4h以及国外文献“Effect ofzinc ions non-stoichiometry on the microstructure and microwave dielectricproperties of Li2ZnTi3O8 ceramics”中的微波陶瓷材料制备过程需要在900℃煅烧4h。因此研究具有低烧结温度的微波介质陶瓷材料有极其重要的应用价值。为降低微波介质陶瓷材料的制备温度以及缩短煅烧时间,本发明现采用新的制备途径,从而获得高纯度、分散均匀、粒径小、活性高的粉体,来最大程度地降低BaMg2V2O8材料的制备温度以及烧结温度、降低生产能耗。
本发明采用新途径制备BaMg2V2O8微波介质陶瓷粉体,通过这种途径制备的粉体具有颗粒细、活性高、制备温度低等优点,制备温度可比传统的固相法制备温度低150℃以上,并且煅烧时间缩短3h,因此,本发明具有良好的应用价值。
发明内容
本发明主要解决现有技术制备温度高、时间长的问题,并提供了一种新的温度稳定型微波介质陶瓷材料及其制备方法,可有效解决现有的制备方法中需要长时间高温煅烧制备BaMg2V2O8微波介质陶瓷粉体的问题。
本发明的技术方案:
一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法,步骤如下:
(1)将原料Ba(CH3COO)2、Mg(CH3COO)2·4H2O、NH4VO3和柠檬酸 (C6H8O7·H2O),按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O 摩尔比为1:2:2:5-10分别称量原料;
(2)将步骤(1)中称取的NH4VO3加入水中在80~90℃水浴条件下连续搅拌直至溶解;
(3)将步骤(1)称取的Ba(CH3COO)2、Mg(CH3COO)2·4H2O和柠檬酸溶于水,在常温不断搅拌直到完全溶解;柠檬酸在水中的浓度为0.609-1.083mol/l;
(4)将步骤(2)和步骤(3)所得溶液混合,80~90℃水浴搅拌4~6h,得到蓝色的溶胶;
(5)将步骤(4)所得的溶胶干燥,得到紫色干凝胶;
(6)将步骤(5)所得干凝胶研磨后,570~700℃煅烧0.5~2h,得到 BaMg2V2O8微波介质陶瓷粉体。
进一步,步骤(1)中Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O 摩尔比为1:2:2:7.5;
步骤(2)和步骤(3)中连续搅拌时间为0.5h;
步骤(4)中水浴且搅拌时间为5h;
步骤(5)中溶胶在110~130℃温度条件下干燥6~12h,得到紫色干凝胶;进一步,干燥温度为120℃,干燥时间为7h;
步骤(6)研磨时间为15min,煅烧温度为650℃,煅烧时间为1h。
采用上述配方及工艺组成的本发明,可制备颗粒分布均匀的BaMg2V2O8微波介质陶瓷粉体。
本发明的有益效果:
(1)实现短时间煅烧制备BaMg2V2O8,降低能耗;
(2)在650℃下制备BaMg2V2O8,比原固相法降低了150℃,与现有技术相比,具有明显优势;
(3)制备出的BaMg2V2O8颗粒更小、更均匀、活性高、有利于烧结,易于后期产业应用。
附图说明
图1为本发明中干凝胶经570~650℃煅烧1h后粉体的XRD图;其中,a为实施例1,b为实施例2,c为实施例3,d为实施例4;
图2为本发明中干凝胶经650℃煅烧不同时间后粉体的XRD图;其中,a为实施例5,b为实施例6,c为实施例7;
图3为本发明实施例3中干凝胶经650℃煅烧1h后的粉体的SEM图。
具体实施方式
以下实施例将结合附图和技术方案,进一步说明本发明的具体实施方式,但并不限制本发明的范围。
实施例1
按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1: 2:2:7.5分别称取2.48g Ba(CH3COO)2,4.16g Mg(CH3COO)2·4H2O,2.28g NH4VO3和15.36g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到60ml去离子水中,并在90℃水浴连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下90ml去离子水中,并搅拌0.5h,设为溶液B。然后将A和B溶液混合在80℃水浴中搅拌6h,随后得到蓝色溶胶。将溶胶在烘箱中130℃下干燥6h,则得到紫色干凝胶。最后将干凝胶研磨15min 后为粉末,在570℃煅烧1h,得到所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图1a为570℃煅烧1h后粉体的XRD图谱。
实施例2
按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1: 2:2:7.5分别称取0.62g Ba(CH3COO)2,1.04g Mg(CH3COO)2·4H2O,0.57g NH4VO3和3.84g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到15ml去离子水中,并在80℃水浴中连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下20ml去离子水中,并搅拌0.5h,设为溶液B。然后将A和B溶液混合在80℃水浴中搅拌5h,随后得到蓝色溶胶。将溶胶在烘箱中120℃下干燥7h,则得到紫色干凝胶。最后将干凝胶研磨15min 后为粉末,在600℃煅烧1h,得到所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图1b为600℃煅烧1h后粉体的XRD图谱。
实施例3
按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1: 2:2:7.5分别称取1.24g Ba(CH3COO)2,2.08g Mg(CH3COO)2·4H2O,1.14g NH4VO3和7.68g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到30ml去离子水中,并在80℃水浴中连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下40ml去离子水中,并搅拌0.5h,设为溶液B。然后将A和B溶液混合在80℃水浴中搅拌5h,随后得到蓝色溶胶。将溶胶在烘箱中120℃下干燥7h,则得到紫色干凝胶。最后将干凝胶研磨15min 后为粉末,在650℃煅烧1h,合成所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对对样品的物相进行分析。图1c为650℃煅烧1h后粉体的XRD图谱。
实施例4
按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1: 2:2:7.5分别称取1.86g Ba(CH3COO)2,3.12g Mg(CH3COO)2·4H2O,1.71g NH4VO3和11.52g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到45ml去离子水中,并在80℃水浴中连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下70ml去离子水中,并搅拌0.5h,设为溶液B。然后将A和B溶液混合在80℃水浴中搅拌5h,随后得到蓝色溶胶。将溶胶在烘箱中120℃下干燥7h,则得到紫色干凝胶。最后将干凝胶研磨15min 后为粉末,在700℃煅烧1h,合成所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图1d为700℃煅烧1h后粉体的XRD图谱。
实施例5
按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1:2:2:7.5分别称取3.1g Ba(CH3COO)2,5.2g Mg(CH3COO)2·4H2O,2.85g NH4VO3和19.2g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到80ml去离子水中,并在90℃水浴中连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下120ml去离子水中,并搅拌 0.5h,设为溶液B。然后将A和B溶液混合在90℃水浴中搅拌4h,随后得到蓝色溶胶。将溶胶在烘箱中110℃下干燥12h,则得到紫色干凝胶。最后将干凝胶研磨15min后为粉末,在650℃煅烧0.5h,合成所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图2a为650℃煅烧0.5h后粉体的 XRD图谱。
实施例6
与前面实施例主要不同之处是把原料中的C6H8O7·H2O摩尔比变小,按照 Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1:2:2:5 分别称取1.86g Ba(CH3COO)2,3.12g Mg(CH3COO)2·4H2O,1.71g NH4VO3和7.68g 柠檬酸(C6H8O7·H2O)。将NH4VO3加入到45ml去离子水中,并在80℃水浴中连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下60ml去离子水中,并搅拌0.5h,设为溶液B,其中柠檬酸浓度0.609mol/L。然后将A和B溶液混合在80℃水浴中搅拌5h,随后得到蓝色溶胶。将溶胶在烘箱中120℃下干燥7h,则得到紫色干凝胶。最后将干凝胶研磨15min后为粉末,在650℃煅烧2h,合成所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图2b为650℃煅烧2h后粉体的XRD图谱。
实施例7
与前面实施例主要不同之处是把原料中的C6H8O7·H2O摩尔比变大,按照 Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1:2:2:10 分别称取2.48g Ba(CH3COO)2,4.16g Mg(CH3COO)2·4H2O,2.28g NH4VO3和20.48g柠檬酸(C6H8O7·H2O)。将NH4VO3加入到60ml去离子水中,并在80℃水浴连续加热搅拌0.5h,待NH4VO3溶解后,设为溶液A。将柠檬酸, Mg(CH3COO)2·4H2O和Ba(CH3COO)2溶于室温下90ml去离子水中,并搅拌0.5h,设为溶液B,其中柠檬酸浓度1.083mol/L。然后将A和B溶液混合在85℃水浴中搅拌5h,随后得到蓝色溶胶。将溶胶在烘箱中120℃下干燥7h,则得到紫色干凝胶。最后将干凝胶研磨15min后为粉末,在650℃煅烧2h,合成所需的微波介质陶瓷粉体。采用粉体X射线衍射仪对样品的物相进行分析。图2c为650℃煅烧2h后粉体的XRD图谱。
本发明包括但不限于以上实施例,凡符合本发明要求的实施方案均属于本发明的涵盖范围。

Claims (10)

1.一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法,其特征在于,步骤如下:
(1)将原料Ba(CH3COO)2、Mg(CH3COO)2·4H2O、NH4VO3和柠檬酸,按照Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1:2:2:5-10分别称量原料;
(2)将步骤(1)中称取的NH4VO3加入水中在80~90℃水浴条件下连续搅拌直至溶解;
(3)将步骤(1)称取的Ba(CH3COO)2、Mg(CH3COO)2·4H2O和柠檬酸溶于水,在常温不断搅拌直到完全溶解;柠檬酸在水中的浓度0.609-1.083mol/l;
(4)将步骤(2)和步骤(3)所得溶液混合,80~90℃水浴搅拌4~6h,得到蓝色的溶胶;
(5)将步骤(4)所得的溶胶干燥,得到紫色干凝胶;
(6)将步骤(5)所得干凝胶研磨后,570~700℃煅烧0.5~2h,得到BaMg2V2O8微波介质陶瓷粉体。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中Ba(CH3COO)2:Mg(CH3COO)2·4H2O:NH4VO3:C6H8O7·H2O摩尔比为1:2:2:7.5。
3.根据权利要求1或2所述的方法,其特征在于,步骤(2)和步骤(3)中连续搅拌时间为0.5h。
4.根据权利要求1或2所述的方法,其特征在于,步骤(4)中水浴且搅拌时间为5h。
5.根据权利要求3所述的方法,其特征在于,步骤(4)中水浴搅拌时间为5h。
6.根据权利要求1、2或5所述的方法,其特征在于,步骤(5)中溶胶在110~130℃温度条件下干燥6~12h,得到紫色干凝胶。
7.根据权利要求3所述的方法,其特征在于,步骤(5)中溶胶在110~130℃温度条件下干燥6~12h,得到紫色干凝胶。
8.根据权利要求4所述的方法,其特征在于,步骤(5)中溶胶在110~130℃温度条件下干燥6~12h,得到紫色干凝胶。
9.根据权利要求1、2、5、7或8所述的方法,其特征在于,步骤(6)研磨时间为15min,煅烧温度为650℃,煅烧时间为1h。
10.根据权利要求6所述的方法,其特征在于,步骤(6)研磨时间为15min,煅烧温度为650℃,煅烧时间为1h。
CN201910986241.0A 2019-10-17 2019-10-17 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法 Active CN110590360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910986241.0A CN110590360B (zh) 2019-10-17 2019-10-17 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910986241.0A CN110590360B (zh) 2019-10-17 2019-10-17 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法

Publications (2)

Publication Number Publication Date
CN110590360A CN110590360A (zh) 2019-12-20
CN110590360B true CN110590360B (zh) 2022-04-12

Family

ID=68850653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910986241.0A Active CN110590360B (zh) 2019-10-17 2019-10-17 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法

Country Status (1)

Country Link
CN (1) CN110590360B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624762A (zh) * 2021-01-19 2021-04-09 大连理工大学 一种低温制备BaCaV2O7微波介质陶瓷材料的方法
CN112898021B (zh) * 2021-03-29 2022-05-31 电子科技大学 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN113488217B (zh) * 2021-06-22 2024-05-14 中国原子能科学研究院 一种模拟乏燃料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423394A (zh) * 2008-12-09 2009-05-06 哈尔滨工业大学深圳研究生院 一种钡锌铌系微波介质陶瓷及其制备方法
CN101423393A (zh) * 2008-12-09 2009-05-06 哈尔滨工业大学深圳研究生院 一种钡锌钽系微波介质陶瓷及其制备方法
CN103864424A (zh) * 2012-12-14 2014-06-18 深圳市大富科技股份有限公司 一种微波介质陶瓷材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423394A (zh) * 2008-12-09 2009-05-06 哈尔滨工业大学深圳研究生院 一种钡锌铌系微波介质陶瓷及其制备方法
CN101423393A (zh) * 2008-12-09 2009-05-06 哈尔滨工业大学深圳研究生院 一种钡锌钽系微波介质陶瓷及其制备方法
CN103864424A (zh) * 2012-12-14 2014-06-18 深圳市大富科技股份有限公司 一种微波介质陶瓷材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation of Ag/AgCl/BiMg2VO6 composite and its visible-light photocatalytic activity;Rui Guo等;《Materials Research Bulletin》;20130123;第1857–1863页 *
钒酸盐基低损耗微波介质陶瓷的制备与性能研究;王洋;《中国硕士学位论文全文数据库工程科技I辑》;20170215;第B015-594页 *

Also Published As

Publication number Publication date
CN110590360A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110590360B (zh) 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法
CN112341199B (zh) 一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用
CN102391871A (zh) 一种制备纳米钇铝石榴石荧光粉的方法
CN113479918B (zh) 一种纳米球形α-氧化铝粉体制备方法
CN101774812B (zh) 溶胶凝胶技术制备钽酸镁微波陶瓷粉体的方法
CN113816620A (zh) 一种表面包覆二硫化钼/铁钴合金/碳的介电纤维复合吸波材料及其制备方法
CN110511013A (zh) 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法
Wang et al. Effects of Bi2O3-V2O5 mixture on microstructure and magnetic properties for Li0. 42Zn0. 27Ti0. 11Mn0. 1Fe2. 1O4 ferrites sintered at low temperatures
CN102276254B (zh) 溶胶凝胶技术掺杂改性钛酸锶钡材料的方法
CN102442702A (zh) 一种钬掺杂铁酸铋多铁材料及其制备方法
CN112830515B (zh) 一种具有八面体结构NaMg4V3O12材料的制备方法
CN104752712A (zh) 一种镍钴铝酸锂正极材料制备方法
CN113292097A (zh) 一种制备高四方性钛酸钡粉体的方法
CN101234786A (zh) 一种具有富勒烯结构的纳米二硫化钨的制备方法
CN103864425A (zh) 一种微波介质陶瓷材料的制备方法
CN103011806B (zh) 一种铁电-介电复相陶瓷材料的原位制备方法
CN111014649B (zh) 一种磁性中空微纳米材料及其制备方法与应用
CN103466692B (zh) 一种溶胶凝胶法制备锂铌钛复合介质陶瓷粉体的方法
CN110358500B (zh) 一种多孔碳负载四氧化三钴包覆钴合金吸波材料的制备方法及应用
CN101353264B (zh) 一种改进陶瓷金属化层显微结构的方法
CN109569688B (zh) 一种碳、氮共掺杂偏铟酸钾光催化材料及其制备方法
CN102001696A (zh) 一种镁铝尖晶石纳米颗粒粉体的制备方法
CN112500832A (zh) 一种泡沫镍基氧化物复合吸波材料的制备方法
CN112110486A (zh) 一种纳米氧化锆的制备方法
CN116751055A (zh) 一种短时间制备SrZnV2O7微波介质陶瓷粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant