CN110582326B - 粒子束枪控制 - Google Patents
粒子束枪控制 Download PDFInfo
- Publication number
- CN110582326B CN110582326B CN201880026441.5A CN201880026441A CN110582326B CN 110582326 B CN110582326 B CN 110582326B CN 201880026441 A CN201880026441 A CN 201880026441A CN 110582326 B CN110582326 B CN 110582326B
- Authority
- CN
- China
- Prior art keywords
- gun
- particle beam
- radiation
- control
- resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims abstract description 89
- 238000001959 radiotherapy Methods 0.000 claims abstract description 33
- 230000005855 radiation Effects 0.000 claims abstract description 28
- 239000000693 micelle Substances 0.000 claims abstract description 4
- 238000011282 treatment Methods 0.000 claims description 29
- 238000005452 bending Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 30
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002721 intensity-modulated radiation therapy Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010033296 Overdoses Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000003359 percent control normalization Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1081—Rotating beam systems with a specific mechanical construction, e.g. gantries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/06—Cathodes
- H01J35/065—Field emission, photo emission or secondary emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/14—Arrangements for concentrating, focusing, or directing the cathode ray
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/073—Electron guns using field emission, photo emission, or secondary emission electron sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/075—Electron guns using thermionic emission from cathodes heated by particle bombardment or by irradiation, e.g. by laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
- H01J37/1472—Deflecting along given lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H9/00—Linear accelerators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
- A61N2005/1088—Ions; Protons generated by laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J3/00—Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
- H01J3/02—Electron guns
- H01J3/025—Electron guns using a discharge in a gas or a vapour as electron source
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
所提供的系统和方法有助于对粒子束进行有效率和有效的监测。在一些实施方案中,一种放射枪系统,包括:粒子束枪,所述粒子束枪产生粒子束;以及枪控制部件,所述枪控制部件控制枪粒子束产生特性,包括粒子束保真度特性。粒子束特性能够与FLASH放射治疗相容。对粒子束产生的分辨率控制能够实现在脉冲内水平和微团束水平下的剂量递送。微团束能够在5至15μsec脉冲宽度内的每个3GHz RF循环包括单独的团束。FLASH放射治疗剂量递送能够具有约4.4X10∧‑6cGy/团束的团束水平分辨率。
Description
发明领域
本发明涉及粒子束辐射领域。在一些实施方案中,放射系统和方法有助于快速而有效地产生粒子束。
背景技术
粒子束辐射可以被用于许多不同的应用中,并且准确地施加适当量的辐射可能是非常重要的。在医学治疗应用中施加准确剂量的粒子束辐射往往是至关重要的。粒子束放射治疗通常包括将粒子(例如,电离粒子、质子等)束引导在组织区域处。粒子通常与电荷相关联或包括所述电荷。粒子通常用于通过杀死靶组织细胞或降低其细胞分裂能力来停止所述靶组织细胞的生长或扩散。虽然粒子束辐射通常被视为是有益的,但是会存在许多潜在的副作用。副作用可以包括对健康组织细胞的DNA造成意想不到的损伤。粒子束辐射的效果主要随着施加到癌细胞,同时避免对健康组织的影响的带电粒子的剂量或量的变化而变化。
施加到组织的带电粒子的量通常随着带电粒子的剂量率或“电流”和靶组织暴露于辐射的时间的变化而变化。较快速的剂量率通常实现较短的暴露时间并且可以具有许多益处,包括发生影响治疗的无关事件的机会变小,生产率提高和给患者带来更大的便利。一种方法包括被称为FLASH放射治疗的超高剂量率治疗或模态。与FLASH治疗相关联的治疗窗口通常实现降低的正常组织毒性,同时维持癌组织肿瘤控制。然而,这些治疗窗口通常非常窄或精确,并且在窗口之外的暴露会非常不利于另外的健康组织。开发系统和方法来递送通常与FLASH治疗相关联的剂量率可能是困难的和有问题的。利用脉冲下降和伺服进行的常规尝试通常太粗糙并且无法提供足够的分辨率和保真度。
发明内容
所提供的系统和方法有助于对粒子束进行有效率和有效的监测。在一些实施方案中,一种放射枪系统包括:粒子束枪,所述粒子束枪产生粒子束;以及枪控制部件,所述枪控制部件控制枪粒子束产生特性,包括粒子束保真度特性。粒子束特性可以与FLASH放射治疗相容。对粒子束产生的分辨率控制可以实现在脉冲内水平和微团束水平下的剂量递送。微团束可以在5至15μsec脉冲宽度内的每个3GHz RF循环包括单独的团束。FLASH放射治疗剂量递送可以具有约4.4X10∧-6cGy/团束的团束水平分辨率。
放射枪系统粒子束枪可以包括光电阴极枪和弯转磁体,并且控制部件包括激光部件。光电阴极枪可以是第一短直线加速器的组成部分,并且可操作用于在受到激光激发时发射电子;弯转磁体可以操作用于使电子弯转并且为激发激光提供通往光电阴极的直线对传路径,所得的已弯转的射束然后被传送到第二直线加速器中以使所述射束加速至其最终能量。激光部件可以操作用于控制来自枪的电子发射的“选通”或开关。5μsec脉冲可以对应于约15K电子团束,所述电子团束利用光电阴极注入器的选通功能来进行选通以将剂量输出控制为接近每团束剂量的分辨率。
与光电阴极相比较实现更粗糙的剂量控制保真度的一种替代方法是利用具有快速选通电子器件的栅控电子枪。在一些实施方案中,选通可以在与脉冲上升/下降时间的瞬态相关联的脉冲降能扩散的中间或较平坦部分内启动。快速选通可以经由能够以实现团束选通分辨率的速率快速导通和关断的枪驱动器来实现。开/关选通可以是处于333psec的速率。
在一些实施方案中,一种放射方法包括:以周期性速率使放射治疗系统中的粒子形成脉冲,其中脉冲具有与超高剂量率相容的特性;通过直线加速器使粒子在射束中加速;以及将射束发射引导在靶标处。脉冲可以是处于微波范围。脉冲可以具有高保真度特性。粒子束特性可以与FLASH放射治疗相容。对粒子束产生的分辨率控制可以接近微团束水平。
在一些实施方案中,一种放射治疗系统包括:射束产生系统,所述射束产生系统产生并输送粒子束;喷嘴,所述喷嘴使射束瞄向对象内的各个位置;以及控制部件,所述控制部件接收规定的治疗计划并且引导所规定的治疗计划的执行。在一些示例性实现方式中,射束产生系统包括:粒子束枪,所述粒子束枪产生粒子束;以及枪控制部件,所述枪控制部件控制枪粒子束产生特性,包括粒子束保真度特性。粒子束特性与FLASH放射治疗相容。射束产生系统可以包括直线加速器并且包括将粒子束沿朝向和进入喷嘴的方向引导的部件。喷嘴可以安装在固定、旋转或可移动机架上或者是固定、旋转或可移动机架的一部分,使得所述喷嘴可以相对于支撑装置移动。枪子系统可以实现对粒子束产生的高分辨率控制。
附图说明
附图连同描述一起并入本说明书中并且形成其一部分。它们示出了示例性实施方案并且解释了本公开的示例性原理。并不意图将本发明限于本文示出的具体实现方式。除非另外明确指明,否则各图不是按比例绘制的。
图1是根据一些实施方案的示例性放射系统的框图。
图2是根据一些实施方案的枪子系统的框图。
图3是根据一些实施方案的示例性激光控制的枪子系统的框图。
图4是根据一些实施方案的另一个示例性驱动器控制的枪子系统的框图。
图5是根据一些实施方案的粒子束产生方法的框图。
具体实施方式
现将对在附图中示出其实例的本发明的优选实施方案进行详细参考。虽然将结合不同实施方案描述本发明,但是将理解,并不意图将本发明限于所述不同实施方案。相反,本发明意图覆盖可以包括在如由随附权利要求限定的本发明的精神和范围内的替代方案、修改和等效物。另外,在以下对本发明的详细描述中,阐述了众多特定细节以便于提供对本发明的透彻理解。然而,对于本领域的普通技术人员而言将显而易见的是,可以在没有这些特定细节的情况下实践本发明。在其他情况下,并未详细描述众所周知的方法、程序、部件和电路,以免不必要地模糊本发明的各方面。
所提供的系统和方法有助于对质子束产生进行有效率和有效的控制。在一些实施方案中,粒子束产生控制有助于在高保真度递送的情况下实现超高放射剂量率。所述系统和方法与脉冲宽度调制相容。在一些示例性实现方式中,定时控制分辨率被配置成促使递送保真度逼近脉冲内和微团束水平。微团束水平可以对应于某一脉冲宽度内每个射频循环中的单独的团束。射频可以是处于微波范围。在一些示例性实现方式中,所提供的系统和方法可以被用于FLASH放射治疗应用中。所述系统和方法还与多射野治疗方法相容并且可以使得每个小部分/射野的剂量递送能够被有效地控制。
图1是根据一些实施方案的示例性放射治疗系统100的框图。放射治疗系统100包括射束产生系统104、喷嘴107和控制系统110。射束产生系统104产生并输送粒子(例如,电子、质子、中子、光子、离子等)束。在一些实施方案中,多个粒子在基本上相同的方向上行进。在一些示例性实现方式中,在基本上相同的方向上行进的粒子包括在射束中。射束可以是原子核射束(例如,来自碳、氦、锂等)。射束可以被视为是相对很好定义的射束。
在一些实施方案中,射束产生系统104包括粒子加速器。粒子加速器可以包括直线加速器。所述系统与各种加速器(例如,连续波束质子加速器、等时性回旋加速器、脉冲质子加速器、同步回旋加速器、同步加速器等)相容。在一些实施方案中,加速器能够进行相对连续的波输出并且提取具有指定能量的粒子。这可以为每次注射或治疗应用提供高的连续波束电流以实现高剂量率。一次注射是在一段相对较短的时间内沿着线段穿过靶组织递送的剂量。注射可以包括在扫描模式中并且独立地加以调整(例如,在强度上、在射程上等调整)以辐照靶组织体积。加速器可以是较低功率输出回旋加速器,诸如使粒子加速到70-300MeV的范围的回旋加速器。初级粒子束发生器可以被配置成使二次光子发射的时间与粒子束产生相关联(例如,以进一步提高信噪比等)。
射束产生系统104包括枪子系统115。枪子系统115实现对粒子束产生的高分辨率控制。在一些实施方案中,枪子系统115与微波频率范围内的粒子束产生操作的定时控制相容。枪子系统115可以被用于放射治疗系统中来递送FLASH放射治疗。在本说明书的稍后部分中提供了对枪子系统的额外描述。
射束产生系统104可以包括引导(例如,弯转、转向、导引等)射束在朝向和进入喷嘴107的方向上通过所述系统的各种其他部件(例如,偶极磁体、弯转磁体等)。射束产生系统104还可以包括用于调整进入喷嘴107的射束能量的部件。在一些实施方案中,四极磁体组沿着射束路径定位在射束产生系统104中。在一些示例性实现方式中,放射治疗系统可以包括一个或多个多叶准直器(MLC)。MLC叶片可以通过控制系统110来独立地来回移动以使射束可以从中穿过的孔隙动态地成形。孔隙可以阻挡或不阻挡射束的部分并且由此控制射束形状和暴露时间。
喷嘴107可以用于使射束瞄向对象(例如,患者、靶组织等)内的各个位置。对象可以位于治疗室中的支撑装置108(例如,椅子、床、操作台、工作台等)上。喷嘴107可以安装在固定、旋转或可移动机架(未示出)上或者是所述固定、旋转或可移动机架的一部分,使得所述喷嘴可以相对于支撑装置108移动。支撑装置也可以是可移动的。在一些实施方案中,射束产生系统104也安装在机架上或者是机架的一部分。在一些其他实施方案中,射束产生系统与机架是分开的。在一些示例性实现方式中,单独的射束产生系统与机架进行通信。
在一些实施方案中,控制系统110接收规定的治疗计划并且引导所述规定的治疗计划的执行。在一些示例性实现方式中,控制系统110包括计算机系统,所述计算机系统具有处理器、存储器和用户接口部件(例如,键盘、鼠标、显示器等)。控制系统110可以控制射束产生系统104、喷嘴107和支撑装置108的参数,包括诸如射束的能量、强度、方向、尺寸和形状的参数。控制系统110可以接收有关系统100的操作的数据并且根据其所接收的数据来控制部件。数据可以包括在规定的治疗计划中。在一些实施方案中,控制系统110接收信息并且分析由放射治疗系统100提供的性能和治疗。监测器部件可以测量和跟踪射束电流和射束电荷,所述射束电流和射束电荷用于相应地推断出与剂量率和剂量大小的关系。在一些实施方案中,控制系统110可以基于对剂量和剂量率的分析而引导对放射治疗系统100的调整。
如上所述,进入喷嘴107的粒子束可以具有指定能量并且喷嘴107包括影响射束的能量的一个或多个射程移位和调节部件。在一些实施方案中,喷嘴107包括在“X和Y方向”上控制(例如,转向、导引、偏转、扫描等)射束粒子以扫描靶组织体积的部件,诸如磁体。靶组织体积可以是处于支撑装置108上的患者体内。喷嘴107还可以包括影响粒子束的能量的射束能量调整器。在一些示例性实现方式中,粒子束能量的调整可以用于控制:射束的射程(例如,射束穿透靶组织的程度等)、由射束递送的剂量、射束的深度剂量曲线,这取决于射束类型。例如,对于具有Bragg峰的质子束或离子束,射束能量调整器可以控制Bragg峰在靶组织中的位置。射束能量调整器可以包括各种部件(例如,射程调节器、射程移位器等)。射束系统104也可以包括用于调整进入喷嘴107的射束能量的部件。
放射治疗系统100可以被用于高剂量率治疗。一些治疗方法包括被称为FLASH放射治疗的超高剂量率治疗或模态。与FLASH治疗相关联的治疗窗口通常实现降低的正常组织毒性,同时维持癌组织肿瘤控制。在一些示例性实现方式中,FLASH放射治疗剂量率可以是在不到一秒内至少4格雷(Gy)以及在不到一秒内多达20Gy或40Gy。在一些示例性实现方式中,FLASH放射治疗剂量率可以是在不到一秒内超过40Gy。放射治疗系统和方法还与多射野治疗方法相容,其中不同的射野与特定治疗轨迹以及为总剂量递送的一部分或一小部分的每射野剂量相关联。
图2是根据一些实施方案的枪子系统200的框图。枪子系统类似于枪子系统115并且可以被用于放射治疗系统中来递送FLASH放射治疗。枪子系统200包括枪控制部件210和枪220。枪220产生粒子束。应了解,枪220可以是各种不同的枪类型。枪控制部件210控制枪粒子束产生特性,包括粒子束保真度特性。
粒子束保真度可以有助于利用各种治疗特征。治疗特征或特性可以包括高剂量率、多射野治疗计划、调强放射治疗(IMRT)等等。高剂量率方法可以有助于非常快速地递送规定剂量,从而减小辐射暴露时间窗口并且降低靶组织不期望地移动的可能性。更快速的递送还可以减少患者的不适和不便。可以使用多射野治疗计划,其中不同的射野与特定治疗轨迹以及为总剂量递送的一部分或一小部分的每射野剂量相关联。每射野递送剂量的一小部分通常会导致每射野治疗的减小的暴露时间间隔。应了解,多个治疗计划可以与短小或非常小的辐射暴露定时间隔相关联。一起应用多种治疗方法(例如,多个射野中的超高剂量率)会导致辐射暴露窗口非常小(例如,一秒中的一小部分等)。
枪控制部件210可以有助于粒子束产生,所述粒子束产生具有与非常短的辐射暴露间隔相容的定时分辨率和保真度特性。在一些实施方案中,枪子系统被配置成控制与高剂量率下射野剂量小部分的递送相关联的粒子束产生定时间隔。在一些示例性实现方式中,枪子系统可以根据脉冲宽度调制技术来控制粒子束产生。在一些实施方案中,取决于脉冲宽度和脉冲射频场(PRF),可以在数个脉冲内递送剂量。
在一些实施方案中,对粒子束产生的分辨率控制可以在脉冲内和微团束水平下实现剂量递送。在一些示例性实现方式中,微团束水平在5至15μsec脉冲宽度内每个3GHz RF循环包括单独的团束。将剂量递送控制为接近团束水平的能力可以将分辨率提高到约4.4X10∧-6cGy/团束。应了解,这个分辨率可能超过了一些治疗计划中所需的分辨率。在一些示例性实现方式中,分辨率控制能促成对剂量递送的约1%控制。所述处理或剂量分辨率在实施时可以用于弧形治疗。应了解,枪子系统可以包括各种实现方式。
在一些实施方案中,所述系统可以在100cm下递送20Gy/秒。在10kW的射束功率下,射束能量可以是20MeV,其中平均射束电流为0.5mA并且射束峰值电流为33mA。应了解,这些值是示例性的。在一些示例性实现方式中,系统和方法可以在这些值的某一范围内(例如,在1%内、在5%内、5%至20%等)操作。
图3是根据一些实施方案的示例性激光控制的枪子系统300的框图。枪子系统300包括光电阴极枪310、弯转磁体320和激光部件330。枪301包括光电阴极枪,所述光电阴极枪可操作用于在受到激光激发时发射电子。枪301可以是直线加速器的组成部分。直线加速器可以具有第一区段和第二区段,其中弯转部件联接在所述区段之间。弯转部件320可操作用于使由枪子系统和第一直线加速器区段加速的电子弯转。弯转部件可以包括影响或引导电子通过弯转件的弯转磁体。在一些实施方案中,弯转部件310被配置成为激发激光提供从激光部件330到包括在枪部件310中的光电阴极的直线对传路径。已弯转的粒子束被引导到第二直线加速器中以使粒子束加速至其最终能量。在一些实施方案中,粒子束能量可以在第二直线加速器之后调整。
激光部件330可操作用于控制来自枪的电子发射的“选通”或开关。在一些实施方案中,5usec脉冲对应于约15K电子团束,所述电子团束可以利用光电阴极注入器的开/关功能来开启和关闭,以将剂量输出控制为接近每团束剂量的分辨率。在一些实施方案中,以微波范围内的频率对激光进行脉冲。在一些示例性实现方式中,振荡是处于3GHz范围。在一些实施方案中,激光被脉冲远离波形的上升和下降瞬变部分。
图4是根据一些实施方案的示例性驱动器控制的枪子系统400的框图。枪子系统400包括栅控枪410和快速枪驱动器部件420。快速枪驱动器部件420能够快到以333psec导通和关断栅极,这进而实现团束选通分辨率。在一些实施方案中,快速枪驱动器部件420有助于脉冲内剂量递送控制。
图5是根据一些实施方案的粒子束产生方法500的框图。
在方框510中,以周期性速率对放射治疗系统中的粒子产生进行脉冲。脉冲可以是处于微波范围。在一些实施方案中,脉冲具有与超高剂量率相容的特性。脉冲可以具有高保真度特性。
在方框520中,通过直线加速器使粒子在射束中加速。在一些实施方案中,直线加速器包括使粒子加速的一部分。在一些示例性实现方式中,直线加速器包括使粒子减速的一部分。
在方框530中,将射束发射引导在靶标处。在一些实施方案中,粒子束包括电子,所述电子被引导在发射光子的靶标处并且光子被引导在靶组织处。在一些示例性实现方式中,粒子束包括被引导在靶组织处的电子。
应了解,除了医学应用之外,快速枪控制还可以具有其他应用,诸如高剂量率有助于各种特性的工业应用(例如,辐射加固、交联等)。
因此,所提供的系统和方法有助于有效率和有效地产生放射束。在一些实施方案中,脉冲宽度高剂量率控制系统和方法实现了相较于较粗糙的传统的枪控制脉冲下降和脉冲伺服方法而言提高的保真度。
在程序、逻辑块、处理和计算机存储器内关于数据位的操作的其他符号表示方面提供了具体实施方式的一些部分。这些描述和表示是数据处理领域的技术人员通常使用来向本领域的其他技术人员有效地传达其工作实质的手段。程序、逻辑块、过程等在此处并通常被视为是产生期望的结果的步骤或指令的自相容序列。所述步骤包括物理量的物理操纵。通常,尽管没有必要,但是这些量呈现能够在计算机系统中存储、传送、组合、比较并以其他方式进行操纵的电、磁、光或量子信号的形式。主要出于公同使用的原因,已经证明将这些信号称为位、值、元素、符号、字符、项、数字等等有时是方便的。
然而,应当注意,所有这些和类似的术语与适当的物理量相关联,并且仅仅是应用于这些量的方便的标签。除非像从以下论述中显而易见的那样另外明确说明,否则应了解,贯穿本申请,利用术语,诸如“处理”、“计算”、“推算”、“确定”、“显示”等等的论述指代计算机系统,或操纵和转换表示为物理(例如,电子)量的数据的类似处理装置(例如,电、光或量子计算装置)的动作和处理。所述术语指代将计算机系统的部件(例如,寄存器、存储器、其他此类信息存储装置、传输或显示装置等)内的物理量操纵或转换为类似地表示为其他部件内的物理量的其他数据的处理装置的动作和处理。
出于说明和描述的目的,已提供了本发明的各种具体实施方案的前文描述。所述描述并不意图是穷尽的或将本发明限于所公开的确切形式,并且明显的是,鉴于上文的教导,许多修改和变化是可能的。选择并描述了实施方案以便最好地解释本发明的原理及其实际应用,从而使得本领域的其他技术人员能够通过如适于所涵盖的具体用途的各种修改最好地利用本发明和各种实施方案。本发明的范围意图由随附权利要求以及其等效形式限定。除非权利要求中明确说明,否则方法权利要求内所列步骤并不暗示任何具体顺序来执行所述步骤。
Claims (14)
1.一种放射枪系统,所述放射枪系统包括:
粒子束枪,所述粒子束枪产生粒子束,以及
枪控制部件,所述枪控制部件控制所述粒子束的产生特性,包括粒子束保真度特性,其中所述粒子束特性与FLASH放射治疗相容,所述FLASH放射治疗被配置为在不到一秒内提供至少4Gy的剂量率;
其中所述粒子束枪包括光电阴极枪和弯转磁体,并且所述控制部件包括激光部件;以及
所述弯转磁体能够操作用于使电子弯转并且为激发激光提供通往光电阴极的直线对传路径,其中所得的已弯转的射束然后被传送到第二直线加速器中以使所述射束加速至其最终能量。
2.如权利要求1所述的放射枪系统,其中对所述粒子束产生的分辨率控制实现在脉冲内水平下的剂量递送。
3.如权利要求1所述的放射枪系统,其中对所述粒子束产生的分辨率控制实现在微团束水平下的剂量递送。
4.如权利要求3所述的放射枪系统,其中所述微团束在5至15μsec脉冲宽度内的每个3GHz RF循环包括单独的团束。
5.如权利要求1所述的放射枪系统,其中FLASH放射治疗剂量递送具有4.4X10∧-6cGy/团束的团束水平分辨率。
6.如权利要求1所述的放射枪系统,其中:
所述激光部件能够操作用于控制来自所述枪的电子发射的开关选通。
7.如权利要求6所述的放射枪系统,其中5μsec脉冲对应于15K电子团束,所述电子团束利用光电阴极注入器的选通功能来进行选通以将剂量输出控制为等于每团束剂量的分辨率。
8.如权利要求6所述的放射枪系统,其中在与脉冲上升/下降时间的瞬态相关联的脉冲降能扩散的中间部分之内启动所述选通。
9.一种放射枪系统,所述放射枪系统包括:
粒子束枪,所述粒子束枪产生粒子束,以及
枪控制部件,所述枪控制部件控制所述粒子束的产生特性,包括粒子束保真度特性,其中所述粒子束特性与FLASH放射治疗相容,所述FLASH放射治疗被配置为在不到一秒内提供至少4Gy的剂量率;
其中所述粒子束枪是栅控枪,并且所述枪控制部件包括能够以实现团束选通分辨率的速率快速导通和关断的快速枪驱动器。
10.如权利要求9所述的放射枪系统,其中选通是在333psec处。
11.一种放射治疗系统,所述放射治疗系统包括:
射束产生系统,所述射束产生系统产生并输送粒子束,其中所述射束产生系统包括根据权利要求1所述的放射枪系统;以及
控制部件,所述控制部件被配置为接收规定的治疗计划并且引导所述规定的治疗计划的执行。
12.如权利要求11所述的放射治疗系统,其中所述射束产生系统包括直线加速器以及将粒子束沿朝向和进入喷嘴的方向引导的部件。
13.如权利要求11所述的放射治疗系统,其中喷嘴被安装在固定、旋转或可移动机架上或者是固定、旋转或可移动机架的一部分,使得所述喷嘴能够相对于支撑装置移动。
14.如权利要求11所述的放射治疗系统,其中枪子系统实现对粒子束产生的高分辨率控制。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111235169.1A CN113856071A (zh) | 2017-07-21 | 2018-07-17 | 粒子束枪控制 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/657,036 US10843011B2 (en) | 2017-07-21 | 2017-07-21 | Particle beam gun control systems and methods |
US15/657,036 | 2017-07-21 | ||
PCT/US2018/042457 WO2019018376A1 (en) | 2017-07-21 | 2018-07-17 | CANON CONTROL WITH PARTICLE BEAM |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111235169.1A Division CN113856071A (zh) | 2017-07-21 | 2018-07-17 | 粒子束枪控制 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110582326A CN110582326A (zh) | 2019-12-17 |
CN110582326B true CN110582326B (zh) | 2021-10-29 |
Family
ID=63104075
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111235169.1A Pending CN113856071A (zh) | 2017-07-21 | 2018-07-17 | 粒子束枪控制 |
CN201880026441.5A Active CN110582326B (zh) | 2017-07-21 | 2018-07-17 | 粒子束枪控制 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111235169.1A Pending CN113856071A (zh) | 2017-07-21 | 2018-07-17 | 粒子束枪控制 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10843011B2 (zh) |
EP (1) | EP3655097B1 (zh) |
CN (2) | CN113856071A (zh) |
WO (1) | WO2019018376A1 (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10732507B2 (en) | 2015-10-26 | 2020-08-04 | Esko-Graphics Imaging Gmbh | Process and apparatus for controlled exposure of flexographic printing plates and adjusting the floor thereof |
US9855445B2 (en) * | 2016-04-01 | 2018-01-02 | Varian Medical Systems, Inc. | Radiation therapy systems and methods for delivering doses to a target volume |
US10092774B1 (en) | 2017-07-21 | 2018-10-09 | Varian Medical Systems International, AG | Dose aspects of radiation therapy planning and treatment |
US10183179B1 (en) | 2017-07-21 | 2019-01-22 | Varian Medical Systems, Inc. | Triggered treatment systems and methods |
US10843011B2 (en) * | 2017-07-21 | 2020-11-24 | Varian Medical Systems, Inc. | Particle beam gun control systems and methods |
US11712579B2 (en) | 2017-07-21 | 2023-08-01 | Varian Medical Systems, Inc. | Range compensators for radiation therapy |
US11590364B2 (en) | 2017-07-21 | 2023-02-28 | Varian Medical Systems International Ag | Material inserts for radiation therapy |
EP3654976A1 (en) * | 2017-07-21 | 2020-05-27 | Varian Medical Systems, Inc. | Methods of use of ultra-high dose rate radiation and therapeutic agents |
US10549117B2 (en) | 2017-07-21 | 2020-02-04 | Varian Medical Systems, Inc | Geometric aspects of radiation therapy planning and treatment |
WO2019099904A1 (en) | 2017-11-16 | 2019-05-23 | Varian Medical Systems, Inc. | Increased beam output and dynamic field shaping for radiotherapy system |
US10910188B2 (en) | 2018-07-25 | 2021-02-02 | Varian Medical Systems, Inc. | Radiation anode target systems and methods |
US10814144B2 (en) | 2019-03-06 | 2020-10-27 | Varian Medical Systems, Inc. | Radiation treatment based on dose rate |
US11116995B2 (en) | 2019-03-06 | 2021-09-14 | Varian Medical Systems, Inc. | Radiation treatment planning based on dose rate |
WO2020185543A1 (en) | 2019-03-08 | 2020-09-17 | Mevion Medical Systems, Inc. | Collimator and energy degrader for a particle therapy system |
US11103727B2 (en) | 2019-03-08 | 2021-08-31 | Varian Medical Systems International Ag | Model based PBS optimization for flash therapy treatment planning and oncology information system |
US11090508B2 (en) | 2019-03-08 | 2021-08-17 | Varian Medical Systems Particle Therapy Gmbh & Co. Kg | System and method for biological treatment planning and decision support |
US10918886B2 (en) | 2019-06-10 | 2021-02-16 | Varian Medical Systems, Inc. | Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping |
EP3766540A1 (en) * | 2019-07-15 | 2021-01-20 | RaySearch Laboratories AB | Computer program product and computer system for planning and delivering radiotherapy treatment and a method of planning radiotherapy treatment |
EP4028122A4 (en) * | 2019-09-14 | 2023-09-27 | Intraop Medical Corporation | METHODS AND SYSTEMS FOR USING AND CONTROLLING HIGHER DOSE RATE IONIZING RADIATION IN SHORT TIME INTERVALS |
US11291859B2 (en) | 2019-10-03 | 2022-04-05 | Varian Medical Systems, Inc. | Radiation treatment planning for delivering high dose rates to spots in a target |
US11865361B2 (en) | 2020-04-03 | 2024-01-09 | Varian Medical Systems, Inc. | System and method for scanning pattern optimization for flash therapy treatment planning |
US11541252B2 (en) | 2020-06-23 | 2023-01-03 | Varian Medical Systems, Inc. | Defining dose rate for pencil beam scanning |
EP3928833A1 (en) * | 2020-06-24 | 2021-12-29 | Centre Hospitalier Universitaire Vaudois (CHUV) | Device for providing a radiation treatment |
US11957934B2 (en) | 2020-07-01 | 2024-04-16 | Siemens Healthineers International Ag | Methods and systems using modeling of crystalline materials for spot placement for radiation therapy |
US12064645B2 (en) | 2020-07-02 | 2024-08-20 | Siemens Healthineers International Ag | Methods and systems used for planning radiation treatment |
JP2022078424A (ja) * | 2020-11-13 | 2022-05-25 | キヤノンメディカルシステムズ株式会社 | 放射線治療装置及び放射線治療方法 |
WO2022240894A1 (en) * | 2021-05-11 | 2022-11-17 | Celestial Oncology Inc. | Coupled robotic radiation therapy system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4715038A (en) * | 1985-05-20 | 1987-12-22 | The United States Of America As Represented By The United States Department Of Energy | Optically pulsed electron accelerator |
Family Cites Families (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2386958A1 (fr) | 1977-04-06 | 1978-11-03 | Cgr Mev | Dispositif compact d'irradiation utilisant un accelerateur lineaire de particules chargees |
US4737680A (en) * | 1986-04-10 | 1988-04-12 | Litton Systems, Inc. | Gridded electron gun |
EP0269927B1 (de) | 1986-11-25 | 1993-05-05 | Siemens Aktiengesellschaft | Computertomograph |
JPH01311599A (ja) * | 1988-06-10 | 1989-12-15 | Hitachi Ltd | ウエイク場加速器 |
US5153900A (en) | 1990-09-05 | 1992-10-06 | Photoelectron Corporation | Miniaturized low power x-ray source |
US5267294A (en) | 1992-04-22 | 1993-11-30 | Hitachi Medical Corporation | Radiotherapy apparatus |
US5651047A (en) | 1993-01-25 | 1997-07-22 | Cardiac Mariners, Incorporated | Maneuverable and locateable catheters |
US5550378A (en) | 1993-04-05 | 1996-08-27 | Cardiac Mariners, Incorporated | X-ray detector |
US5682412A (en) | 1993-04-05 | 1997-10-28 | Cardiac Mariners, Incorporated | X-ray source |
DE69416587T2 (de) | 1993-06-09 | 1999-07-15 | Wisconsin Alumni Research Foundation, Madison, Wis. | Strahlentherapiemaschine zum erzeugen eines gewünschten intensitätsprofils |
JP2617283B2 (ja) | 1995-05-26 | 1997-06-04 | 技術研究組合医療福祉機器研究所 | 放射線治療計画装置 |
US6260005B1 (en) | 1996-03-05 | 2001-07-10 | The Regents Of The University Of California | Falcon: automated optimization method for arbitrary assessment criteria |
US5757885A (en) | 1997-04-18 | 1998-05-26 | Siemens Medical Systems, Inc. | Rotary target driven by cooling fluid flow for medical linac and intense beam linac |
US5834787A (en) | 1997-07-02 | 1998-11-10 | Bunker; Stephen N. | Device for measuring flux and accumulated dose for an ion beam containing a radioactive element |
US6222544B1 (en) | 1997-10-17 | 2001-04-24 | Siemens Medical Systems, Inc. | Graphical user interface for radiation therapy treatment apparatus |
US6187037B1 (en) | 1998-03-11 | 2001-02-13 | Stanley Satz | Metal stent containing radioactivatable isotope and method of making same |
IT1299175B1 (it) | 1998-05-11 | 2000-02-29 | Enea Ente Nuove Tec | Composizione contenente radioisotopi immobilizzati su particelle solide, utile in particolare per la brachiterapia clinica in patologie |
US6234671B1 (en) | 1998-10-06 | 2001-05-22 | Cardiac Mariners, Inc. | X-ray system with scanning beam x-ray source below object table |
US6198802B1 (en) | 1998-10-06 | 2001-03-06 | Cardiac Mariners, Inc. | Scanning beam x-ray source and assembly |
US6687333B2 (en) | 1999-01-25 | 2004-02-03 | Vanderbilt University | System and method for producing pulsed monochromatic X-rays |
JP2001085200A (ja) | 1999-09-14 | 2001-03-30 | Hitachi Ltd | 加速器システム |
US6580940B2 (en) | 2000-02-02 | 2003-06-17 | George Gutman | X-ray system with implantable needle for treatment of cancer |
JP2002113118A (ja) | 2000-10-10 | 2002-04-16 | Hitachi Ltd | 荷電粒子ビーム照射装置 |
US6504899B2 (en) | 2000-09-25 | 2003-01-07 | The Board Of Trustees Of The Leland Stanford Junior University | Method for selecting beam orientations in intensity modulated radiation therapy |
US6445766B1 (en) | 2000-10-18 | 2002-09-03 | Siemens Medical Solutions Usa, Inc. | System and method for improved diagnostic imaging in a radiation treatment system |
US6411675B1 (en) | 2000-11-13 | 2002-06-25 | Jorge Llacer | Stochastic method for optimization of radiation therapy planning |
US6920202B1 (en) | 2001-12-04 | 2005-07-19 | Carl-Zeiss-Stiftung | Therapeutic radiation source with in situ radiation detecting system |
US6888832B2 (en) | 2002-01-11 | 2005-05-03 | Thomson Licensing S.A. | Method and system for notifying customer of voicemail using an ATM signaling channel from an ATM/DSL head-end network |
AU2003213771A1 (en) | 2002-03-06 | 2003-09-22 | Tomotherapy Incorporated | Method for modification of radiotherapy treatment delivery |
DE50211712D1 (de) | 2002-03-12 | 2008-03-27 | Deutsches Krebsforsch | Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm |
IT1333559B (it) | 2002-05-31 | 2006-05-04 | Info & Tech Spa | Macchina per radioterapia intraoperatoria. |
US20090063110A1 (en) | 2003-03-14 | 2009-03-05 | Transpire,Inc. | Brachytherapy dose computation system and method |
US7778691B2 (en) | 2003-06-13 | 2010-08-17 | Wisconsin Alumni Research Foundation | Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion |
CA2540602A1 (en) | 2003-10-07 | 2005-04-21 | Nomos Corporation | Planning system, method and apparatus for conformal radiation therapy |
JP2007531556A (ja) | 2003-12-02 | 2007-11-08 | フォックス・チェイス・キャンサー・センター | 放射線治療用のレーザー加速陽子を変調する方法 |
DE602005025588D1 (de) | 2004-01-13 | 2011-02-10 | Koninkl Philips Electronics Nv | Röntgenröhren-kühlkragen |
EP1584353A1 (en) | 2004-04-05 | 2005-10-12 | Paul Scherrer Institut | A system for delivery of proton therapy |
WO2005115544A1 (en) | 2004-05-24 | 2005-12-08 | University Of Virginia Patent Foundation | System and method for temporally precise intensity modulated radiation therapy (imrt) |
WO2006005059A2 (en) | 2004-06-30 | 2006-01-12 | Lexitek, Inc. | High resolution proton beam monitor |
US7453983B2 (en) | 2005-01-20 | 2008-11-18 | Carestream Health, Inc. | Radiation therapy method with target detection |
ITCO20050007A1 (it) | 2005-02-02 | 2006-08-03 | Fond Per Adroterapia Oncologia | Sistema di accelerazione di ioni per adroterapia |
US7239684B2 (en) | 2005-02-28 | 2007-07-03 | Mitsubishi Heavy Industries, Ltd. | Radiotherapy apparatus monitoring therapeutic field in real-time during treatment |
JP4158931B2 (ja) * | 2005-04-13 | 2008-10-01 | 三菱電機株式会社 | 粒子線治療装置 |
US8306184B2 (en) | 2005-05-31 | 2012-11-06 | The University Of North Carolina At Chapel Hill | X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulation radiation field intensity patterns for radiotherapy |
US7352370B2 (en) | 2005-06-02 | 2008-04-01 | Accuray Incorporated | Four-dimensional volume of interest |
US7880154B2 (en) | 2005-07-25 | 2011-02-01 | Karl Otto | Methods and apparatus for the planning and delivery of radiation treatments |
WO2007012185A1 (en) | 2005-07-25 | 2007-02-01 | Karl Otto | Methods and apparatus for the planning and delivery of radiation treatments |
ITVE20050037A1 (it) | 2005-08-04 | 2007-02-05 | Marco Sumini | Apparecchiatura per trattamenti di radioterapia interstiziale ed intraoperatoria. |
JP5334582B2 (ja) | 2005-10-17 | 2013-11-06 | アルバータ ヘルス サービシズ | 外部ビーム放射線治療とmriとの統合システム |
ITCO20050028A1 (it) | 2005-11-11 | 2007-05-12 | Fond Per Adroterapia Oncologica | Complesso di acceleratori di protoni in particolare per uso medicale |
GB2436424A (en) | 2006-02-28 | 2007-09-26 | Elekta Ab | A reference phantom for a CT scanner |
US7616735B2 (en) | 2006-03-28 | 2009-11-10 | Case Western Reserve University | Tomosurgery |
JP4730167B2 (ja) | 2006-03-29 | 2011-07-20 | 株式会社日立製作所 | 粒子線照射システム |
US20080013687A1 (en) | 2006-04-07 | 2008-01-17 | Maurer Calvin R Jr | Automatically determining size or shape of a radiation beam |
JP4633002B2 (ja) * | 2006-05-17 | 2011-02-16 | 三菱電機株式会社 | 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム |
US8073104B2 (en) | 2006-05-25 | 2011-12-06 | William Beaumont Hospital | Portal and real time imaging for treatment verification |
US8699664B2 (en) | 2006-07-27 | 2014-04-15 | British Columbia Center Agency Branch | Systems and methods for optimization of on-line adaptive radiation therapy |
US10279196B2 (en) | 2006-09-28 | 2019-05-07 | Accuray Incorporated | Radiation treatment planning using four-dimensional imaging data |
US8405056B2 (en) | 2006-12-28 | 2013-03-26 | Fondazione per Adroterapia Oncologica—TERA | Ion acceleration system for medical and/or other applications |
DE102008007245B4 (de) | 2007-02-28 | 2010-10-14 | Siemens Aktiengesellschaft | Kombiniertes Strahlentherapie- und Magnetresonanzgerät |
US20080317204A1 (en) | 2007-03-16 | 2008-12-25 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
US8014494B2 (en) | 2009-10-20 | 2011-09-06 | University Of Maryland, Baltimore | Single-arc dose painting for precision radiation therapy |
US7623623B2 (en) | 2007-06-29 | 2009-11-24 | Accuray Incorporated | Non-collocated imaging and treatment in image-guided radiation treatment systems |
US20090026912A1 (en) * | 2007-07-26 | 2009-01-29 | Kla-Tencor Technologies Corporation | Intensity modulated electron beam and application to electron beam blanker |
DE102007036035A1 (de) | 2007-08-01 | 2009-02-05 | Siemens Ag | Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens |
DE102007054919B4 (de) | 2007-08-24 | 2009-07-30 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Schnelle Regelung der Reichweite von hochenergetischen Ionenstrahlen für Präzisionsbestrahlungen von bewegten Zielvolumina |
WO2009035080A1 (ja) * | 2007-09-12 | 2009-03-19 | Kabushiki Kaisha Toshiba | 粒子線ビーム照射装置および粒子線ビーム照射方法 |
US7933380B2 (en) | 2007-09-28 | 2011-04-26 | Varian Medical Systems International Ag | Radiation systems and methods using deformable image registration |
US7835492B1 (en) | 2007-11-27 | 2010-11-16 | Velayudhan Sahadevan | Lethal and sublethal damage repair inhibiting image guided simultaneous all field divergent and pencil beam photon and electron radiation therapy and radiosurgery |
EP2108401A1 (en) | 2008-04-11 | 2009-10-14 | Ion Beam Applications S.A. | Organ motion compensating device and method |
EP2116277A1 (en) | 2008-05-06 | 2009-11-11 | Ion Beam Applications S.A. | Device and method for particle therapy monitoring and verification |
JP4691574B2 (ja) | 2008-05-14 | 2011-06-01 | 株式会社日立製作所 | 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 |
EP2321002B1 (en) | 2008-05-15 | 2014-04-23 | Intelect Medical Inc. | Clinician programmer system and method for calculating volumes of activation |
US8045679B2 (en) * | 2008-05-22 | 2011-10-25 | Vladimir Balakin | Charged particle cancer therapy X-ray method and apparatus |
US8983573B2 (en) | 2008-06-24 | 2015-03-17 | Alberta Health Services | Radiation therapy system |
JP2010016042A (ja) | 2008-07-01 | 2010-01-21 | Panasonic Corp | 元素分析方法および半導体装置の製造方法 |
GB2463448B (en) | 2008-07-09 | 2012-08-22 | Univ Manchester | Beam sensing |
EP2313842A2 (en) | 2008-08-14 | 2011-04-27 | Koninklijke Philips Electronics N.V. | Prospective adaptive radiation therapy planning |
JP2012510877A (ja) | 2008-12-04 | 2012-05-17 | ザ クリーブランド クリニック ファウンデーション | 脳内刺激のための標的体積を規定するシステムおよび方法 |
US20100178245A1 (en) | 2009-01-13 | 2010-07-15 | Arnsdorf Morton F | Biocompatible Microbubbles to Deliver Radioactive Compounds to Tumors, Atherosclerotic Plaques, Joints and Other Targeted Sites |
US7839973B2 (en) | 2009-01-14 | 2010-11-23 | Varian Medical Systems International Ag | Treatment planning using modulability and visibility factors |
US8600003B2 (en) | 2009-01-16 | 2013-12-03 | The University Of North Carolina At Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8121253B2 (en) | 2009-01-29 | 2012-02-21 | .Decimal, Inc. | Radiation therapy using beam modifiers placed against a patient's skin |
BRPI1005358A2 (pt) | 2009-01-30 | 2019-09-24 | Koninl Philips Electronics Nv | sistema para exibir as informações de ventilação pulmonar, método para exibir as informações de ventilação pulmonar e produto de programa de computador |
DE102009021024A1 (de) | 2009-05-13 | 2010-11-18 | Siemens Aktiengesellschaft | Verfahren zum Erstellen eines Therapieplans für eine Partikeltherapie sowie Filtervorrichtung für eine Partikeltherapieanlage |
US8693629B2 (en) | 2009-12-09 | 2014-04-08 | The Johns Hopkins University | Method and system for administering internal radionuclide therapy (IRT) and external radiation therapy (XRT) |
US8232747B2 (en) * | 2009-06-24 | 2012-07-31 | Scandinova Systems Ab | Particle accelerator and magnetic core arrangement for a particle accelerator |
JP5274661B2 (ja) * | 2009-06-25 | 2013-08-28 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム、それらの制御方法及びそのプログラム |
DE102009032275A1 (de) | 2009-07-08 | 2011-01-13 | Siemens Aktiengesellschaft | Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie |
US20110006224A1 (en) | 2009-07-09 | 2011-01-13 | Maltz Jonathan S | Digital Tomosynthesis in Ion Beam Therapy Systems |
CN105664378B (zh) | 2009-07-15 | 2019-06-28 | 优瑞技术公司 | 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置 |
WO2011024085A1 (en) | 2009-08-31 | 2011-03-03 | Koninklijke Philips Electronics, N.V. | Interactive computer-aided editor for compensators used in radiotherapy treatment planning |
CN102470254A (zh) | 2009-09-09 | 2012-05-23 | 学校法人东海大学 | 肿瘤细胞的选择性杀伤方法及用于该方法的装置 |
US10007961B2 (en) | 2009-09-09 | 2018-06-26 | Wisconsin Alumni Research Foundation | Treatment planning system for radiopharmaceuticals |
JP2011095039A (ja) * | 2009-10-28 | 2011-05-12 | Japan Atomic Energy Agency | イオン輸送装置、イオン輸送方法、及びイオンビーム照射装置、医療用粒子線照射装置 |
WO2011053802A2 (en) | 2009-10-30 | 2011-05-05 | Tomotherapy Incorporated | Non-voxel-based broad-beam (nvbb) algorithm for intensity modulated radiation therapy dose calculation and plan optimization |
US8613694B2 (en) | 2010-01-25 | 2013-12-24 | James Sherman Walsh | Method for biological modulation of radiation therapy |
US9694205B2 (en) | 2010-02-12 | 2017-07-04 | Elekta Ab (Publ) | Radiotherapy and imaging apparatus |
JP5260572B2 (ja) | 2010-02-17 | 2013-08-14 | 三菱重工業株式会社 | 放射線治療装置制御装置および放射線治療装置の作動方法 |
WO2011106433A1 (en) | 2010-02-24 | 2011-09-01 | Accuray Incorporated | Gantry image guided radiotherapy system and related treatment delivery methods |
EA201290846A1 (ru) | 2010-03-01 | 2013-07-30 | Интраоп Медикал Корпорейшн | Лучевая терапия, комбинированная с сенсибилизаторами гипоксической клетки |
US8284898B2 (en) | 2010-03-05 | 2012-10-09 | Accuray, Inc. | Interleaving multi-energy X-ray energy operation of a standing wave linear accelerator |
WO2011130412A2 (en) | 2010-04-13 | 2011-10-20 | Varian Medical Systems, Inc. | Radiation treatment systems |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
WO2011156526A2 (en) | 2010-06-08 | 2011-12-15 | Accuray, Inc. | Imaging methods and target tracking for image-guided radiation treatment |
WO2011154853A1 (en) | 2010-06-11 | 2011-12-15 | Koninklijke Philips Electronics N.V. | Simultaneous multi-modality inverse optimization for radiotherapy treatment planning |
CN103282967B (zh) | 2010-08-17 | 2016-07-06 | 德克萨斯州立大学董事会 | 用于放射疗法的自动化治疗计划 |
US9259595B2 (en) | 2010-09-08 | 2016-02-16 | Radinova Ab | Positron emitter irradiation system |
US9258876B2 (en) | 2010-10-01 | 2016-02-09 | Accuray, Inc. | Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage |
GB2484529B (en) | 2010-10-15 | 2012-09-19 | Siemens Ag | Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit |
GB201021841D0 (en) | 2010-12-22 | 2011-02-02 | Univ Bristol | A system for upstream direct X-Ray detection |
ES2718308T3 (es) | 2011-01-07 | 2019-07-01 | Poseida Therapeutics Inc | Composiciones y métodos para la administración a tumores de agentes de unión de alta afinidad al oxígeno |
US8636636B2 (en) | 2011-01-28 | 2014-01-28 | Siemens Medical Solutions Usa, Inc. | Grid radiotherapy for static and dynamic treatment delivery |
KR102178906B1 (ko) | 2011-02-03 | 2020-11-30 | 트리아 뷰티, 인코포레이티드 | 방사선-계 피부치료 장치 및 방법 |
US9636525B1 (en) | 2011-02-15 | 2017-05-02 | Velayudhan Sahadevan | Method of image guided intraoperative simultaneous several ports microbeam radiation therapy with microfocus X-ray tubes |
US9539442B2 (en) | 2011-03-08 | 2017-01-10 | Varian Medical Systems Particle Therapy Gmbh | Proton irradiation using spot scanning |
DE102011005739A1 (de) | 2011-03-17 | 2012-09-20 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Bestimmung eines Bestrahlungsplans |
US20120253495A1 (en) | 2011-03-31 | 2012-10-04 | Axellis Ventures Ltd. | Defining the volumetric dimensions and surface of a compensator |
JP5637055B2 (ja) | 2011-04-18 | 2014-12-10 | 株式会社日立製作所 | 粒子線治療計画装置および粒子線治療装置 |
CL2011000898A1 (es) | 2011-04-20 | 2011-06-24 | Univ La Frontera | Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente. |
WO2013020130A1 (en) | 2011-08-04 | 2013-02-07 | John Lewellen | Bremstrahlung target for intensity modulated x-ray radiation therapy and stereotactic x-ray therapy |
US8751008B2 (en) | 2011-08-09 | 2014-06-10 | Boston Scientific Neuromodulation Corporation | Remote control data management with correlation of patient condition to stimulation settings and/or with clinical mode providing a mismatch between settings and interface data |
WO2013065762A1 (ja) | 2011-11-02 | 2013-05-10 | 富士フイルム株式会社 | 放射線照射装置、放射線照射方法、及びプログラム記憶媒体 |
WO2013081218A2 (ko) | 2011-12-02 | 2013-06-06 | Kim Jong Ki | 브래그 피크 기반 입자 유도 방사선 치료요법 |
US8644571B1 (en) | 2011-12-06 | 2014-02-04 | Loma Linda University Medical Center | Intensity-modulated proton therapy |
EP2804620A4 (en) | 2012-01-18 | 2016-04-13 | Neumedicines Inc | IL-12 FOR RADIATION PROTECTION AND RADIATION-RELATED TOXICITY WEAKENING |
EP2810693B1 (en) | 2012-02-02 | 2017-11-22 | Samsung Life Public Welfare Foundation | Method and apparatus for manufacturing radiation intensity bolus |
US8948341B2 (en) | 2012-02-12 | 2015-02-03 | Christopher V. Beckman | Radiation therapy techniques using targeted wave superposition, magnetic field direction and real-time sensory feedback |
EP2823501B1 (en) | 2012-03-03 | 2019-05-01 | The Board of Trustees of The Leland Stanford Junior University | Pluridirectional very high electron energy radiation therapy systems |
JP6224580B2 (ja) | 2012-05-11 | 2017-11-01 | 浜松ホトニクス株式会社 | X線発生装置及びx線発生方法 |
JP5338000B1 (ja) | 2012-06-15 | 2013-11-06 | 株式会社アキュセラ | リアルタイム3次元放射線治療装置 |
US10413755B1 (en) | 2012-08-01 | 2019-09-17 | Velayudhan Sahadevan | Device and methods for adaptive resistance inhibiting proton and carbon ion microbeams and nanobeams radiosurgery |
GB2521562B (en) | 2012-08-30 | 2020-07-08 | Univ Leland Stanford Junior | Anti-tumor T cell immunity induced by high dose radiation |
WO2014052721A1 (en) * | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
EP3581243A1 (en) * | 2012-09-28 | 2019-12-18 | Mevion Medical Systems, Inc. | Controlling particle therapy |
GB2507792B (en) | 2012-11-12 | 2015-07-01 | Siemens Plc | Combined MRI and radiation therapy system |
EP2923731B1 (en) | 2012-11-20 | 2017-03-15 | Mitsubishi Electric Corporation | Treatment planning device, particle beam therapy apparatus, and charged particle beam scanning path-determining method |
US8907297B2 (en) * | 2012-11-30 | 2014-12-09 | Far-Tech, Inc. | Multi-dimensional photocathode system |
WO2014096993A1 (en) | 2012-12-17 | 2014-06-26 | Koninklijke Philips N.V. | Real-time adaptive dose computation radiation therapy |
CN103903940B (zh) | 2012-12-27 | 2017-09-26 | 清华大学 | 一种产生分布式x射线的设备和方法 |
US20140206926A1 (en) | 2013-01-18 | 2014-07-24 | Robert van der LAARSE | Methods for optimizing and evaluating dose distributions in brachytherpay |
JP2014161706A (ja) | 2013-02-28 | 2014-09-08 | Hitachi Ltd | 粒子線治療システムおよび飛程調整装置 |
US9326366B2 (en) | 2013-03-14 | 2016-04-26 | The Board Of Trustees Of The Leland Stanford Junior University | Intra pulse multi-energy method and apparatus based on RF linac and X-ray source |
DE102013004616B4 (de) | 2013-03-15 | 2020-04-23 | Forschungszentrum Jülich GmbH | Verfahren zur minimalinvasiven Messung einer Strahlintensität |
US20140275706A1 (en) | 2013-03-15 | 2014-09-18 | Case Western Reserve University | Systems and methods for determining and delivering radiation treatment plans |
US9293310B2 (en) | 2013-03-15 | 2016-03-22 | Pyramid Technical Consultants, Inc. | Method and apparatus for monitoring a charged particle beam |
US9233260B2 (en) | 2013-03-29 | 2016-01-12 | Microbeam Therapy, Llc. | Magnetic confinement for microbeam radiation damage area |
JP5996470B2 (ja) | 2013-03-29 | 2016-09-21 | 住友重機械工業株式会社 | 中性子捕捉療法装置 |
JP6042269B2 (ja) | 2013-05-22 | 2016-12-14 | 住友重機械工業株式会社 | 中性子捕捉療法装置、及び中性子線の測定方法 |
US10660588B2 (en) | 2013-05-24 | 2020-05-26 | Imatrex Inc. | Tumor tracing device with multiple scan tubes |
US9801594B2 (en) | 2013-05-24 | 2017-10-31 | Imatrex Inc. | Ebeam tomosynthesis for radiation therapy tumor tracking |
EP2808057B1 (en) | 2013-05-31 | 2016-02-03 | RaySearch Laboratories AB | Method and system for robust radiotherapy treatment planning |
BR112015030377A2 (pt) | 2013-06-04 | 2017-07-25 | Fumedica Ag | preparação compreendendo pelo menos um quimioterápico ou substância citotóxica para uso no tratamento de uma doença de um paciente mamífero, preparação e método para tratamento de câncer em um paciente mamífero através de terapia de radiação |
US20140369476A1 (en) | 2013-06-14 | 2014-12-18 | Morpho Detection, Inc. | Device for generating x-rays having a liquid metal anode |
US20150011817A1 (en) | 2013-07-03 | 2015-01-08 | Yuxin Feng | System and Method for Delivering an Ultra-High Dose of Radiation Therapy |
EP3014629B1 (en) | 2013-07-05 | 2018-03-28 | University of Iowa Research Foundation | System for dynamically-trimmed spot scanning for ion therapy |
ITCO20130036A1 (it) | 2013-08-22 | 2015-02-23 | Fond Per Adroterapia Oncologi Ca Tera | ¿sistema di acceleratori di ioni per il trattamento della fibrillazione atriale¿ |
EP3043864A4 (en) | 2013-09-11 | 2017-07-26 | The Board of Trustees of The Leland Stanford Junior University | Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies |
US9364688B2 (en) | 2013-09-20 | 2016-06-14 | Ion Beam Applications, S.A. | Method and apparatus for monitoring the range of a particle beam |
US10580545B2 (en) | 2013-09-25 | 2020-03-03 | Asml Netherlands B.V. | Beam delivery apparatus and method |
EP3049151B1 (en) | 2013-09-27 | 2019-12-25 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10088833B2 (en) | 2013-09-30 | 2018-10-02 | Varian Medical Systems International Ag. | Printing of objects for medical use |
EP2853292B1 (en) | 2013-09-30 | 2019-07-31 | Ion Beam Applications S.A. | Charged hadron beam delivery |
JP6139361B2 (ja) | 2013-09-30 | 2017-05-31 | 株式会社東芝 | 医用画像処理装置、治療システム及び医用画像処理方法 |
JP6208535B2 (ja) | 2013-10-25 | 2017-10-04 | 株式会社日立製作所 | 放射線治療装置およびシステムおよび方法 |
FR3013225B1 (fr) | 2013-11-20 | 2018-09-14 | Pmb | Dispositif d'irradiation a rayonnement ionisant, notamment pour la radiotherapie et/ou la radiobiologie |
WO2015077881A1 (en) | 2013-11-27 | 2015-06-04 | Dalhousie University | System and method for manufacturing bolus for radiotherapy using a three-dimensional printer |
WO2015085252A1 (en) | 2013-12-06 | 2015-06-11 | Sonitrack Systems, Inc. | Radiotherapy dose assessment and adaptation using online imaging |
US20150202464A1 (en) | 2014-01-23 | 2015-07-23 | Mitsubis | Multi-Criteria Optimization in Particle Beam Dose Optimization |
WO2015153746A1 (en) | 2014-04-04 | 2015-10-08 | University Of Iowa Research Foundation | Close-proximity range shifting device for proton radiosurgery |
JP6200368B2 (ja) * | 2014-04-07 | 2017-09-20 | 株式会社日立製作所 | 荷電粒子照射システムおよび荷電粒子ビーム照射システムの制御方法 |
CN104001270B (zh) | 2014-05-07 | 2016-07-06 | 上海交通大学 | 超高能电子束或光子束放射治疗机器人系统 |
US9844358B2 (en) | 2014-06-04 | 2017-12-19 | Varian Medical Systems, Inc. | Imaging-based self-adjusting radiation therapy systems, devices, and methods |
US20160030769A1 (en) * | 2014-08-01 | 2016-02-04 | Phenix Medical Llc | Method and device for fast raster beam scanning in intensity-modulated ion beam therapy |
JP6731404B2 (ja) | 2014-10-14 | 2020-07-29 | ザ ユニバーシティ オブ シカゴThe University Of Chicago | 光線力学療法、x線誘起光線力学療法、放射線療法、化学療法、免疫療法、及びこれらの任意の組み合わせのためのナノ粒子 |
WO2016069633A1 (en) | 2014-10-27 | 2016-05-06 | Elekta, Inc. | Image guidance for radiation therapy |
EP3229903B1 (en) | 2014-12-11 | 2019-08-28 | Elekta, Inc. | Motion management in mri-guided linac |
KR101689130B1 (ko) | 2014-12-23 | 2016-12-23 | 재단법인 아산사회복지재단 | 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치 |
US10549115B2 (en) | 2015-01-22 | 2020-02-04 | Koninklijke Philips N.V. | Volumetric modulated arc therapy (VMAT) with non-coplanar trajectories |
US9878177B2 (en) | 2015-01-28 | 2018-01-30 | Elekta Ab (Publ) | Three dimensional localization and tracking for adaptive radiation therapy |
EP3265176A4 (en) | 2015-03-05 | 2018-12-26 | The Regents of the University of California | Radiotherapy utilizing the entire 4pi solid angle |
JP6844942B2 (ja) | 2015-04-28 | 2021-03-17 | 株式会社東芝 | 粒子線治療システムおよび粒子線治療用管理システム |
EP3103519B1 (en) | 2015-06-12 | 2021-06-02 | RaySearch Laboratories AB | A method, a computer program product and a computer system for radiotherapy optimization |
EP3108932B1 (en) | 2015-06-26 | 2018-01-31 | RaySearch Laboratories AB | Method, computer program and system for optimizing radiotherapy treatment |
US9884206B2 (en) | 2015-07-23 | 2018-02-06 | Loma Linda University Medical Center | Systems and methods for intensity modulated radiation therapy |
US10636609B1 (en) | 2015-10-09 | 2020-04-28 | Accuray Incorporated | Bremsstrahlung target for radiation therapy system |
KR101803346B1 (ko) | 2015-10-16 | 2017-11-30 | 재단법인 아산사회복지재단 | 자기장을 이용한 종양표면선량 강화 방사선 치료장치 |
JP6523929B2 (ja) | 2015-11-19 | 2019-06-05 | 株式会社東芝 | 粒子線加速システム、粒子線加速制御方法、及び粒子線治療装置 |
EP3181049B1 (en) | 2015-12-18 | 2018-02-14 | RaySearch Laboratories AB | Radiotherapy method, computer program and computer system |
EP3195901A1 (en) | 2016-01-20 | 2017-07-26 | Ion Beam Applications S.A. | Method and device for determining an interest of applying a qa procedure to a treatment plan in radiation therapy |
US10293184B2 (en) | 2016-01-29 | 2019-05-21 | Elekta Ltd. | Therapy control using motion prediction |
US10022564B2 (en) | 2016-02-05 | 2018-07-17 | Varian Medical Systems International Ag | Systems, methods, and devices for radiation beam alignment and radiation beam measurements using electronic portal imaging devices |
CN109152928B (zh) | 2016-03-09 | 2021-05-28 | 反射医疗公司 | 用于计算辐射治疗的注量图的方法和系统 |
US9854662B2 (en) | 2016-03-11 | 2017-12-26 | Varex Imaging Corporation | Hybrid linear accelerator with a broad range of regulated electron and X-ray beam parameters includes both standing wave and traveling wave linear sections for providing a multiple-energy high-efficiency electron beam or X-ray beam useful for security inspection, non-destructive testing, radiation therapy, and other applications |
US9855445B2 (en) | 2016-04-01 | 2018-01-02 | Varian Medical Systems, Inc. | Radiation therapy systems and methods for delivering doses to a target volume |
EP3228357B1 (en) | 2016-04-08 | 2021-03-31 | RaySearch Laboratories AB | Method, computer program product and computer system for radiotherapy treatment planning |
CN115554619A (zh) | 2016-04-13 | 2023-01-03 | 皇家飞利浦有限公司 | 辐射治疗交互式规划 |
US20170348547A1 (en) | 2016-05-27 | 2017-12-07 | W. Davis Lee | Ion beam kinetic energy dissipater apparatus and method of use thereof |
LU93102B1 (en) | 2016-06-10 | 2018-01-22 | Fyzikalni Ustav Av Cr V V I | Device and method for high-dose pulse radiotherapy with real-time imaging |
US20180154183A1 (en) | 2016-06-22 | 2018-06-07 | Velayudhan Sahadevan | Normal Tissue Toxicity Reducing Microbeam-Broadbeam Radiotherapy, Skin's Radio-Response Immunotherapy and Mutated Molecular Apheresis Combined Cancer Treatments |
EP3481431A4 (en) | 2016-07-05 | 2020-01-01 | The Johns Hopkins University | CRISPR / CAS9 COMPOSITIONS AND METHODS FOR TREATING CANCER |
US10342996B2 (en) | 2016-08-29 | 2019-07-09 | Accuray Incorporated | Online angle selection in rotational imaging and tracking systems |
CN109891525B (zh) | 2016-09-09 | 2021-12-28 | 得克萨斯大学体系董事会 | 用于辐射电子束的磁控制的装置和方法 |
US10307615B2 (en) | 2016-09-19 | 2019-06-04 | Varian Medical Systems International Ag | Optimization of radiation treatment plans for optimal treatment time in external-beam radiation treatments |
US10272264B2 (en) | 2016-09-19 | 2019-04-30 | Varian Medical Systems International Ag | Generating time-efficient treatment field trajectories for external-beam radiation treatments |
US10307614B2 (en) | 2016-09-22 | 2019-06-04 | Accuray Incorporated | Systems and methods for selecting a radiation therapy treatment plan |
EP3305366A1 (en) | 2016-10-07 | 2018-04-11 | Ion Beam Applications S.A. | Hadron therapy apparatus for adaptive treatment in non-supine position |
EP3306334A1 (en) | 2016-10-07 | 2018-04-11 | Ion Beam Applications S.A. | Apparatus and method for visualizing a hadron beam path traversing a target tissue by magnetic resonance imaging |
EP3305200A1 (en) | 2016-10-07 | 2018-04-11 | Ion Beam Applications S.A. | Medical apparatus comprising a hadron therapy device, a mri, and a prompt-gamma system |
CN106730407A (zh) | 2016-11-18 | 2017-05-31 | 上海艾普强粒子设备有限公司 | 一种用于粒子治疗的扫描照射方法、装置和治疗头 |
US10449389B2 (en) | 2016-12-05 | 2019-10-22 | Varian Medical Systems International Ag | Dynamic target masker in radiation treatment of multiple targets |
US9987502B1 (en) | 2016-12-06 | 2018-06-05 | International Business Machines Corporation | Radiation therapy treatment planning using regression |
EP3338858B1 (en) | 2016-12-22 | 2019-06-26 | RaySearch Laboratories AB | System for attaining target dose conformity in ion beam treatment |
US10485988B2 (en) | 2016-12-30 | 2019-11-26 | Varian Medical Systems International Ag | Interactive dose manipulation using prioritized constraints |
US10713801B2 (en) | 2017-01-06 | 2020-07-14 | Accuray Incorporated | Image registration of treatment planning image, intrafraction 3D image, and intrafraction 2D x-ray image |
EP3573714B1 (en) | 2017-01-27 | 2020-11-11 | RaySearch Laboratories AB | System and method for planning a radiation therapy treatment |
WO2018152302A1 (en) | 2017-02-15 | 2018-08-23 | University Of Maryland, Baltimore | Techniques for spatially fractionated particle beam therapy |
US20180235554A1 (en) | 2017-02-16 | 2018-08-23 | Eric A Burgett | Patient-Specific Restraining Device and Integrated Dosimetry System |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US10682528B2 (en) | 2017-03-03 | 2020-06-16 | Varian Medical Systems International Ag | Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices |
US11690164B2 (en) | 2017-03-08 | 2023-06-27 | University Of Maryland, Baltimore | Techniques for particle beam therapy |
US10661100B2 (en) | 2017-03-08 | 2020-05-26 | Mayo Foundation For Medical Education And Research | Method for measuring field size factor for radiation treatment planning using proton pencil beam scanning |
CN110799243A (zh) | 2017-03-24 | 2020-02-14 | 辐射光束技术有限责任公司 | 具有加速波导的紧凑型直线加速器 |
EP3384961B1 (en) | 2017-04-05 | 2021-10-13 | RaySearch Laboratories AB | System and method for modelling of dose calculation in radiotherapy treatment planning |
EP3391940A1 (en) | 2017-04-21 | 2018-10-24 | Koninklijke Philips N.V. | Planning system for adaptive radiation therapy |
KR101953350B1 (ko) | 2017-06-23 | 2019-02-28 | 재단법인 아산사회복지재단 | 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 장치, 이를 포함하는 광자선 기반의 방사선치료장치 및 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 방법 |
EP3421087A1 (en) | 2017-06-30 | 2019-01-02 | RaySearch Laboratories AB | Assigning ripple filter settings |
US10843011B2 (en) * | 2017-07-21 | 2020-11-24 | Varian Medical Systems, Inc. | Particle beam gun control systems and methods |
US11590364B2 (en) | 2017-07-21 | 2023-02-28 | Varian Medical Systems International Ag | Material inserts for radiation therapy |
US10609806B2 (en) | 2017-07-21 | 2020-03-31 | Varian Medical Systems Particle Therapy Gmbh | Energy modulation of a cyclotron beam |
US11712579B2 (en) | 2017-07-21 | 2023-08-01 | Varian Medical Systems, Inc. | Range compensators for radiation therapy |
US10183179B1 (en) | 2017-07-21 | 2019-01-22 | Varian Medical Systems, Inc. | Triggered treatment systems and methods |
US10245448B2 (en) | 2017-07-21 | 2019-04-02 | Varian Medical Systems Particle Therapy Gmbh | Particle beam monitoring systems and methods |
US10092774B1 (en) | 2017-07-21 | 2018-10-09 | Varian Medical Systems International, AG | Dose aspects of radiation therapy planning and treatment |
US10549117B2 (en) | 2017-07-21 | 2020-02-04 | Varian Medical Systems, Inc | Geometric aspects of radiation therapy planning and treatment |
CN107362464A (zh) | 2017-08-13 | 2017-11-21 | 吴大可 | 精准立体定向放射外科治疗装置 |
EP3453427A1 (en) | 2017-09-12 | 2019-03-13 | RaySearch Laboratories AB | Evaluation of arcs for a radiation treatment plan |
WO2019051557A1 (en) | 2017-09-14 | 2019-03-21 | Australian Nuclear Science And Technology Organisation | METHOD AND SYSTEM OF IRRADIATION |
WO2019099904A1 (en) * | 2017-11-16 | 2019-05-23 | Varian Medical Systems, Inc. | Increased beam output and dynamic field shaping for radiotherapy system |
GB201719076D0 (en) | 2017-11-17 | 2018-01-03 | Xerion Healthcare Ltd | Particles for the treatment of cancer in combination with radiotherapy |
KR20200121286A (ko) | 2017-11-21 | 2020-10-23 | 윌리엄 마쉬 라이스 유니버시티 | 방사선-민감성 조직에서 세포보호제의 선택적 증가 및 이의 용도 |
JP2019097969A (ja) | 2017-12-05 | 2019-06-24 | 株式会社日立製作所 | 粒子線治療計画装置および粒子線治療システム |
US11794038B2 (en) | 2018-02-20 | 2023-10-24 | The Trustees Of The University Of Pennsylvania | Proton beam system and methods for irradiating a target |
WO2019166702A1 (fr) | 2018-02-28 | 2019-09-06 | Hagalife | Utilisation d'un procédé d'irradiation flash pour augmenter la longévité et/ou pour retarder les effets du vieillissement chez les mammifères |
WO2019185378A1 (en) | 2018-03-26 | 2019-10-03 | Koninklijke Philips N.V. | Decision support tool for adaptive radiotherapy in ct/linac console |
JP7090451B2 (ja) | 2018-03-29 | 2022-06-24 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
JP6974232B2 (ja) | 2018-03-29 | 2021-12-01 | 株式会社日立製作所 | 粒子線治療計画装置、粒子線治療システムおよび線量分布演算プログラム |
CN113260412A (zh) | 2018-05-15 | 2021-08-13 | 霍洛比姆技术有限公司 | 利用具有时间相关驻波干涉和相干强度放大的全息能量传送(het)进行能量的精确传送 |
EP3586920A1 (en) | 2018-06-29 | 2020-01-01 | RaySearch Laboratories AB | System and method for radiation treatment planning |
CN112449602A (zh) | 2018-07-19 | 2021-03-05 | 瓦里安医疗系统公司 | 超高剂量率辐射和治疗剂的使用方法 |
US10910188B2 (en) | 2018-07-25 | 2021-02-02 | Varian Medical Systems, Inc. | Radiation anode target systems and methods |
US10960232B2 (en) | 2018-07-28 | 2021-03-30 | Varian Medical Systems, Inc. | Single-pass imaging and radiation treatment delivery via an extended rotation gantry |
US10525285B1 (en) | 2018-08-06 | 2020-01-07 | Integrated Sensors, Llc | Ionizing-radiation beam monitoring system |
JP7531918B2 (ja) | 2018-09-25 | 2024-08-13 | ミエロ セラピューティクス ゲーエムベーハー | 致死的な放射線への曝露に関連する症状の治療における使用のためのイミダゾリルエタンアミドペンタン二酸 |
WO2020107121A1 (en) | 2018-11-28 | 2020-06-04 | Provincial Health Services Authority | Motion synchronized arc radiotherapy |
CN113613673A (zh) | 2019-01-28 | 2021-11-05 | 阿姆弗拉公司 | 用于治疗胰腺癌的药物组合物 |
US11786755B2 (en) | 2019-02-07 | 2023-10-17 | Canon Medical Systems Corporation | Radiotherapy support apparatus, radiotherapy system, and radiotherapy support method |
US10946220B2 (en) | 2019-03-01 | 2021-03-16 | Elekta, Inc. | Method of providing rotational radiation therapy using particles |
US11103727B2 (en) | 2019-03-08 | 2021-08-31 | Varian Medical Systems International Ag | Model based PBS optimization for flash therapy treatment planning and oncology information system |
CN109966662B (zh) | 2019-04-30 | 2020-11-24 | 四川省肿瘤医院 | 一种验证放射治疗剂量的系统 |
CN111481840A (zh) | 2020-06-10 | 2020-08-04 | 中国工程物理研究院应用电子学研究所 | 一种小型化闪光放射治疗装置 |
CN111481841A (zh) | 2020-06-10 | 2020-08-04 | 中国工程物理研究院应用电子学研究所 | 一种闪光放射治疗装置 |
-
2017
- 2017-07-21 US US15/657,036 patent/US10843011B2/en active Active
-
2018
- 2018-07-17 CN CN202111235169.1A patent/CN113856071A/zh active Pending
- 2018-07-17 WO PCT/US2018/042457 patent/WO2019018376A1/en unknown
- 2018-07-17 EP EP18749982.7A patent/EP3655097B1/en active Active
- 2018-07-17 CN CN201880026441.5A patent/CN110582326B/zh active Active
-
2020
- 2020-07-02 US US16/920,019 patent/US11478664B2/en active Active
-
2022
- 2022-10-20 US US17/970,410 patent/US20230040534A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4715038A (en) * | 1985-05-20 | 1987-12-22 | The United States Of America As Represented By The United States Department Of Energy | Optically pulsed electron accelerator |
Also Published As
Publication number | Publication date |
---|---|
EP3655097A1 (en) | 2020-05-27 |
US20190022422A1 (en) | 2019-01-24 |
CN110582326A (zh) | 2019-12-17 |
EP3655097B1 (en) | 2023-07-12 |
US10843011B2 (en) | 2020-11-24 |
CN113856071A (zh) | 2021-12-31 |
WO2019018376A1 (en) | 2019-01-24 |
US20230040534A1 (en) | 2023-02-09 |
US11478664B2 (en) | 2022-10-25 |
US20200330798A1 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110582326B (zh) | 粒子束枪控制 | |
EP3655099B1 (en) | Energy modulation of a cyclotron beam | |
US7295649B2 (en) | Radiation therapy system and method of using the same | |
US6349129B1 (en) | System and method for defining radiation treatment intensity maps | |
US20120160996A1 (en) | Device And Method For Particle Beam Production | |
US20080049897A1 (en) | System and Method for Temporally Precise Intensity Modulated Radiation Therapy (Imrt) | |
US10213625B2 (en) | Proton irradiation using spot scanning | |
CN113082551B (zh) | 一种用于离子Flash治疗的装置及方法 | |
Flanz et al. | Evolution of technology to optimize the delivery of proton therapy: the third generation | |
Arduini et al. | Physical specifications of clinical proton beams from a synchrotron | |
US20220331610A1 (en) | System for radiation therapy | |
US12064644B2 (en) | Pinhole collimator systems and methods | |
US20220387824A1 (en) | Device For Ultra-High Dose Rate Radiation Treatment | |
Schippers et al. | Fast scanning techniques for cancer therapy with hadrons–a domain of cyclotrons | |
US20230319973A1 (en) | Accelerator and particle beam transport systems and methods | |
RU2826821C1 (ru) | Устройство для лучевой терапии с использованием сверхвысокой мощности дозы излучения | |
Mallick et al. | Linear Accelerator | |
Noda et al. | HIMAC and new facility design for wide spread use of carbon cancer therapy | |
Mallick | Proton Therapy | |
Ha et al. | 6 MV X-band linear accelerator for stereotactic body radiation therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |