CN110565060B - 薄膜太阳能电池的光吸收层的制备方法 - Google Patents

薄膜太阳能电池的光吸收层的制备方法 Download PDF

Info

Publication number
CN110565060B
CN110565060B CN201910873604.XA CN201910873604A CN110565060B CN 110565060 B CN110565060 B CN 110565060B CN 201910873604 A CN201910873604 A CN 201910873604A CN 110565060 B CN110565060 B CN 110565060B
Authority
CN
China
Prior art keywords
layer
indium gallium
temperature
copper indium
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910873604.XA
Other languages
English (en)
Other versions
CN110565060A (zh
Inventor
高传增
王顺
李文杰
李伟民
罗海林
冯叶
陈明
钟国华
杨春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Hongda Photoelectric Co ltd
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201910873604.XA priority Critical patent/CN110565060B/zh
Publication of CN110565060A publication Critical patent/CN110565060A/zh
Application granted granted Critical
Publication of CN110565060B publication Critical patent/CN110565060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种薄膜太阳能电池的光吸收层的制备方法,包括:制备铜铟镓预制层;在铜铟镓预制层上制备硒薄膜层,硒与铜镓之和的摩尔比大于1;将铜铟镓预制层置于退火炉中加热至第一预定温度后恒温第一预定时间;将铜铟镓预制层从第一预定温度加热至第二预定温度后恒温第二预定时间,以使预制层硒化,然后从退火炉中抽除硒蒸汽;将铜铟镓预制层从第二预定温度加热至第三预定温度后恒温第三预定时间,并在第三预定时间内通入硫化氢气体,以使预制层硫化,制备获得铜铟镓硒硫光吸收层。本发明将铜铟镓预制层的硒化和硫化设置在不同温度下分步进行,避免硒化的过度和不均匀性,同时也保证了硫化的质量,提高光吸收层的品质。

Description

薄膜太阳能电池的光吸收层的制备方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种薄膜太阳能电池的光吸收层的制备方法。
背景技术
铜铟镓硒(CIGS)薄膜太阳能电池是一种高效薄膜太阳能电池,其具有高稳定性、低成本和长寿命的优势。铜铟镓硒薄膜太阳能电池本质上是一种直接带隙半导体,其基本结构包括依次叠层设置的衬底、背电极、光吸收层、缓冲层、窗口层、减反射层和金属电极层,其中的光电吸层是由铜、铟、镓和硒四种元素组成的化合物半导体薄膜。目前,制备铜铟镓硒光吸收层的方法主要有共蒸发法和溅射硒化法,溅射硒化法由于其成本低于共蒸发法,在大尺寸电池的生产工艺中得到广泛的应用。
溅射硒化法是首先在衬底上溅射沉积铜铟镓的半导体预制层,然后将半导体预制层置于含硒化氢或硒蒸气的气氛中退火,使铜、铟、镓、硒四种元素相互反应并结晶,得到符合化学计量比的铜铟镓硒薄膜。
通常地,在溅射硒化的工艺路径中也要进行硫化,硫化的目的是让硫能够进入硒存在的空位,补偿缺陷,同时硫的引入也能够提高禁带宽度,使整个光吸收层的禁带宽度呈V型(如图1所示),也称为U型梯度分布,即,光吸收层的两侧表面的禁带宽度高于光吸收层内部禁带宽度,由此达到提高开路电压的效果,进而提高光电转换率。硫源的引入目前主要有通入硫化氢气体、固体硫的热蒸发和气体硒,其中采用硫化氢气体的方式活性高,效果明显。
目前,溅射后硒化硫化的工艺都是同步进行,具体是:首先在铜铟镓预制层上蒸镀硒薄膜层形成铜铟镓硒前驱体;然后将所制得的铜铟镓硒前驱体放入到退火炉中进行预热,预热温度为80℃~200℃,让前驱体表面变得平整;接着在预热温度下,通入硫化氢气体;最后在氮气保护氛围下进行升温,升至500℃~600℃左右,使铜铟镓硒前驱体同时进行硒化和硫化,形成铜铟镓硒硫(CIGSSe)光吸收层。在这种高温硒化硫化过程中,虽然能有效进行硫化,增加其禁带宽度,但无法分别精确控制硒化和硫化过程,高温下硒元素扩散较快,随机因素较大,会使每个薄膜区域硒化硫化的程度不同,导致薄膜均匀性差、重复性低,很难保证工业生产中光吸收层的品质。同时,采用这种一步法硒化硫化的工艺,虽然简便且节省时间,但在高温下硫的活性高,同时进行的硫化和硒化会使大量的硫会进入到铜铟镓硒吸收层的内部,使其内部的禁带宽度提高,由此整个光吸收层的禁带宽度无法达到公认最佳的V型分布,会降低薄膜电池的光电转换率。
发明内容
鉴于现有技术存在的不足,本发明提供了一种薄膜太阳能电池的光吸收层的制备方法,以提高薄膜太阳能电池的光吸收层的品质,进而提升电池的光电转换率。
为实现上述发明目的,本发明采用了如下技术方案:
一种薄膜太阳能电池的光吸收层的制备方法,其包括:
应用磁控溅射工艺制备获得铜铟镓预制层;
在所述铜铟镓预制层上蒸发沉积形成硒薄膜层,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为大于1;
将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中;
将所述铜铟镓预制层加热至第一预定温度后恒温第一预定时间;
将所述铜铟镓预制层从所述第一预定温度加热升温至第二预定温度后恒温第二预定时间,以使所述铜铟镓预制层硒化,然后从所述退火炉中抽除硒蒸气;
将所述铜铟镓预制层从所述第二预定温度加热升温至第三预定温度后恒温第三预定时间,并在所述第三预定时间内向所述退火炉中通入硫化氢气体,以使所述铜铟镓预制层硫化,制备获得铜铟镓硒硫光吸收层。
优选地,所述第一预定温度为80℃~200℃,所述第一预定时间为1min~3min;所述第二预定温度为500℃~550℃,所述第二预定时间为0.5min~5min;所述第三预定温度为550℃~600℃,所述第三预定时间为0.5min~5min。
优选地,将所述铜铟镓预制层从室温加热至所述第一预定温度的时间为0.5min~1min,将所述铜铟镓预制层从所述第一预定温度加热升温至所述第二预定温度时间为3min~5min,将所述铜铟镓预制层从所述第二预定温度加热升温至所述第三预定温度时间为0.5min~1min。
优选地,在所述第一预定时间内还向所述退火炉中通入硫化氢气体;在所述第一预定时间内通入的1KPa~2KPa的硫化氢气体,在所述第三预定时间内通入2KPa~4KPa的硫化氢气体。
优选地,向所述退火炉中通入硫化氢气体时,还通入氮气,所述硫化氢气体与所述氮气的摩尔比为0.04~0.1。
优选地,在恒温至所述第三预定时间结束后自然冷却至300℃时,先对所述退火炉的腔室进行抽真空处理然后通入氮气保护气体直至冷却室温。
优选地,所述铜铟镓预制层中,铜与铟镓之和的摩尔比为0.9~0.95,镓与铟镓之和的摩尔比为0.2~0.3。
优选地,所述硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为1.6~2.2。
优选地,所述硒薄膜层的厚度为700nm~1000nm。
优选地,将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中之后,先对所述退火炉的腔室进行洗气处理然后进行抽真空处理。
本发明实施例提供的薄膜太阳能电池的光吸收层的制备方法,将半导体预制层的硒化和硫化设置在不同温度下分步进行,控制硒和硫的反应竞争关系,以避免硒化的过度和不均匀性,同时也保证了硫化的质量,提高光吸收层的品质,进而提升电池的光电转换率。在本发明实施例中,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为大于1,即硒是过量的,使用过量的硒进行硒化,提高铜铟镓硒(CIGSe)结晶质量,而在硒化结束后又将过量的硒蒸气抽除再进行硫化,又可以避免过量的硒对硫化过程造成不利影响,保证了硫化的质量。
在具体地实施例中:首先在相对较低的温度下、使用过量的硒进行硒化形成良好的铜铟镓硒半导体晶体;硒化结束后又将过量的硒蒸气抽除,然后升温至相对较高的温度开始进行硫化,避免过量的硒对硫化过程造成不利影响,此时硫的活性大大提高,硫会通过晶界,在光吸收层两侧表面处形成CIGSSe晶体,不仅让硫进入了硒缺失空位,弥补形成的铜铟镓硒晶体的缺陷,同时能够保证在对光吸收层内部的禁带宽度影响较小的情况下,提高光吸收层两侧表面的禁带宽度,达到良好的V型梯度分布,由此获得高品质的光吸收层。
附图说明
图1是光吸收层的禁带宽度呈V型梯度分布的示例性图示;
图2是本发明中的薄膜太阳能电池的光吸收层的制备方法的流程图;
图3是本发明具体实施例的硒化硫化工艺中退火温度与时间关系图;
图4是本发明具体实施例制备获得的太阳能电池的I-V曲线图;
图5是本发明具体实施例制备获得的太阳能电池的剖面的SEM图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明提供了一种薄膜太阳能电池的光吸收层的制备方法,如图2所示,所述制备方法包括步骤:
S10、应用磁控溅射工艺制备获得铜铟镓预制层。
具体地,在真空环境下将构成铜铟镓预制层的合金元素用磁控溅射的方法溅镀到沉积衬底(例如是太阳能电池的背电极)上获得合金薄膜,形成铜铟镓预制层。优选地,所述铜铟镓预制层中,铜与铟镓之和的摩尔比为0.9~0.95,镓与铟镓之和的摩尔比为0.2~0.3。
S20、在所述铜铟镓预制层上蒸发沉积形成硒薄膜层,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为大于1。
具体地,使用固态硒作为硒源,在所述铜铟镓预制层上蒸镀获得硒薄膜层。其中,所述硒薄膜层的厚度优选为700nm~1000nm。使用固态硒作为硒源,避免使用硒化氢剧毒气体,保证了生产过程中安全性。
其中,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为大于1,即硒相对于铜镓之和是过量的。优选的方案中,所述硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为1.6~2.2。
S30、将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中。
其中,将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中之后,先对所述退火炉的腔室进行洗气处理然后进行抽真空处理。具体地,所述进行洗气处理具体是:对所述退火炉的腔室抽真空在冲入氮气,如此重复3次以上。
S40、将所述铜铟镓预制层加热至第一预定温度后恒温第一预定时间。
该步骤主要是对铜铟镓预制层进行预热,使得铜铟镓预制层的表面变得更加平整。在优选的方案中,所述第一预定温度可以设置为80℃~200℃的范围内,所述第一预定时间可以设置为1min~3min的范围内。进一步地,将所述半导体预制层从室温加热至所述第一预定温度的时间优选为0.5min~1min。
在优选的方案中,在所述第一预定时间内还向所述退火炉中通入硫化氢气体,更优选的是通入的1KPa~2KPa的硫化氢气体,从而保证反应过程中保持硫化氢气体的基础浓度,使得后续工艺中预制层更易硫化。在向所述退火炉中通入硫化氢气体时,还可以通入氮气,所述硫化氢气体与所述氮气的摩尔比可以设置为0.04~0.1的范围内。
S50、将所述铜铟镓预制层从第一预定温度加热升温至第二预定温度后恒温第二预定时间,以使所述铜铟镓预制层硒化,然后从所述退火炉中抽除硒蒸气。
在优选的方案中,所述第二预定温度可以设置为500℃~550℃的范围内,所述第二预定时间可以设置为0.5min~5min的范围内。进一步地,将铜铟镓预制层从所述第一预定温度加热升温至所述第二预定温度时间优选为3min~5min。
对镀硒的预制层预热后,升温至500℃~550℃,保持在温度下进行硒化,晶体长大,形成良好的铜铟镓硒晶体。在本发明实施例中,如前所述,硒是过量的,使用过量的硒进行硒化,提高铜铟镓硒(CIGSe)结晶质量,而在硒化结束后将过量的硒蒸气抽除,再进行后续的硫化工序。
S60、将所述铜铟镓预制层从第二预定温度加热升温至第三预定温度后恒温第三预定时间,并在第三预定时间内向所述退火炉中通入硫化氢气体,以使所述铜铟镓预制层硫化,制备获得铜铟镓硒硫光吸收层。
在优选的方案中,所述第三预定温度可以设置为550℃~600℃的范围内,所述第三预定时间可以设置为0.5min~5min的范围内。进一步地,将所述半导体预制层从所述第二预定温度加热升温至所述第三预定温度时间优选为0.5min~1min。
其中,在以上硒化步骤结束后先将过量的硒蒸气抽除再进行硫化,可以避免过量的硒对硫化过程造成不利影响,保证了硫化的质量。本发明实施例中使用气体硫化氢作为硫源,其活性高,只需要少量便能达到大量使用固态单质硫的效果,因此,在向所述退火炉中通入硫化氢气体时,还可以通入氮气,所述硫化氢气体与所述氮气的摩尔比可以设置为0.04~0.1的范围内。该步骤中,优选的是通入的2KPa~4KPa的硫化氢气体。
在优选的方案中,在恒温至所述第三预定时间结束后自然冷却至300℃时,先对所述退火炉的腔室进行抽真空处理然后通入氮气保护气体直至冷却室温。
如上所述的光吸收层的制备方法,将铜铟镓预制层的硒化和硫化设置在不同温度下分步进行,控制硒和硫的反应竞争关系,以避免硒化的过度和不均匀性,同时也保证了硫化的质量,提高光吸收层的品质,进而提升电池的光电转换率。并且是使用过量的硒进行硒化,提高铜铟镓硒(CIGSe)结晶质量,而在硒化结束后又将过量的硒蒸气抽除再进行硫化,又可以避免过量的硒对硫化过程造成不利影响,保证了硫化的质量。
实施例1
一、制备背电极:在钠钙玻璃衬底上蒸镀1000nm厚的钼作为背电极。
二、制备铜铟镓预制层:使用具有20%~30%的镓含量的铜镓靶材,在钼背电极上溅射沉积200nm厚度的铜镓薄膜,然后再用铟靶材继续在样片上溅射沉积500nm厚度的铟薄膜。
三、在铜铟镓预制层上蒸镀700nm厚度的固态硒薄膜层,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为1.6。
四、将镀硒后的铜铟镓预制层放入可密闭的退火炉中,对炉内先进行洗气:抽真空、冲入氮气,如此重复3次,最后保持抽真空状态。
五、对半导体预制层分布进行硒化和硫化处理,获得光吸收层。
具体地,参阅图3,先进行预热,1分钟升至80℃,保温3分钟,其中在保温的第2分钟通入1KPa的硫化氢气体;然后经过3分钟温度升至500℃,保温2分钟进行硒化,硒化结束后抽除多余的硒蒸气(可以抽除反应体系内20%~60%的气体);再经过1分钟升温至580℃,保温5分钟,并在保温期间的第2分钟通入硫化氢气体(本实施例中同时还通入氮气,硫化氢与氮气的摩尔比为0.05),保温结束后,形成铜铟镓硒硫光吸收层。自然冷却至300℃,对退火炉抽真空30秒,再通入氮气保护气体。在温度降到80℃以下(通常是室温),取出退火样品。
六、通过化学水浴法在光吸收层上制备形成50nm厚度的硫化镉缓冲层。
七、在硫化镉缓冲层上采用传统工艺依次制备本征氧化锌层、导电氧化锌层以及用于收集电流的栅电极,由此制备获得薄膜太阳能电池。
图4是本实施例制备获得的太阳能电池的I-V曲线图,该太阳能电池的开路电压(Voc)为603mV,短路电流(Isc)为33.8mA,填充因子(FF)为67.99%,转换效率(Eff)为13.87%。
图5是本实施例制备获得的太阳能电池的剖面的SEM图,从图5中可以获知以上方法制备的太阳能电池的光吸收层具有良好的结晶状态,厚度均匀。
以上的实施例中,首先在相对较低的温度下、使用过量的硒进行硒化形成良好的铜铟镓硒半导体晶体;硒化结束后又将过量的硒蒸气抽除,然后升温至相对较高的温度开始进行硫化,避免过量的硒对硫化过程造成不利影响,此时硫的活性大大提高,硫会通过晶界,在光吸收层两侧表面处形成CIGSSe晶体,不仅让硫进入了硒缺失空位,弥补形成的铜铟镓硒晶体的缺陷,同时能够保证在对光吸收层内部的禁带宽度影响较小的情况下,提高光吸收层两侧表面的禁带宽度,达到良好的V型梯度分布,由此获得高品质的光吸收层。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (8)

1.一种薄膜太阳能电池的光吸收层的制备方法,其特征在于,包括:
应用磁控溅射工艺制备获得铜铟镓预制层;
在所述铜铟镓预制层上蒸发沉积形成硒薄膜层,硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比大于1;
将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中;
将所述铜铟镓预制层加热至第一预定温度后恒温第一预定时间;
将所述铜铟镓预制层从所述第一预定温度加热升温至第二预定温度后恒温第二预定时间,以使所述铜铟镓预制层硒化,然后从所述退火炉中抽除硒蒸气;
将所述铜铟镓预制层从所述第二预定温度加热升温至第三预定温度后恒温第三预定时间,并在所述第三预定时间内向所述退火炉中通入硫化氢气体,以使所述铜铟镓预制层硫化,制备获得铜铟镓硒硫光吸收层;
其中,在所述第一预定时间内还向所述退火炉中通入硫化氢气体;在所述第一预定时间内通入的1k Pa~2k Pa的硫化氢气体,在所述第三预定时间内通入2k Pa~4k Pa的硫化氢气体;
其中,所述第一预定温度为80℃~200℃,所述第一预定时间为1min~3min;所述第二预定温度为500℃~550℃,所述第二预定时间为0.5min~5min;所述第三预定温度为550℃~600℃,所述第三预定时间为0.5min~5min。
2.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,将所述铜铟镓预制层从室温加热至所述第一预定温度的时间为0.5min~1min,将所述铜铟镓预制层从所述第一预定温度加热升温至所述第二预定温度时间为3min~5min,将所述铜铟镓预制层从所述第二预定温度加热升温至所述第三预定温度时间为0.5min~1min。
3.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,向所述退火炉中通入硫化氢气体时,还通入氮气,所述硫化氢气体与所述氮气的摩尔比为0.04~0.1。
4.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,在恒温至所述第三预定时间结束后自然冷却至300℃ 时,先对所述退火炉的腔室进行抽真空处理然后通入氮气保护气体直至冷却室温。
5.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,所述铜铟镓预制层中,铜与铟镓之和的摩尔比为0.9~0.95,镓与铟镓之和的摩尔比为0.2~0.3。
6.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,所述硒薄膜层中的硒与铜铟镓预制层中的铜镓之和的摩尔比为1.6~2.2。
7.根据权利要求1或6所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,所述硒薄膜层的厚度为700nm~1000nm。
8.根据权利要求1所述的薄膜太阳能电池的光吸收层的制备方法,其特征在于,将沉积形成硒薄膜层后的铜铟镓预制层置于退火炉中之后,先对所述退火炉的腔室进行洗气处理然后进行抽真空处理。
CN201910873604.XA 2019-09-12 2019-09-12 薄膜太阳能电池的光吸收层的制备方法 Active CN110565060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910873604.XA CN110565060B (zh) 2019-09-12 2019-09-12 薄膜太阳能电池的光吸收层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910873604.XA CN110565060B (zh) 2019-09-12 2019-09-12 薄膜太阳能电池的光吸收层的制备方法

Publications (2)

Publication Number Publication Date
CN110565060A CN110565060A (zh) 2019-12-13
CN110565060B true CN110565060B (zh) 2021-07-16

Family

ID=68780268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910873604.XA Active CN110565060B (zh) 2019-09-12 2019-09-12 薄膜太阳能电池的光吸收层的制备方法

Country Status (1)

Country Link
CN (1) CN110565060B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171640B (zh) * 2021-11-25 2024-03-01 泰州锦能新能源有限公司 一种铜铟镓硒太阳能电池的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413097C (zh) * 2005-06-03 2008-08-20 清华大学 铜铟镓硒或铜铟镓硫或铜铟镓硒硫薄膜太阳能电池吸收层的制备方法
CN102856424A (zh) * 2011-06-30 2013-01-02 北儒精密股份有限公司 太阳能电池的制造方法
CN105097965A (zh) * 2015-07-27 2015-11-25 厦门神科太阳能有限公司 一种薄膜太阳能电池铜铟镓硒光吸收层的制备方法
CN105206707B (zh) * 2015-08-26 2017-03-29 厦门神科太阳能有限公司 一种铜铟镓硒太阳能电池光吸收层薄膜的制备方法
CN105336800B (zh) * 2015-10-28 2017-03-29 厦门神科太阳能有限公司 Cigs基薄膜太阳能电池光吸收层的制备方法
CN106449816B (zh) * 2016-09-22 2018-06-12 江苏丰远新材料科技有限公司 一种铜铟镓硒薄膜的制备方法

Also Published As

Publication number Publication date
CN110565060A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN110828602B (zh) 一种硒化锑薄膜太阳电池及其制备方法
US20050028861A1 (en) Light absorbing layer producing method
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
Maeda et al. Dependence on annealing temperature of properties of Cu2ZnSnS4 thin films prepared by sol–gel sulfurization method
KR101583026B1 (ko) Czts계 태양전지용 박막의 제조방법
KR101542343B1 (ko) 박막 태양전지 및 이의 제조방법
CN110565060B (zh) 薄膜太阳能电池的光吸收层的制备方法
CN110571155B (zh) 薄膜太阳能电池的光吸收层的制备方法
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
KR101939114B1 (ko) 셀렌화 및 황화 열처리를 통한 셀렌 및 황의 조성이 조절된 박막 태양전지 광흡수층의 제조방법 및 상기 광흡수층을 함유한 박막 태양전지
KR20100035780A (ko) 광 흡수용 화합물 박막 제조방법
KR101779508B1 (ko) 박막 태양전지 제조 장치 및 이를 이용한 열처리 공정 방법
JP2004342678A (ja) Cu(In1−xGax)Se2膜の製造方法及び太陽電池
JP2928033B2 (ja) 薄膜太陽電池の製造方法
WO2023109712A1 (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
JP2010192690A (ja) 太陽電池の製造方法
CN112736150B (zh) 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN110957393B (zh) 薄膜太阳能电池的光吸收层的制备方法
KR101482786B1 (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
CN112071941B (zh) 功能模组及其制备方法和应用
CN103268906A (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
TW201507181A (zh) 形成cigs膜之方法
KR102165789B1 (ko) 유연기판용 czts계 단일 광흡수층 제조 방법
Bosio et al. Polycrystalline Cu (InGa) Se2/CdS thin film solar cells made by new precursors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231201

Address after: Office Building, Hongda New Energy Industrial Park, Middle Section of Zhenxing Avenue, Sui County, Shangqiu City, Henan Province, 476900

Patentee after: Shangqiu Hongda photoelectric Co.,Ltd.

Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue

Patentee before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY

TR01 Transfer of patent right