CN106449816B - 一种铜铟镓硒薄膜的制备方法 - Google Patents

一种铜铟镓硒薄膜的制备方法 Download PDF

Info

Publication number
CN106449816B
CN106449816B CN201610846012.5A CN201610846012A CN106449816B CN 106449816 B CN106449816 B CN 106449816B CN 201610846012 A CN201610846012 A CN 201610846012A CN 106449816 B CN106449816 B CN 106449816B
Authority
CN
China
Prior art keywords
layer
film
indium gallium
cigs thin
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610846012.5A
Other languages
English (en)
Other versions
CN106449816A (zh
Inventor
朱延军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Feng Yuan new Mstar Technology Ltd
Original Assignee
Jiangsu Feng Yuan New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Feng Yuan New Mstar Technology Ltd filed Critical Jiangsu Feng Yuan New Mstar Technology Ltd
Priority to CN201610846012.5A priority Critical patent/CN106449816B/zh
Publication of CN106449816A publication Critical patent/CN106449816A/zh
Application granted granted Critical
Publication of CN106449816B publication Critical patent/CN106449816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及光伏薄膜材料技术领域,特别涉及一种铜铟镓硒薄膜的制备方法,在沉积钼背电极的衬底上磁控溅射形成铜铟镓硒第一预制层;在铜铟镓硒第一预制层上磁控溅射形成包含硒化物系列化合物的铜铟镓硒第二预制层;硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。本发明铜铟镓硒薄膜制备方法简单易控,制备的铜铟镓硒薄膜作为光吸收层性能良好,提高了使用该铜铟镓硒薄膜的太阳能电池的光电转换效率,增加了太阳能电池的开路电压。

Description

一种铜铟镓硒薄膜的制备方法
技术领域
本发明涉及光伏薄膜材料技术领域,特别涉及一种铜铟镓硒薄膜的制备方法。
背景技术
铜铟镓硒薄膜太阳能电池具有转化效率高、成本较低、适合大规模生产等优点。其吸收层属于Ⅰ-Ⅲ-Ⅵ族半导体材料,具有1.04~1.65e V的可调禁带宽度和高达105cm-1的吸收系数,在众多的薄膜太阳电池中,铜铟镓硒薄膜太阳能电池被认为是最有发展前途的一种。近十年间,已经成为广大科研工作者研究的热点。
金属预制层后硒化法是目前首选的铜铟镓硒薄膜制备方法。金属预制层后硒化法,首先是在背电极上按照一定比例将铜、铟、镓进行沉积形成金属预制层,然后再在硒气氛中进行高温硒化,进而形成最终比例要求的铜铟镓硒多晶薄膜。在金属预制层的制备中以磁控溅射为常用的方法,金属预制层后硒化法在大面积成膜上均匀性较好,元素的配比更加精准。
但是在现有的溅射后硒化法中,硒由上表面往下供给,由于金属前驱体薄膜中的镓和铟与硒的反应速率不同,得到的薄膜很容易出现镓在钼背电极处过多聚集的现象,会形成从薄膜表面到背面的带隙逐渐增大的单梯度分布,并且[Ga/(In+Ga)]比值在薄膜的不同位置差别太大。因此,现有的溅射后硒化法制备的铜铟镓硒薄膜,表面的带隙往往会比较低,制成的太阳电池器件由于载流子复合损失,开路电压也会减小。
发明内容
本发明的目的是提供一种铜铟镓硒薄膜的制备方法,该方法简单易控,制备的铜铟镓硒薄膜作为光吸收层性能良好。
为实现上述目的,本发明采用的技术手段为:
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)在沉积钼背电极的衬底上磁控溅射形成铜铟镓硒第一预制层;
(2)在铜铟镓硒第一预制层上磁控溅射形成包含硒化物系列化合物的铜铟镓硒第二预制层,Ga/(In+Ga)的比值与铜铟镓硒第一预制层之差为0~0.03;
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
优选地,磁控溅射前,对所用靶材进行10min预溅射。
优选地,形成铜铟镓硒第一预制层包括先形成铜镓合金层,再于铜镓合金层上形成铟金属层。
优选地,铜铟镓硒第二预制层中硒化物系列化合物包含Cu-Se、In-Se、Ga-Se、Cu-In-Se组合化合物中的一种或几种。
优选地,铜铟镓硒第二预制层Se/(Cu+In+Ga))为0.3~1.0。
优选地,溅射的铜铟镓硒第一预制层以及铜铟镓硒第二预制层各元素比满足Cu/(In+Ga)为0.7~0.9,Ga/(In+Ga)为0.3~0.4。
优选地,磁控溅射时气体压强为0.1Pa~10Pa。
优选地,硒化热处理前,在铜铟镓硒第二预制层上蒸发沉积硒形成硒层。
优选地,硒化热处理温度500℃~550℃,时间20min~60min。
优选地,硒化热处理加热过程为,先20℃/min升温至200℃,再100℃/min升温至510℃~560℃,维持2分钟,然后10℃/min降温至500℃~550℃,维持30min~60min。
相对于现有技术,本发明具有以下优点:
相对于传统溅射后硒化两步法,本发明增加了在金属预制层后增了一层包含硒化物系列化合物的铜铟镓硒第二预制层。
铜铟镓硒第一预制层内铟与其他元素反应的活性大大强于镓的反应活性,使得铜铟镓硒第一预制层内禁带宽度由靠近衬底的底部到远离衬底的顶部逐渐减小,形成梯度,使得吸收光能量范围拓宽,铜铟镓硒第一预制层利用镓、铟反应活性的自身性能差别自然地形成梯度分布的带隙,工艺简单;
由于Ga在共价结构的化合物中移动速度慢,因此铜铟镓硒第二预制层内Ga分布相对变化微小,进而使得铜铟镓硒第二预制层内带隙变化微小,禁带宽度水平可控,可以容易的实现高于铜铟镓硒第一预制层顶部的禁带宽度设置,进而实现在最终所制得的太阳能电池铜铟镓硒薄膜中,禁带宽度由钼背电极侧向缓冲层侧呈先降后升的整体变化趋势,减小电子空穴对的复合,延长了光生载流子的寿命。
因此本发明铜铟镓硒薄膜制备方法简单易控,制备的铜铟镓硒薄膜作为光吸收层性能良好,提高了使用该铜铟镓硒薄膜的太阳能电池的光电转换效率,增加了太阳能电池的开路电压。
附图说明
图1本发明制备的铜铟镓硒薄膜退火前结构示意图;
图2为本发明制备的铜铟镓硒薄膜的梯度带隙示意图;
具体实施方式
为了更好的理解本发明,下面通过实施例对本发明进一步说明,实施例只用于解释本发明,不会对本发明构成任何的限定。
本发明所用靶材为铜靶、铜镓合金靶、铟靶和镓靶(Ga2Se3)组成。
实施例1
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,磁控溅射形成铜铟镓硒第一预制层1,具体为,先通过铜镓合金靶在衬底上溅射一层280nm铜镓合金层11,再在铜镓合金层上用铟靶溅射一层400nm铟金属层12,调整溅射功率,使Cu/(In+Ga)=0.75,Ga/(In+Ga)=0.4。
(2)氩气压不变,由铜靶、铟靶和镓靶(Ga2Se3)在铜铟镓硒第一预制层上磁控溅射形成500nm铜铟镓硒第二预制层2,调整溅射功率,使Cu/(In+Ga)=0.77,Ga/(In+Ga)=0.4。
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为1013nm的硒层3;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至550℃,维持2分钟,然后10℃/min降温至540℃,维持45min。
将本实施例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压520mv,光电转换效率11.1%。
实施例2
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,磁控溅射形成铜铟镓硒第一预制层1,具体为,先通过铜镓合金靶在衬底上溅射一层315nm铜镓合金层11,再在铜镓合金层上用铟靶溅射一层421nm铟金属层12,调整溅射功率,使Cu/(In+Ga)=0.72,Ga/(In+Ga)=0.35。
(2)氩气压不变,由铜靶、铟靶和镓靶(Ga2Se3)在铜铟镓硒第一预制层上磁控溅射形成512nm铜铟镓硒第二预制层2,调整溅射功率,使Cu/(In+Ga)=0.7,Ga/(In+Ga)=0.36。
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为1105nm的硒层3;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至515℃,维持2分钟,然后10℃/min降温至510℃,维持50min。
将本实施例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压515mv,光电转换效率10.9%。
实施例3
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,磁控溅射形成铜铟镓硒第一预制层1,具体为,先通过铜镓合金靶在衬底上溅射一层285nm铜镓合金层11,再在铜镓合金层上用铟靶溅射一层370nm铟金属层12,调整溅射功率,使Cu/(In+Ga)=0.73,Ga/(In+Ga)=0.38。
(2)氩气压不变,由铜靶、铟靶和镓靶(Ga2Se3)在铜铟镓硒第一预制层上磁控溅射形成500nm铜铟镓硒第二预制层2,调整溅射功率,使Cu/(In+Ga)=0.7,Ga/(In+Ga)=0.4。
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为1000nm的硒层3;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至560℃,维持2分钟,然后10℃/min降温至550℃,维持35min。
将本实施例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压520mv,光电转换效率11.9%。
实施例4
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,磁控溅射形成铜铟镓硒第一预制层1,具体为,先通过铜镓合金靶在衬底上溅射一层315nm铜镓合金层11,再在铜镓合金层上用铟靶溅射一层405nm铟金属层12,调整溅射功率,使Cu/(In+Ga)=0.71,Ga/(In+Ga)=0.38。
(2)氩气压不变,由铜靶、铟靶和镓靶(Ga2Se3)在铜铟镓硒第一预制层上磁控溅射形成530nm铜铟镓硒第二预制层2,调整溅射功率,使Cu/(In+Ga)=0.72,Ga/(In+Ga)=0.4。
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为980nm的硒层3;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至540℃,维持2分钟,然后10℃/min降温至530℃,维持55min。
将本实施例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压512mv,光电转换效率12.1%。
实施例5
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,磁控溅射形成铜铟镓硒第一预制层1,具体为,先通过铜镓合金靶在衬底上溅射一层292nm铜镓合金层11,再在铜镓合金层上用铟靶溅射一层413nm铟金属层12,调整溅射功率,使Cu/(In+Ga)=0.8,Ga/(In+Ga)=0.38。
(2)氩气压不变,由铜靶、铟靶和镓靶(Ga2Se3)在铜铟镓硒第一预制层上磁控溅射形成515nm铜铟镓硒第二预制层2,调整溅射功率,使Cu/(In+Ga)=0.75,Ga/(In+Ga)=0.4。
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为950nm的硒层3;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至545℃,维持2分钟,然后10℃/min降温至540℃,维持50min。
将本实施例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压518mv,光电转换效率10.4%。
对比例
一种铜铟镓硒薄膜的制备方法,包括以下步骤:
(1)将沉积钼背电极的衬底放入磁控溅射腔室中,抽真空至5×10-4Pa,并打开氩气控制阀门,以在磁控溅射腔室中通入磁控溅射所需的氩气,氩气压1.0Pa下,对所用靶材进行10min预溅射,以清除靶材表面吸附的杂质颗粒。氩气压1.0Pa下,铜镓合金靶和铟靶磁控溅射形成铜铟镓硒金属1200nm预制层,使Cu/(In+Ga)=0.71,Ga/(In+Ga)=0.35。
(2)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜。
将前两步形成的预制层薄膜送入线性蒸发器中,在5×10-3Pa的真空度下,热蒸发重量为3g硒颗粒,在铜铟镓硒第二预制层上沉积硒,得到一层厚度为1015nm的硒层;之后将样品放入退火炉中,5×10-4Pa氮气的氛围中,先20℃/min升温至200℃,再100℃/min升温至550℃,维持2分钟,然后10℃/min降温至540℃,维持55min。
将对比例制备的铜铟镓硒薄膜制备成太阳能电池,在25℃、AM1.5的条件下对的电池器件进行I-V测试,测得电池开路电压450mv,光电转换效率7.2%。

Claims (6)

1.一种铜铟镓硒薄膜的制备方法,其特征在于,包括以下步骤:
(1)在沉积钼背电极的衬底上磁控溅射形成铜铟镓硒第一预制层;
(2)在铜铟镓硒第一预制层上磁控溅射形成包含硒化物系列化合物的铜铟镓硒第二预制层,Ga/(In+Ga)的比值与铜铟镓硒第一预制层之差为0~0.03;其中,铜铟镓硒第二预制层Se/(Cu+In+Ga)为0.3~1.0;溅射的铜铟镓硒第一预制层以及铜铟镓硒第二预制层各元素比满足Cu/(In+Ga)为0.75,Ga/(In+Ga)为0.4;
(3)硒化热处理前两步形成的预制层薄膜,得到铜铟镓硒薄膜;其中,硒化热处理温度550℃,时间30min~60min;硒化热处理加热过程为,先20℃/min升温至200℃,再100℃/min升温至510℃~560℃,维持2分钟,然后10℃/min降温至550℃,维持30min~60min。
2.根据权利要求1所述的铜铟镓硒薄膜的制备方法,其特征在于:磁控溅射前,对所用靶材进行10min预溅射。
3.根据权利要求1所述的铜铟镓硒薄膜的制备方法,其特征在于:形成铜铟镓硒第一预制层包括先形成铜镓合金层,再于铜镓合金层上形成铟金属层。
4.根据权利要求1所述的铜铟镓硒薄膜的制备方法,其特征在于:铜铟镓硒第二预制层中硒化物系列化合物包含Cu-Se、In-Se、Ga-Se、Cu-In-Se组合化合物中的一种或几种。
5.根据权利要求1所述的铜铟镓硒薄膜的制备方法,其特征在于:磁控溅射时气体压强为0.1Pa~10Pa。
6.根据权利要求1所述的铜铟镓硒薄膜的制备方法,其特征在于:硒化热处理前,在铜铟镓硒第二预制层上蒸发沉积硒形成硒层。
CN201610846012.5A 2016-09-22 2016-09-22 一种铜铟镓硒薄膜的制备方法 Active CN106449816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610846012.5A CN106449816B (zh) 2016-09-22 2016-09-22 一种铜铟镓硒薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610846012.5A CN106449816B (zh) 2016-09-22 2016-09-22 一种铜铟镓硒薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106449816A CN106449816A (zh) 2017-02-22
CN106449816B true CN106449816B (zh) 2018-06-12

Family

ID=58166022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610846012.5A Active CN106449816B (zh) 2016-09-22 2016-09-22 一种铜铟镓硒薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106449816B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123001A (zh) * 2017-12-25 2018-06-05 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层的制备方法
CN110565060B (zh) * 2019-09-12 2021-07-16 深圳先进技术研究院 薄膜太阳能电池的光吸收层的制备方法
CN113571594B (zh) * 2021-07-16 2023-06-16 北京交通大学 铜铟镓硒电池及其制造方法
CN115747744B (zh) * 2023-01-06 2023-04-21 中国科学院理化技术研究所 一种氧化镓铟薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964376A (zh) * 2009-08-20 2011-02-02 钰衡科技股份有限公司 薄膜太阳能电池光吸收层制程及其设备
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
CN103077980A (zh) * 2013-01-25 2013-05-01 中国农业大学 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN103474511A (zh) * 2013-09-22 2013-12-25 深圳先进技术研究院 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
US8852991B2 (en) * 2011-01-06 2014-10-07 Electronics And Telecommunications Research Institute Methods of manufacturing solar cell
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964376A (zh) * 2009-08-20 2011-02-02 钰衡科技股份有限公司 薄膜太阳能电池光吸收层制程及其设备
US8852991B2 (en) * 2011-01-06 2014-10-07 Electronics And Telecommunications Research Institute Methods of manufacturing solar cell
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
CN103077980A (zh) * 2013-01-25 2013-05-01 中国农业大学 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN103474511A (zh) * 2013-09-22 2013-12-25 深圳先进技术研究院 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺

Also Published As

Publication number Publication date
CN106449816A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN100413097C (zh) 铜铟镓硒或铜铟镓硫或铜铟镓硒硫薄膜太阳能电池吸收层的制备方法
CN106449816B (zh) 一种铜铟镓硒薄膜的制备方法
Caballero et al. CuIn1− xGaxSe2‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers
CN105655235B (zh) 一种基于连续蒸发工艺制备梯度带隙光吸收层的方法和装置
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
CN106549082B (zh) 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
CN103474511B (zh) 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
WO2012118771A2 (en) Improved thin-film photovoltaic devices and methods of manufacture
CN106229362B (zh) 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN111128747A (zh) 一种双梯度带隙cigs太阳能电池的叠层吸收层的制备方法
CN106816490A (zh) 一种碱金属元素掺杂的铜铟镓硒吸收层薄膜的制备方法
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
KR20120133342A (ko) 균일한 Ga 분포를 갖는 CIGS 박막 제조방법
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
CN102943238A (zh) 一种薄膜太阳电池的制备方法
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
CN114203842A (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
CN103346213A (zh) 一种太阳能电池吸收层的制备方法
CN103474514B (zh) 铜铟镓硒太阳能电池的制备方法
CN102943237A (zh) 铜铟镓硒薄膜太阳电池吸收层的制备方法
CN105932093B (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
CN105206707B (zh) 一种铜铟镓硒太阳能电池光吸收层薄膜的制备方法
Cui et al. Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application
CN105870254B (zh) 一种双靶直流共溅射制备铜铟镓硒吸收层的方法
CN105164820B (zh) 制造光吸收层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhu Yanjun

Inventor before: Wang Wenqing

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20180427

Address after: 223900 Heng Mountain North Road, Sihong County, Suqian, Jiangsu Province, No. 26

Applicant after: Jiangsu Feng Yuan new Mstar Technology Ltd

Address before: 523000 productivity building 406, high tech Industrial Development Zone, Songshan Lake, Dongguan, Guangdong

Applicant before: Dongguan Lianzhou Intellectual Property Operation Management Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant