CN106549082B - 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法 - Google Patents

合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法 Download PDF

Info

Publication number
CN106549082B
CN106549082B CN201510602301.6A CN201510602301A CN106549082B CN 106549082 B CN106549082 B CN 106549082B CN 201510602301 A CN201510602301 A CN 201510602301A CN 106549082 B CN106549082 B CN 106549082B
Authority
CN
China
Prior art keywords
zinc
tin
copper
sulfur film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510602301.6A
Other languages
English (en)
Other versions
CN106549082A (zh
Inventor
王书荣
李志山
蒋志
杨敏
刘涛
郝瑞亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201510602301.6A priority Critical patent/CN106549082B/zh
Publication of CN106549082A publication Critical patent/CN106549082A/zh
Application granted granted Critical
Publication of CN106549082B publication Critical patent/CN106549082B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Abstract

本发明公开了一种制备铜锌锡硫薄膜吸收层的方法,包括以下步骤:将衬底依次用去污粉、丙酮、酒精、去离子水超声清洗、并用重镉酸钾浸泡,再用去离子水超声清洗,并吹干备用;将清洗好的衬底放入磁控溅射系统沉积1μm的多层钼背电极;以Cu‑Sn合金靶和ZnS靶共溅射,预置层厚度设计为600~800nm,原子比例设计为:Cu/Zn+Sn=0.58;Zn/Sn=1.47;将制备好的预制层在氮气低温热处理,随后在高温硫化处理,自然冷却后得到铜锌锡硫薄膜吸收层。相比于传统的多靶分步溅射优点在于:只需Cu‑Sn合金靶和ZnS靶一步共溅射制备预置层,后将预置层硫化得到铜锌锡硫薄膜吸收层。

Description

合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
技术领域
本发明涉及一种铜锌锡硫薄膜吸收层的制备方法,用于制备薄膜太阳电池吸收层,属于光电材料新能源技术领域。
背景技术
目前,无毒、环境友好和原材料丰富的薄膜材料成为光伏领域的研究热点。基于Cu(In,Ga)Se2(CIGS)和CdTe的薄膜太阳电池虽然已经商业化,但由于组成元素中Se和Cd有毒,而In、Ga和Te属于稀缺元素,在自然界中的含量分别为In: 0.05ppm, Ga: 0.04ppm,Te: 0.009ppm,基于此制约着他们进一步大规模的生产。而对于新型四元化合物半导体Cu2ZnSnS4(CZTS),组成CZTS的四种素中不仅不含有毒元素和稀贵元素,而且四中元素在自然界中的含量很丰富,Cu: 50ppm, Zn: 75ppm, Sn: 2.2ppm, S: 260ppm,相对于In、Ga和Te非常丰富,且Zn、Sn和S的价格远远低于Ga和Se等元素。CZTS具有稳定的锌黄锡矿结构,是一种Ⅰ2-Ⅱ-Ⅳ-Ⅵ4族p型半导体材料,它以锡和锌替代铜铟镓硒中的镓和铟,以硫替代硒而构成。作为直接带隙半导体材料CZTS的禁带宽度为1.4~1.5 eV,接近单节太阳电池所需的最佳带隙宽度(1.45 eV),此外,该材料的吸收系数大于104 cm-1。基于此,CZTS薄膜的太阳电池其理论效率可达32.2 %,是一种有替代Cu(In,Ga)Se2(CIGS)和CdTe的新型薄膜太阳电池。
目前制备CZTS薄膜的方法主要有磁控溅射法,热蒸发法,脉冲激光沉积,溶胶凝胶法,电化学法,喷雾热解法,旋涂法等。而基于磁控溅射化合物靶制备CZTS的相对较少,2013年日本丰田研发中心分步溅射ZnS-Sn-Cu后在H2S气氛下硫化制备出7.6 %的纯CZTS薄膜太阳电池,7.6 %的效率也是目前磁控溅射纯CZTS薄膜太阳电池之最。而世界纪录纯的CZTS薄膜吸收层的太阳电池的效率为8.4%,由IBM用共蒸发法制备,同时IBM用涂覆法制备的基于CZTSSe薄膜吸收层的太阳电池效率达到12.6%,也为世界之最,虽然如此,基于CZTS薄膜吸收层的太阳电池效率距离32.2 %的理论效率还有很大的差距。本发明简化工艺步骤、降低生产成本、制备出成分可控的铜锌锡硫薄膜吸收层,且易于大规模生产,有利于该材料在薄膜太阳能电池工业中的推广与应用。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种工艺简便、成分可控、工艺流程短和可重现性好的制备方法,制备出贫铜富锌的铜锌锡硫薄膜吸收层符合高效率太阳能电池的要求。
本发明所涉及的一种铜锌锡硫薄膜吸收层的制备方法按以下步骤实施:
(1)衬底清洗:将钠钙玻璃依次用去污粉、丙酮、酒精、去离子水超声清洗、并用重铬酸钾溶液浸泡30~60min后,再用去离子水超声清洗浸泡过重铬酸钾溶液的钠钙玻璃,并用氮气吹干备用;
(2)将清洗好的钠钙玻璃放入磁控溅射系统里抽真空后升温至100~150℃烘烤30~60min,随后在钠钙玻璃上沉积1μm的多层钼背电极薄膜;
(3)铜锌锡硫预置层的制备:利用磁控溅射系统,采用射频磁控溅射技术以Cu-Zn合金靶和二元ZnS化合物靶进行共溅射,沉积600~800nm的铜锌锡硫薄膜预置层;
(4)铜锌锡硫薄膜吸收层的制备:将步骤(3)所制备铜锌锡硫薄膜预制层在氮气或氩气保护下260℃热处理30min,将其与硫粉一起放入石墨舟,然后将石墨舟放入硫化炉中,以 20 ~30℃ /min 升温速率加热硫化炉,从室温升到 560 ~ 580℃,维持 20~30 分钟,自然冷却至室温后得到铜锌锡硫薄膜吸收层。
本发明采用合金靶和化合物靶射频共溅射制备铜锌锡硫薄膜吸收层的方法中如步骤(3)所述的Cu-Sn合金靶中Cu与Sn的原子比为1.8~1.9。
本发明采用Cu-Sn合金靶和二元ZnS化合物靶射频共溅射制备铜锌锡硫薄膜吸收层的方法中如步骤(3)所述,预置层设计厚度为600~800nm,Cu、Zn和Sn的摩尔原子比例设计为:Cu/Zn+Sn=0.58;Zn/Sn=1.47;
本发明采用合金靶和化合物靶射频共溅射制备铜锌锡硫薄膜吸收层的方法中如步骤(4)所述,铜锌锡硫薄膜预制层在氮气或氩气保护下260℃热处理30min,随后将热处理过的预置层与硫粉一起放入石墨舟,最后将石墨舟放入硫化炉中,以 20~30℃ /min 升温速率加热硫化炉,从室温升到 560 ~ 580℃,维持 20~30 分钟,自然冷却至室温后得到铜锌锡硫薄膜吸收层。
附图说明
图1为实施例1和例2所制备的铜锌锡硫薄膜吸收层的XRD图;
图2为实施例1和例2所制备的铜锌锡硫薄膜吸收层的Raman图;
图3为实施例1和例2所制备的铜锌锡硫薄膜吸收层的SEM图。
表一
实施例 Cu(at%) Zn(at%) Sn(at%) S(at%) Cu/(Zn+Sn) Zn/Sn
1 22.85 13.79 11.85 51.51 0.89 1.16
2 21.96 13.42 12.78 51.84 0.84 1.05
具体实施方式
实施例1
(1)衬底清洗:将钠钙玻璃依次用去污粉、丙酮、酒精、去离子水超声清洗、重铬酸钾溶液浸泡40min,再用去离子水超声清洗浸泡过重铬酸钾溶液的钠钙玻璃,并用氮气吹干备用;
(2)将清洗好的钠钙玻璃放入磁控溅射系统里升温至150℃烘烤30min,钼靶作为靶材进行直流溅射,本底真空为5.0*10-4pa,衬底温度为160℃,起辉气压为1.6pa,功率为180W,在氩气为1.6pa时溅射15min,1.0Pa 时溅射20min,随后调节氩气为0.3pa溅射45min,按上述要求操作在钠钙玻璃上得到1μm的多层钼背电极薄膜,最后将温度升至220℃对Mo背电极进行烘烤30min;目的是让钠钙玻璃中的一部分钠原子扩散进入Mo层中。
(3)铜锌锡硫薄膜预置层的制备:以Cu-Sn合金靶(Cu和Sn原子比为1.8~1.9)和二元ZnS化合物靶作为靶材进行射频共溅射,溅射功率分别为80W和60W,本底真空为5.0*10- 4pa,衬底温度为160℃,起辉气压为1.6pa,工作压强为0.3pa,溅射时间为90min,样品台转速为7转每分钟,按上述要求操作在步骤(2)的基础上得到 600nm的铜锌锡硫薄膜预置层。
(4)铜锌锡硫薄膜吸收层的制备:将步骤3)所制备的铜锌锡硫薄膜预制层在氮气或氩气保护下260℃低温热处理30min,随后将热处理过的预置层与0.5g硫粉一起放入石墨舟,最后将石墨舟放入硫化炉中,在氮气保护下以20℃/min从室温升至580℃进行30min的高温硫化处理,自然冷却至室温将样品取出得到铜锌锡硫薄膜吸收层。
实施例2
(1)衬底清洗:将钠钙玻璃依次用去污粉、丙酮、酒精、去离子水超声清洗,并用重铬酸钾溶液浸泡40min,再用去离子水超声清洗浸泡过重铬酸钾溶液的钠钙玻璃,并用氮气吹干备用;
(2)将清洗好的钠钙玻璃放入磁控溅射系统里升温至150℃烘烤30min,钼靶作为靶材进行直流溅射,本底真空为5.0*10-4pa,衬底温度为160℃,起辉气压为1.6pa,功率为180W,在氩气为1.6pa时溅射15min,1.0Pa 时溅射20min,随后调节氩气为0.3pa溅射45min,按上述要求操作在钠钙玻璃上得到1μm的多层钼背电极薄膜,最后将温度升至220℃将Mo背电极烘烤30min;
(3)铜锌锡硫薄膜预置层的制备:以Cu-Sn合金靶(Cu和Sn原子比为1.8:1.2)和二元ZnS化合物靶作为靶材进行射频共溅射,溅射功率分别为80W和60W,本底真空为5.0*10- 4pa,衬底温度为160℃,起辉气压为1.6pa,工作压强为0.3pa,溅射时间为90min,样品台转速为7转每分钟,按上述要求操作在步骤(2)的基础上得到 600nm的铜锌锡硫薄膜预置层。
(4)铜锌锡硫薄膜吸收层的制备:将步骤3)所制备的铜锌锡硫薄预置层与0.5g硫粉一起放入石墨舟,最后将石墨舟放入硫化炉中,在氮气保护下以20℃/min从室温升至580℃进行30min的高温硫化处理,自然冷却至室温将样品取出得到铜锌锡硫薄膜吸收层。

Claims (2)

1.合金靶与硫化物共溅射制备铜锌锡硫薄膜吸收层的方法,其特征在于,包括以下步骤:
1)衬底清洗:将钠钙玻璃依次用去污粉、丙酮、酒精、去离子水超声清洗、重铬酸钾溶液浸泡30~60min,再用去离子水超声清洗浸泡过重铬酸钾溶液的钠钙玻璃,并用氮气吹干备用;
2)将清洗好的钠钙玻璃放入磁控溅射系统里升温至100~150℃烘烤30~60min,随后在钠钙玻璃上沉积1μm的多层钼背电极薄膜;
3)铜锌锡硫薄膜预制层的制备:利用磁控溅射系统,以Cu-Sn合金靶和ZnS化合物靶进行射频共溅射,沉积600~800nm的铜锌锡硫薄膜预制层;
4)铜锌锡硫薄膜吸收层的制备:将步骤3)所制备的铜锌锡硫薄膜预制层在氮气或氩气保护下260℃热处理30min,随后将热处理过的预置层与硫粉一起放入石墨舟,最后将石墨舟放入硫化炉中,以20-30℃/min升温速率加热硫化炉,从室温升到560-580℃,维持20-30分钟,自然冷却至室温后得到铜锌锡硫薄膜吸收层;
所述的Cu-Sn合金靶中Cu与Sn的原子比为1.8~1.9。
2.如权利要求1所述的合金靶与硫化物共溅射制备铜锌锡硫薄膜吸收层的方法,其特征在于所述的铜锌锡硫薄膜预制层中,所述的铜锌锡硫薄膜预置层厚度设计为600~800nm;所述的铜锌锡硫薄膜预制层中Cu、Zn和Sn摩尔原子比设计为:Cu/Zn+Sn=0.58;Zn/Sn=1.47。
CN201510602301.6A 2015-09-21 2015-09-21 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法 Expired - Fee Related CN106549082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510602301.6A CN106549082B (zh) 2015-09-21 2015-09-21 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510602301.6A CN106549082B (zh) 2015-09-21 2015-09-21 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法

Publications (2)

Publication Number Publication Date
CN106549082A CN106549082A (zh) 2017-03-29
CN106549082B true CN106549082B (zh) 2019-07-05

Family

ID=58364115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510602301.6A Expired - Fee Related CN106549082B (zh) 2015-09-21 2015-09-21 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法

Country Status (1)

Country Link
CN (1) CN106549082B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172660B (zh) * 2017-12-08 2019-11-01 华东师范大学 Czts太阳能电池制作方法
CN110034278B (zh) * 2018-01-12 2022-04-05 中南大学 一种SnS2薄膜锂电池负极、及其制备和应用
CN112563117B (zh) * 2020-12-09 2023-06-06 云南师范大学 一种具有硫组分梯度的铜锌锡硫硒薄膜的制备方法
CN114122170B (zh) * 2021-11-10 2024-01-30 云南师范大学 一种铜锌锡硫吸收层薄膜、制备及包含其的太阳电池
CN114094035B (zh) * 2021-11-16 2023-08-22 厦门大学 一种高循环稳定二次锌电池负极铝锌合金涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165748A (zh) * 2013-02-28 2013-06-19 宁波大学 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
CN103343318A (zh) * 2013-07-03 2013-10-09 深圳先进技术研究院 太阳能电池的光吸收层的制备方法
CN104779307A (zh) * 2015-04-29 2015-07-15 天津理工大学 一种铜锌锡硒太阳电池器件及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165748A (zh) * 2013-02-28 2013-06-19 宁波大学 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
CN103343318A (zh) * 2013-07-03 2013-10-09 深圳先进技术研究院 太阳能电池的光吸收层的制备方法
CN104779307A (zh) * 2015-04-29 2015-07-15 天津理工大学 一种铜锌锡硒太阳电池器件及其制备方法

Also Published As

Publication number Publication date
CN106549082A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106549082B (zh) 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
CN107871795B (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN100413097C (zh) 铜铟镓硒或铜铟镓硫或铜铟镓硒硫薄膜太阳能电池吸收层的制备方法
CN103165748A (zh) 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
CN105742412A (zh) 一种薄膜太阳能电池吸收层碱金属掺入方法
CN106449816B (zh) 一种铜铟镓硒薄膜的制备方法
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN106653897A (zh) 一种铜锌锡硫硒薄膜太阳能电池及其制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN109638096A (zh) 一种化合物半导体薄膜太阳能电池制备方法
CN105304763A (zh) 全真空法制备铜锌锡硫薄膜太阳电池的方法
CN105895735A (zh) 氧化锌靶溅射制备铜锌锡硫薄膜太阳电池的方法
CN105470113A (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
CN104716229B (zh) 铜锌锡硒薄膜太阳电池的制备方法
CN109671803A (zh) 一种薄膜太阳能电池制备方法
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
CN111223963B (zh) 一种铜铟镓硒薄膜太阳能电池大规模生产时的碱金属掺杂处理法
CN112259623B (zh) 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法
CN104051577A (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
CN105932093B (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
CN106374012B (zh) 一种简单结构制备铜锌锡硫薄膜太阳电池的方法
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN108172660B (zh) Czts太阳能电池制作方法
CN102943238A (zh) 一种薄膜太阳电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

Termination date: 20210921