CN110541157A - 一种Si衬底上外延生长GaN薄膜的方法 - Google Patents

一种Si衬底上外延生长GaN薄膜的方法 Download PDF

Info

Publication number
CN110541157A
CN110541157A CN201910849765.5A CN201910849765A CN110541157A CN 110541157 A CN110541157 A CN 110541157A CN 201910849765 A CN201910849765 A CN 201910849765A CN 110541157 A CN110541157 A CN 110541157A
Authority
CN
China
Prior art keywords
layer
temperature
growth
temperature aln
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910849765.5A
Other languages
English (en)
Inventor
钟蓉
仇成功
彭鹏
甄龙云
薛遥
李冬冬
周建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Optoelectronic Integrated Circuit Pilot Technology Research Institute Co Ltd
Wenzhou University
Original Assignee
Shaanxi Optoelectronic Integrated Circuit Pilot Technology Research Institute Co Ltd
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Optoelectronic Integrated Circuit Pilot Technology Research Institute Co Ltd, Wenzhou University filed Critical Shaanxi Optoelectronic Integrated Circuit Pilot Technology Research Institute Co Ltd
Priority to CN201910849765.5A priority Critical patent/CN110541157A/zh
Publication of CN110541157A publication Critical patent/CN110541157A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种限制GaN外延薄膜的裂纹生长、表面形貌均匀且工艺相对简单、易于实现的Si衬底上外延生长GaN薄膜的方法。采用的技术方案包括:采用MOCVD系统进行外延生长以及Si衬底上外延生长GaN薄膜的方法,其特征在于:其外延结构依次为Si衬底、预铺铝层、低温氮化铝(AlN)缓冲层、高温氮化铝(AlN)缓冲层、氮化镓铝(AlxGa1‑xN)层、氮化镓(GaN)薄膜层,其中,低温AlN缓冲层为低温AlN三维成核层,高温AlN缓冲层为高温AlN二维成核层,AlxGa1‑xN层为AlxGa1‑xN应力释放层,GaN薄膜层为最终生长层。

Description

一种Si衬底上外延生长GaN薄膜的方法
技术领域
本发明属于半导体薄膜材料技术领域,具体涉及一种硅(Si)衬底上外延生长氮化镓(GaN)薄膜的方法。
背景技术
以GaN为代表的第三代宽禁带直接带隙半导体材料是近年来国际上备受重视的新型半导体材料,其优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强和高热导率等优越性能,使其成为短波长半导体光电子器件和高频、高压、高温微电子器件制备的最优选材料。
传统该领域生长GaN薄膜的衬底大多为蓝宝石(Al2O3)、铝酸锂(LiAlO2)、碳化硅(SiC)、砷化镓(GaAs)等。其中蓝宝石和SiC衬底外延生长GaN薄膜已经非常成熟化,但是其本身的价格较高,特别是SiC价格更加昂贵,并且像蓝宝石本身散热效果不好,很难实现大尺寸外延生长,大大增加了制造成本。因此,现在通常采用Si片作为衬底上外延生长GaN薄膜,很大程度上降低了GaN薄膜的生产成本,并且可实现大尺寸,导热性好等,使其更具有市场竞争力。但由于Si和GaN之间存在较大的晶格失配(17%)、热失配(56%)以及回熔刻蚀等问题,导致GaN外延薄膜出现裂纹、表面形貌不均匀等现象。目前,Si基上外延GaN薄膜有采用处理Si表面形成多孔面进行生长;也有采用AlN/AlGaN多缓冲层结构生长、AlGaN/GaN超晶格插入层或者插入3D-GaN层等方法。但是采用以上方法外延生长GaN薄膜,生长工艺相对复杂,实现相对困难。
发明内容
本发明要解决的技术问题是提供一种限制GaN外延薄膜的裂纹生长、表面形貌均匀且工艺相对简单、易于实现的Si衬底上外延生长GaN薄膜的方法。
为解决上述问题,本发明采用的技术方案包括:采用MOCVD系统进行外延生长以及Si衬底上外延生长GaN薄膜的方法,其特征在于:其外延结构依次为Si衬底、预铺铝层、低温氮化铝(AlN)缓冲层、高温氮化铝(AlN)缓冲层、氮化镓铝(AlxGa1-xN)层、氮化镓(GaN)薄膜层,其中,低温AlN缓冲层为低温AlN三维成核层,高温AlN缓冲层为高温AlN二维成核层,AlxGa1-xN层为AlxGa1-xN应力释放层,GaN薄膜层为最终生长层。其外延生长GaN薄膜的方法包括以下步骤:
步骤1:将Si衬底在高温和H2状态下进行解吸附/脱附作用(Desorption),时间为8-15min,以起到还原Si片氧化物的作用;
步骤2:在Si衬底上进行预铺铝层,该预铺铝层起到防止SiN非晶体以及GaSi合金形成的作用;
步骤3:在步骤2的预铺铝层上生长低温AlN三维成核层,生长厚度为10-40 nm;
步骤4:在步骤3的低温AlN三维成核层上继续生长高温AlN二维成核层,生长厚度为50-200 nm;
步骤5:在步骤4的高温AlN二维成核层上继续生长AlxGa1-xN应力释放层,生长厚度为300-600 nm;
步骤6:在步骤5的AlxGa1-xN应力释放层生长GaN薄膜层,生长厚度为0.8-1.5 μm。
所述的Si衬底上外延生长GaN薄膜的方法,其特征在于:
步骤1中:所述Si衬底在反应室内的H2状态下Desorption的温度控制在920-960 ℃,时间控制在8-15 min;
步骤2中:步骤1的Desorption结束后,在H2状态下,在Si衬底上进行预铺铝层,控制温度在960-1000 ℃,反应室压力控制在40-60 mbar,通入三甲基铝(TMAl)作为Al源,时间控制在26-46s;
步骤3中:在完成步骤2的预铺铝层后进行低温AlN三维成核层的生长,在此层中采用两路氨气(NH3)分别为记为NH3_1和NH3_2。步骤为:在H2状态下,首先在980-1020 ℃,反应室压力控制在40-60 mbar,通入TMAl作为铝(Al)源、NH3作为氮(N)源,NH3_1流量为3500-4500sccm,NH3_2流量为0-1000 sccm的条件下进行生长,生长厚度为10-40 nm;
步骤4中:在步骤3的低温AlN三维成核层上继续生长高温AlN二维成核层,在此层中采用两路NH3分别记为NH3_1和NH3_2。步骤为:在H2状态下,在步骤3的低温AlN的基础上升温至1080-1120 ℃,反应室压力控制在40-60 mbar,通入TMAl作为Al源、NH3作为N源,NH3_1流量为1000-1600 sccm,NH3_2流量为1200-1800 sccm的条件下进行生长,生长厚度为50-200nm;
步骤5中:在步骤4的高温AlN二维成核层上继续生长AlxGa1-xN应力释放层,在此层中采用两路NH3分别记为NH3_1和NH3_2。步骤为:在H2状态下,在步骤4的高温AlN二维成核层的基础上降温至980-1040 ℃,反应室压力控制在40-60 mbar,通入TMAl作为Al源、TMGa作为Ga源、NH3作为N源,NH3_1流量为2300-3600 sccm,NH3_2流量为2800-4300 sccm的条件下进行生长,其中铝(Al)组分x为15-45%,生长厚度为300-600 nm;
步骤6中:在步骤5的AlxGa1-xN应力释放层上最终生长GaN薄膜层,在此层中采用两路NH3分别记为NH3_1和NH3_2。步骤为:在H2状态下,在步骤5的AlxGa1-xN应力释放层的基础上升温至1020-1050 ℃,反应室压力控制在80-200 mbar,通入TMGa作为Ga源、NH3作为N源,NH3_1流量为7000-10600 sccm,NH3_2流量为8000-12100 sccm的条件下进行生长,生长厚度为0.8-1.5 μm。
所述的Si衬底上外延生长GaN薄膜的方法,其特征在于:各层都通过金属有机化学气相沉积法进行外延生长。
本发明的Si衬底上外延生长GaN薄膜的方法优点如下:
1、本专利依托2016年国家重点研发计划项目-科技部政府间国际科技创新合作重点专项(中美):“改进纳米元器件薄膜均一性的控制策略和方法研究”的项目所支持,项目编号:2016YFE0105900。通过本专利解决了传统方法出现的GaN外延薄膜出现裂纹、表面形貌不均匀等现象问题,同时本专利的方法工艺相对简单、易于实现;
2、相对于采用单层高温AlN层,本专利采用低温AlN三维成核层+高温AlN二维成核层,提供了高密度的成核中心,降低了衬底与AlN之间的自由能,奠定了底层缓冲层的结晶质量,可以更好的为后期GaN层表面得到应力释放,提高GaN薄膜外延质量,从而简化了后期生长工艺,同时生长成本相对减少,为后期LED外延生长打下良好基础。
附图说明
下面结合说明书附图对本发明做进一步说明。
图1是本发明的外延结构的结构示意图;
图2是本发明的Si衬底上GaN薄膜的结构示意图;
图3是本发明的GaN薄膜002面X射线衍射图,显示002面FWHM值为788(arcsec);
图4是本发明GaN薄膜光学显微镜图。
具体实施方式
参照图1-4所示,本发明的Si衬底上外延生长GaN薄膜的方法,采用MOCVD系统进行外延生长。其外延结构依次为Si衬底1、预铺铝层2、低温AlN缓冲层3、高温AlN缓冲层4、AlxGa1-xN层5和GaN薄膜层6。其中:低温AlN缓冲层3为低温AlN三维成核层,高温AlN缓冲层4为高温AlN二维成核层,AlxGa1-xN层5为AlxGa1-xN应力释放层,GaN薄膜层6为最终生长层。上述,AlN即氮化铝、AlxGa1-xN即氮化镓铝、GaN即氮化镓。在生长过程中,使用TMGa(三甲基镓)、TMAl(三甲基铝)分别作为Ga源(三甲基镓高温下裂解出的Ga(镓)原子作为生成氮化物中的镓源,例如GaN)和Al源(三甲基铝高温下裂解出的Al(铝)原子作为生成氮化物中的铝源,例如AlN),NH3(氨气)作为N源(氨气在高温下裂解出的氮原子作为氮化物中的氮源),H2(氢气)作为载气进行外延生长。其外延生长GaN薄膜的方法包括以下步骤:
步骤1:将Si衬底在高温以及H2状态下Desorption(在一定温度内进行烘焙解吸),其中,Desorption的温度控制在920-960 ℃(最优为950 ℃),时间控制在8-15 (最优为10min)。以起到还原Si片氧化物的作用。
步骤2:Desorption结束后,在H2状态下,在Si衬底上进行预铺铝层,温度控制在960-1000 ℃(最优为980 ℃),反应室压力控制在40-60 mbar(最优为50 mbar),通入TMAl作为Al源,时间控制在26-46 s(最优为36 s)。通过设置预铺铝层起到防止SiN非晶体以及GaSi合金形成的作用。
步骤3:在步骤2的预铺铝层上进行低温AlN三维成核层的生长,在此层中采用两路NH3(氨气)分别为NH3_1(氨气1路)和NH3_2(氨气2路)。步骤为:在H2状态下,首先在980-1020℃(最优为1000 ℃),反应室压力控制在40-60 mbar(最优为50 mbar),通入TMAl作为Al源、NH3作为N源,NH3_1流量为3500-4500 sccm(最优为4000 sccm),NH3_2流量为0-1000 sccm(最优为0 sccm)的条件下进行生长,生长厚度为10-40 nm(最优为20 nm)。
步骤4:在步骤3的低温AlN三维成核层上继续生长高温AlN二维成核层,在此层中采用两路NH3(氨气)分别为NH3_1(氨气1路)和NH3_2(氨气2路)。步骤为:在H2状态下,在步骤3的低温AlN的基础上升温至1080-1120 ℃(最优为1100 ℃),反应室压力控制在40-60mbar(最优为50 mbar),通入TMAl作为Al源、NH3作为N源,NH3_1流量为1000-1600 sccm(最优为1350 sccm),NH3_2流量为1200-1800 sccm(最优为1650 sccm)的条件下进行生长,生长厚度为50-200 nm(最优为80 nm)。
步骤5:在步骤4的高温AlN二维成核层上继续生长AlxGa1-xN应力释放层,在此层中采用两路NH3(氨气)分别为NH3_1(氨气1路)和NH3_2(氨气2路)。步骤为:在H2状态下,在步骤4的高温AlN二维成核层的基础上降温至980-1040 ℃(最优为1000 ℃),反应室压力控制在40-60 mbar(最优为50 mbar),通入TMAl作为Al源、TMGa作为Ga源、NH3作为N源,NH3_1流量为2300-3600 sccm(最优为2920 sccm),NH3_2流量为2800-4300 sccm(最优为3580 sccm)的条件下进行生长,其中Al组分x(Al在AlGaN层中的百分比含量)为15-45%,生长厚度为300-600 nm(最优为350 nm)。
步骤6:在步骤5的AlxGa1-xN应力释放层上最终生长GaN薄膜层,在此层中采用两路NH3(氨气)分别为NH3_1(氨气1路)和NH3_2(氨气2路),步骤为:在H2状态下,在步骤5的AlxGa1-xN应力释放层的基础上升温至1020-1050 ℃(最优为1040 ℃),反应室压力控制在80-200 mbar(最优为100 mbar),通入TMGa作为Ga源、NH3作为N源,NH3_1流量为7000-10600sccm(最优为8800 sccm),NH3_2流量为8000-12100 sccm(最优为10100 sccm)的条件下进行生长,生长厚度为0.8-1.5 μm(最优为1.2 μm)。
进一步的,上述各层都通过金属有机化学气相沉积法(MOCVD)进行外延生长。金属有机化学气相沉积法(MOCVD)的作用:MOCVD法外延生长III-V族化合物半导体材料,采用III族有机物TMGa(三甲基镓)、TMAl(三甲基铝)作为III族源(Ga源、Al源)、V族元素的氢化物NH3(氨气)作为V族源(N源)。利用裂解、合成等一系列化学反应在衬底上进行气相外延生长III-V族化合物半导体薄膜材料。
上所述,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施案例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的结构及技术内容做出些许的更动或修饰为等同变化的等效实施案例,但是凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施案例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案范围。

Claims (3)

1.一种Si衬底上外延生长GaN薄膜的方法,采用MOCVD系统进行外延生长,其特征在于:其外延结构依次为Si衬底(1)、预铺铝层(2)、低温AlN缓冲层(3)、高温AlN缓冲层(4)、AlxGa1-xN层(5)、GaN薄膜层(6),其中,低温AlN缓冲层(3)为低温AlN三维成核层,高温AlN缓冲层(4)为高温AlN二维成核层,AlxGa1-xN层(5)为AlxGa1-xN应力释放层,GaN薄膜层(6)为最终生长层,其外延生长GaN薄膜的方法包括以下步骤:
步骤1:将Si衬底在高温以及H2状态下Desorption ,时间为8-15 min,以起到还原Si片氧化物的作用;
步骤2:在Si衬底上进行预铺铝层,该预铺铝层起到防止SiN非晶体以及GaSi合金形成的作用;
步骤3:在步骤2的预铺铝层上生长低温AlN三维成核层,生长厚度为10-40 nm;
步骤4:在步骤3的低温AlN三维成核层上继续生长高温AlN二维成核层,生长厚度为50-200 nm;
步骤5:在步骤4的高温AlN二维成核层上继续生长AlxGa1-xN应力释放层,生长厚度为300-600 nm;
步骤6:在步骤5的AlxGa1-xN应力释放层生长GaN薄膜层,生长厚度为0.8-1.5 μm。
2.根据权利要求1所述的Si衬底上外延生长GaN薄膜的方法,其特征在于:
步骤1中:所述Si衬底在反应室内的H2状态下Desorption的温度控制在920-960 ℃,时间控制在8-15 min;
步骤2中:步骤1的Desorption结束后,在H2状态下,在Si衬底上进行预铺铝层,温度控制在960-1000 ℃,反应室压力控制在40-60 mbar,通入TMAl作为Al源,时间控制在26-46 s;
步骤3中:在完成步骤2的预铺铝层后进行低温AlN三维成核层的生长,在此层中采用两路NH3分别为NH3_1和NH3_2,步骤为:在H2状态下,在980-1020 ℃,反应室压力控制在40-60mbar,通入TMAl作为Al源、NH3作为N源,NH3_1流量为3500-4500 sccm,NH3_2流量为0-1000sccm的条件下进行生长,生长厚度为10-40 nm;
步骤4中:在步骤3的低温AlN三维成核层上继续生长高温AlN二维成核层,在此层中采用两路NH3分别为NH3_1和NH3_2,步骤为:在H2状态下,在步骤3的低温AlN的基础上升温至1080-1120 ℃,反应室压力控制在40-60 mbar,通入TMAl作为Al源、NH3作为N源,NH3_1流量为1000-1600 sccm,NH3_2流量为1200-1800 sccm的条件下进行生长,生长厚度为50-200nm;
步骤5中:在步骤4的高温AlN二维成核层上继续生长AlxGa1-xN应力释放层,在此层中采用两路NH3分别为NH3_1和NH3_2,步骤为:在H2状态下,在步骤4的高温AlN二维成核层的基础上降温至980-1040 ℃,反应室压力控制在40-60 mbar,通入TMAl作为Al源、TMGa作为Ga源、NH3作为N源,NH3_1流量为2300-3600 sccm,NH3_2流量为2800-4300 sccm的条件下进行生长,其中Al组分x为15-45%,生长厚度为300-600 nm;
步骤6中:在步骤5的AlxGa1-xN应力释放层上最终生长GaN薄膜层,在此层中采用两路NH3分别为NH3_1和NH3_2,步骤为:在H2状态下,在步骤5的AlxGa1-xN应力释放层的基础上升温至1020-1050 ℃,反应室压力控制在80-200 mbar,通入TMGa作为Ga源、NH3作为N源,NH3_1流量为7000-10600 sccm,NH3_2流量为8000-12100 sccm的条件下进行生长,生长厚度为0.8-1.5 μm。
3.根据权利要求1或2所述的Si衬底上外延生长GaN薄膜的方法,其特征在于:各层均通过金属有机化学气相沉积法进行外延生长。
CN201910849765.5A 2019-09-09 2019-09-09 一种Si衬底上外延生长GaN薄膜的方法 Pending CN110541157A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910849765.5A CN110541157A (zh) 2019-09-09 2019-09-09 一种Si衬底上外延生长GaN薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910849765.5A CN110541157A (zh) 2019-09-09 2019-09-09 一种Si衬底上外延生长GaN薄膜的方法

Publications (1)

Publication Number Publication Date
CN110541157A true CN110541157A (zh) 2019-12-06

Family

ID=68713114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910849765.5A Pending CN110541157A (zh) 2019-09-09 2019-09-09 一种Si衬底上外延生长GaN薄膜的方法

Country Status (1)

Country Link
CN (1) CN110541157A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048403A (zh) * 2019-12-19 2020-04-21 马鞍山杰生半导体有限公司 一种氮化铝膜及其制备方法和应用
CN112687527A (zh) * 2020-12-31 2021-04-20 华南理工大学 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
CN112760611A (zh) * 2020-12-22 2021-05-07 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
CN114032611A (zh) * 2021-08-24 2022-02-11 重庆康佳光电技术研究院有限公司 一种外延层生长方法及外延层
CN114267758A (zh) * 2021-12-20 2022-04-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法
CN114388663A (zh) * 2021-12-14 2022-04-22 南昌大学 一种Si衬底无孔洞AlN薄膜的制备方法
CN114525589A (zh) * 2022-02-17 2022-05-24 上海集成电路材料研究院有限公司 利用离子注入释放单晶氮化铝应力的方法
CN115832013A (zh) * 2023-02-22 2023-03-21 江苏能华微电子科技发展有限公司 AlN缓冲复合层及其制备方法和应用、氮化镓功率器件的外延结构及其制备方法
CN116207196A (zh) * 2023-05-05 2023-06-02 江西兆驰半导体有限公司 一种led外延片及其制备方法、led芯片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037284A (zh) * 2014-06-10 2014-09-10 广州市众拓光电科技有限公司 一种生长在Si衬底上的GaN薄膜及其制备方法和应用
CN105679650A (zh) * 2016-01-15 2016-06-15 东莞市中镓半导体科技有限公司 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037284A (zh) * 2014-06-10 2014-09-10 广州市众拓光电科技有限公司 一种生长在Si衬底上的GaN薄膜及其制备方法和应用
CN105679650A (zh) * 2016-01-15 2016-06-15 东莞市中镓半导体科技有限公司 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048403A (zh) * 2019-12-19 2020-04-21 马鞍山杰生半导体有限公司 一种氮化铝膜及其制备方法和应用
CN112760611A (zh) * 2020-12-22 2021-05-07 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
US20220199395A1 (en) * 2020-12-22 2022-06-23 Wenzhou University Optimizing growth method for improving quality of mocvd epitaxial thin films
CN112760611B (zh) * 2020-12-22 2022-12-27 温州大学激光与光电智能制造研究院 一种提高mocvd外延薄膜质量的优化生长方法
CN112687527A (zh) * 2020-12-31 2021-04-20 华南理工大学 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
CN114032611A (zh) * 2021-08-24 2022-02-11 重庆康佳光电技术研究院有限公司 一种外延层生长方法及外延层
CN114388663A (zh) * 2021-12-14 2022-04-22 南昌大学 一种Si衬底无孔洞AlN薄膜的制备方法
CN114267758B (zh) * 2021-12-20 2023-08-11 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法
CN114267758A (zh) * 2021-12-20 2022-04-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法
CN114525589A (zh) * 2022-02-17 2022-05-24 上海集成电路材料研究院有限公司 利用离子注入释放单晶氮化铝应力的方法
CN114525589B (zh) * 2022-02-17 2024-03-08 上海集成电路材料研究院有限公司 利用离子注入释放单晶氮化铝应力的方法
CN115832013A (zh) * 2023-02-22 2023-03-21 江苏能华微电子科技发展有限公司 AlN缓冲复合层及其制备方法和应用、氮化镓功率器件的外延结构及其制备方法
CN116207196A (zh) * 2023-05-05 2023-06-02 江西兆驰半导体有限公司 一种led外延片及其制备方法、led芯片

Similar Documents

Publication Publication Date Title
CN110541157A (zh) 一种Si衬底上外延生长GaN薄膜的方法
JP2704181B2 (ja) 化合物半導体単結晶薄膜の成長方法
KR100901822B1 (ko) 질화갈륨 성장용 기판 및 질화갈륨 기판 제조 방법
CN109065438B (zh) AlN薄膜的制备方法
CN100592470C (zh) 硅基氮化物单晶薄膜的外延生长方法
CN108010995A (zh) 一种基于石墨烯蓝宝石衬底的高光效led芯片
RU2008130820A (ru) Способ роста кристаллов нитрида галлия, подложки из кристаллов нитрида галлия, способ получения эпитаксиальных пластин и эпитаксиальные пластины
CN213905295U (zh) 一种大尺寸SiC衬底低应力GaN薄膜
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
CN100369197C (zh) 一种利用SiN膜原位制备图形衬底的方法
CN108511322B (zh) 一种在二维石墨衬底上制备GaN薄膜的方法
CN116682910B (zh) 一种氮化镓外延片结构及其制备方法
KR20100104997A (ko) 전위 차단층을 구비하는 질화물 반도체 기판 및 그 제조 방법
CN116169222A (zh) 一种AlN模板及其制备方法
CN112687527A (zh) 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
CN114447099A (zh) 高电子迁移率晶体管的外延结构及其制备方法
CN113410352B (zh) 一种复合AlN模板及其制备方法
CN217507372U (zh) 一种Si基外延片及Si基芯片
CN113948390B (zh) 一种基于衬底背面外延层的硅基AlGaN/GaN HEMT及制备方法
CN113948391B (zh) 一种硅基AlGaN/GaN HEMT器件及制备方法
KR101006701B1 (ko) 금속실리사이드 시드층에 의한 단결정 박막 및 그 제조방법
CN110429025B (zh) 一种利用金属基底制备的氮化物外延结构及其制备方法
US11521852B2 (en) Ingan epitaxy layer and preparation method thereof
CN106384709A (zh) 一种GaN薄膜材料及其制备方法
KR101001912B1 (ko) 금속실리사이드 시드층에 의한 단결정 박막 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191206

RJ01 Rejection of invention patent application after publication