CN110518104A - 高效率1000nm红外线发光二极管及其制造方法 - Google Patents

高效率1000nm红外线发光二极管及其制造方法 Download PDF

Info

Publication number
CN110518104A
CN110518104A CN201910424575.9A CN201910424575A CN110518104A CN 110518104 A CN110518104 A CN 110518104A CN 201910424575 A CN201910424575 A CN 201910424575A CN 110518104 A CN110518104 A CN 110518104A
Authority
CN
China
Prior art keywords
layer
emitting diode
gaas
infrared light
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910424575.9A
Other languages
English (en)
Inventor
李亨株
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTOELECTRON CO Ltd
Original Assignee
PHOTOELECTRON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTOELECTRON CO Ltd filed Critical PHOTOELECTRON CO Ltd
Publication of CN110518104A publication Critical patent/CN110518104A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/305Materials of the light emitting region containing only elements of group III and group V of the periodic system characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及一种红外线发光二极管及其制造方法,更具体地,涉及一种通过应变补偿来提升发光效率的1000nm红外线发光二极管及其制造方法。

Description

高效率1000nm红外线发光二极管及其制造方法
技术领域
本发明涉及一种红外线发光二极管及其制造方法,更具体地,涉及一种通过应变补偿来提升发光效率的1000nm红外线发光二极管及其制造方法。
背景技术
红外线发光二极管使用可高质量生长的金属有机化学气相沉积(MOCVD)来制造。如图1所示,发射光波长为900nm以上的红外线二极管使用具有高晶格一致率和高成本节省(经济性)的砷化铝镓(GaAs)基板8。在GaAs基板8上生长晶格常数几乎相同的n型AlzGa1-zAs(0.1<z<0.7)下部限制层7、活性层4以及p型AlzGa1-zAs(0.1<z<0.7)上部限制层3。另外,为了使光效率最大化,在上部限制层3上生长3um以上的用于扩散电流的p型窗口层2。在p型窗口层2的上部形成上部电极1,在GaAs基板8的下部形成下部电极9。层叠在n型下部限制层7和p型上部限制层3之间的活性层4由交替重复层叠的量子势垒层5和量子阱层6组成,根据量子阱6的组成物质和组成变化,发射的红外线的波长被调节。例如,在中心波长为940nm(峰值波长处于940±10nm的波长)的红外线二极管的情况下,In0.07Ga0.93As量子阱层和GaAs量子势垒层重复层叠。
在所述红外线发光二极管的情况下,为了发射特定波长而使用的量子阱的组成物质与基板具有不同的晶格常数,因此在层叠过程中发生拉伸或者压缩应变,在重复层叠过程中所累积的应变会导致发光二极管的发光效率降低。
在申请号为10-2017-0059047的韩国专利申请中公开了如下方案:发明人为了改善量子阱的压缩应变,在中心波长为940nm的发光二极管中,将磷化镓铟(GaInP)拉伸应变补偿层插入由In0.07Ga0.93As量子阱和GaAs量子势垒组成的活性层的下部。
另外,在申请号为10-2018-0017518的韩国专利申请中公开了如下方案:发明人为了改善量子阱的压缩应变,用磷砷化镓(GaAsP)量子势垒代替GaAs量子势垒,并与In0.07Ga0.93As量子阱一起使用。
并且,在申请号为10-2018-0017518的韩国专利申请中公开了如下方案:发明人为了改善量子阱的压缩应变,将一起使用砷化铝镓(AlGaAs)缓冲层,以补偿在使用In0.07Ga0.93As量子阱和GaAsP量子势垒时发生的高的应变不均匀性差异。
然而,虽然这些方案在使用In0.07Ga0.93As量子阱的中心波长为940nm的红外线发光二极管中有效,但是在中心波长为1000nm的红外线发光二极管中效果并不理想。这是因为,与中心波长为940nm的发光二极管相比,中心波长为1000nm的发光二极管的量子阱中铟(In)的比率更高,因此量子阱具有比基板更高的压缩应变率(例如,10000ppm以上的压缩应变率,例如,In0.15Ga0.85As的压缩应变率为约+11000ppm)。
因此,一直需要一种能够改善在1000nm发光二极管中使用的铟镓砷(InGaAs)量子阱层的高压缩应变特性的新方案。
发明内容
(一)要解决的技术问题
本发明所要解决的技术问题是提供一种能够改善在中心波长为1000nm的红外线发光二极管中由于量子阱层与基板的晶格不一致导致的效率降低的问题的方法。
本发明所要解决的另一个技术问题是提供一种在中心波长为1000nm的红外线发光二极管中通过消除量子阱层与基板的晶格不一致来改善效率的发光二极管。
(二)技术方案
为了解决如上所述的技术问题,根据本发明的红外线发光二极管的特征在于,所述红外线发光二极管包括活性层,所述活性层包括:InxGa1-xAs(0.13≤x≤0.17)量子阱层,具有压缩应变;GaAs1-yPy(0.07≤y≤0.11)量子势垒层,具有拉伸应变;GaInP应变补偿层,与所述量子势垒层相比压缩应变小;以及GaAs缓冲层。
在本发明中,术语“中心波长为1000nm”表示峰值波长在1000±20nm的范围,更准确地在1000±10nm的范围。
在本发明中,术语“InGaAs”应理解为表示实质上由In、Ga以及As组成的层。
在本发明中,术语“InGaAs量子阱层”表示InxGa1-xAs(0.13≤x≤0.17)量子阱层。
在本发明中,术语“GaAsP”应理解为表示实质上由Ga、As以及P组成的层。
在本发明中,术语“GaAsP量子势垒层”表示GaAs1-yPy(0.07≤y≤0.11)量子势垒层。
在本发明中,术语“GaInP”应理解为表示实质上由In、Ga以及P组成的层。
在本发明中,术语“压缩应变(compressive strain)”表示具有比GaAs基板的角秒(arcsec)更低的角秒。
在本发明中,术语“拉伸应变(tensile strain)”表示具有比GaAs基板的角秒(arcsec)更高的角秒。
在本发明中,所述红外线发光二极管可以是中心波长为1000nm的发光二极管
虽然理论上没有被限定,但是n型限制层、p型限制层以及窗口层与GaAs基板相比其晶格常数几乎一致(例如,Al0.3Ga0.7As/GaAs:△a/a≤+400ppm[压缩应变];相对于晶格常数的变化率),而为了1000nm的中心波长的InGaAs量子阱层与GaAs基板之间的晶格常数的差较大(例如,In0.15Ga0.85As/GaAs:△a/a≥+11000ppm[压缩应变];相对于晶格常数的变化率),因此,层叠具有拉伸应变的GaAsP量子势垒层,以补偿InGaAs量子阱层的压缩应变,并且在InGaAs量子阱层与GaAsP量子势垒层之间引入拉伸应变小于GaAsP量子势垒层的GaInP应变补偿层,以改善由于引入具有相反极性的GaAsP量子势垒层而引发的缺陷来提高发光效率,由此改善发光二极管的活性层的效率,并且在GaInP应变补偿层和InGaAs量子阱层之间和/或GaInP应变补偿层与GaAsP量子势垒层之间层叠GaAs缓冲层,以防止在引入GaInP应变补偿层时在GaInP应变补偿层的生长过程中对InGaAs量子阱层和GaAsP量子势垒层产生影响,从而改善发光效率。
本发明中,优选地,所述InGaAs量子阱层和GaAsP量子势垒层交替层叠,并且GaInP应变补偿层位于InGaAs量子阱层与GaAsP量子势垒层之间,以减小交替层叠的InGaAs量子阱层与GaAsP量子势垒层之间的急剧的应变变化
本发明中,优选地,所述GaAs缓冲层层叠在InGaAs量子阱层与GaInP应变补偿层之间和/或GaAsP量子势垒层与GaInP应变补偿层之间,以防止在GaInP应变补偿层的生长过程中对InGaAs量子阱层和/或GaAsP量子势垒层产生影响。
本发明中,在中心波长为1000nm的红外线发光二极管中,InGaAs量子阱层和GaAsP量子势垒层交替层叠2次以上,优选地交替层叠5次以上,并且通过金属有机化学气相沉积(MOCVD)在所述交替层叠的InGaAs量子阱层与GaAsP量子势垒层之间依次生长并层叠有GaAs缓冲层/GaInP应变补偿层/GaAs缓冲层。
本发明的实施例中,所述中心波长为1000nm的红外线发光二极管包括:GaAs基板;第一型AlGaAs下部限制层,生长在所述基板上;活性层,生长在所述第一型AlGaAs下部限制层上;第二型AlGaAs上部限制层,生长在所述活性层上;P型窗口层;以及上部电极和下部电极,分别相接在所述p型窗口层的上表面和所述GaAs基板的下表面,其中,所述活性层中InGaAs量子阱层和GaAsP量子势垒层可以交替层叠5次以上,并且通过MOCVD在所述交替层叠的InGaAs量子阱层与GaAsP量子势垒层之间依次生长并层叠有GaAs缓冲层/GaInP应变补偿层/GaAs缓冲层。
本发明中,所述GaAs基板是用于生长下部限制层的基板,在基板的下表面可以形成下部电极。在本发明的实施例中,所述GaAs基板可以与第一型AlGaAs下部限制层类型相同,优选地,所述GaAs基板可以是n型GaAs基板。例如,所述n型GaAs基板可以具有32.9角秒(arcsec)值。
本发明中,所述AlGaAs下部限制层优选与下部GaAs基板类型相同,并且优选地,所述AlGaAs具有实质上与n型基板相同水平的角秒值,即n型基板的角秒值±0.5。本发明的优选实施例中,AlGaAs可以调节Al和Ga的比率,以使AlGaAs的角秒值具有与n型基板实质上相同的水平。例如,AlGaAs可以表示为AlzGa1-zAs,其中z可以是0.3。
本发明中,对于所述InGaAs量子阱层,InxGa1-xAs中可以使用0.13≤x≤0.17的范围,优选地,可以使用0.14≤x≤0.16的范围,以发射1000nm的中心波长,更优选地,所述InGaAs可以是In0.15Ga0.85As,并且可以根据厚度稍微进行调整。
本发明中,所述GaAsP量子势垒层具有拉伸应变,以补偿InGaAs量子阱层的压缩应变,优选地,在GaAs1-yPy中可以使用0.07≤y≤0.11的范围,更优选地,可以使用0.08≤y≤0.10的范围,以补偿应变以及表现出预定的光效率改善效果,更优选地,所述GaAsP可以是GaAs0.91P0.09,并且可以根据厚度稍微进行调整。
本发明中,所述GaInP应变补偿层可以是具有比GaAsP量子势垒层更小的拉伸应变的补偿层,优选地,在GazIn1-zP中可以是0.50≤z≤0.59,更优选地,可以是0.51≤z≤0.55,最优选地,可以是Ga0.53In0.47P,以通过消除在InGaAs量子阱层与GaAsP量子势垒层之间由于具有相反的极性而导致的缺陷来提升发光效率。
本发明中,所述GaAs层用于消除量子阱层、量子势垒层以及应变补偿层的相互作用,因此优选地,每当生长一个量子阱层、量子势垒层或应变补偿层时,GaAs层分别生长在量子阱层、量子势垒层或应变补偿层上,以防止量子阱层、量子势垒层以及应变补偿层彼此直接接触。所述GaAs层优选为非掺杂GaAs层。,
本发明的实施例中,在所述活性层中,InGaAs量子阱层和GaAsP量子势垒层可以交替重复层叠2次以上,优选地,可以交替重复层叠3次以上,更优选地,可以交替重复层叠4次以上,最优选地,可以交替重复层叠5次以上。
本发明中,所述AlGaAs上部限制层可以是p型AlGaAs上部限制层,优选地,具有与n型AlGaAs下部限制层相同的组成。
本发明的实施例中,在所述活性层中,InGaAs量子阱层和GaAsP量子势垒层可以具有5nm及10nm的厚度,并且可以具有实质上相同的厚度。另外,优选地,所述GaInP应变补偿层和GaAs缓冲层分别具有5nm及2nm的厚度。
根据本发明的一方面,发光二极管包括基板、下部限制层、包括量子势垒层和量子阱层的活性层、上部限制层以及窗口层,其特征在于,所述量子阱层具有压缩应变,所述量子势垒层具有拉伸应变,在所述量子阱层与量子势垒层之间具有应变补偿层,所述应变补偿层的拉伸应变小于所述量子势垒层的拉伸应变,并且所述应变补偿层的上表面和下表面具有GaAs缓冲层。
根据本发明的一方面,提供一种发光二极管的制造方法,所述发光二极管包括基板、下部限制层、包括量子势垒层和量子阱层的活性层、上部限制层以及窗口层,所述方法包括:重复形成具有压缩应变的量子阱层和具有拉伸应变的量子势垒层,并且在所述量子阱层与量子势垒层之间形成应变补偿层,所述应变补偿层的拉伸应变小于所述量子势垒层的拉伸应变,在所述应变补偿层的上表面和下表面形成GaAs层。
本发明中,所述应变补偿层的拉伸应变可以是量子势垒层的拉伸应变的1~50%,优选地,可以是2~40%,更优选地,可以是3~30%,最优选地,可以是5~20%。
(三)有益效果
根据本发明提供一种红外线二极管,其解决了使用具有高晶格一致率和高成本节省(经济性)的GaAs基板的中心波长为1000nm的红外线发光二极管中由量子阱层的应变导致的问题,由此提升发光效率。
本发明提供了一种高效率1000nm红外线发光二极管,在实现应变补偿的1000nm红外线发光二极管的活性层中,将具有压缩应变的InGaAs量子阱层和具有拉伸应变的GaAsP量子势垒层的高的应变不均条件,通过GaInP应变补偿层和形成在所述GaInP应变补偿层的上表面和下表面的缓冲层来改善,因此相对提升20%的效率。
根据本发明,可以解决相对于基板具有大的压缩应变的量子阱层的压缩应变导致的缺陷。
附图说明
图1示意性地示出现有技术的通过金属有机化学气相沉积()系统制造的940nm红外线发光二极管的结构,包括由InxGa1-xAs量子阱层和GaAs量子势垒层交替层叠的活性层。
图2示意性地示出根据本发明的通过MOCVD系统制造的1000nm红外线发光二极管的结构,包括由交替层叠的InxGa1-xP量子阱层和GaAsP量子势垒层以及层叠在所述量子阱层与量子势垒层之间的GaAs缓冲层/GaInP应变补偿层/GaAs缓冲层组成的活性层。
图3示出可用于图2的发光二极管的各种活性层的结构。(a)InGaAs/GaAs,(b)InGaAs/GaAsP,(c)InGaAs/GaAs/GaInP/GaAs/GaAsP。
图4示出根据(a)组成量子阱层的In0.15Ga0.85As层和(b)组成量子势垒层的GaAs1-yPy层的组成的X射线衍射(XRD)特性。
图5示出现有的InGaAs/GaAs活性层和InGaAs/GaAs1-yPy活性层的根据GaAsP组成的光致发光(PL)特性。
图6示出InGaAs/GaAs/GazIn1-zP/GaAs/GaAsP活性层的根据GaInP组成的PL特性。
图7示出具有现有的InGaAs/GaAs活性层、被比较的InGaAs/GaAsP活性层以及本发明的InGaAs/GaAs/GazIn1-zP/GaAs/GaAsP活性层的1000nm红外线发光二极管的光学特性。
附图标记说明
10:发光二极管
11:上部电极
12:窗口层
13:p型限制层
17:n型限制层
18:基板
19:下部电极
20:活性层
21:量子阱
22:量子势垒
23:应变补偿层
24:缓冲层
具体实施方式
下表面,通过实施例对本发明进行详细说明。
实施例1
图2示出通过MOCVD系统制造的1000nm红外线发光二极管的结构,包括由交替层叠的铟镓砷(InGaAs)量子阱层和磷砷化镓(GaAsP)量子势垒层以及层叠在所述量子阱层与量子势垒层之间的砷化镓(GaAs)缓冲层/磷化铟镓(InGaP)应变补偿层/GaAs结构的缓冲层组成的活性层。
如图2所示,1000nm红外线发光二极管10包括:下部的n型GaAs基板18;n型下部限制层17,生长在n型GaAs基板上并且由Al0.3Ga0.7As组成;活性层20,生长在所述n型下部限制层17上;p型上部限制层13,生长在所述活性层20上并且由Al0.3Ga0.7As组成;以及窗口层12,以5μm的厚度生长在所述p型上部限制层13上并且由Al0.2Ga0.8As组成,以获得红外线发光二极管的电流扩散效果和发射锥形区域扩大效果。在n型GaAs基板18的下部形成由金锗镍(AuGeNi)组成的下部电极19,在窗口层12上形成由金锌(AuZn)组成的上部电极11。
所述活性层20由In0.15Ga0.85As量子阱21和GaAs0.91P0.09量子势垒22重复交替5次而生长,在量子阱21与量子势垒22之间生长GaAs缓冲层24/Ga0.53In0.47P应变补偿层23/GaAs缓冲层24。所述Ga0.53In0.47P应变补偿层23具有1000ppm的拉伸应变。测量具有图2的层结构的中心波长为1000nm的二极管10的光致发光(photoluminescence,PL)强度。将测量结果表示在图7中。(InGaAs/GaInP/GaAsP0.09MQWs)
比较实施例1
制造发光二极管,在该发光二极管中,除了活性层20的结构如图3a所示由In0.15Ga0.85As量子阱层和GaAs量子势垒层交替层叠5次之外,其余的结构与实施例1的二极管10相同,并且测量PL的强度。将测量结果表示在图5a中。
比较实施例2-1
制造发光二极管,在该发光二极管中,除了活性层20的结构如图3b所示由In0.15Ga0.85As量子阱层和GaAs0.97P0.03量子势垒层交替层叠5次之外,其余的结构与实施例1的二极管10相同,并且测量PL的强度。将测量结果表示在图5b中。
比较实施例2-2
制造发光二极管,在该发光二极管中,除了活性层20的结构如图3b所示由In0.15Ga0.85As量子阱层和GaAs0.94P0.06量子势垒层交替层叠5次之外,其余的结构与实施例1的二极管10相同。并且测量PL的强度。将测量结果表示在图5b中。
比较实施例2-3
制造发光二极管,在该发光二极管中,除了活性层20的结构如图3b所示由In0.15Ga0.85As量子阱层和GaAs0.91P0.09量子势垒层交替层叠5次之外,其余的结构与实施例1的二极管10相同。并且测量PL的强度。,将测量结果表示在图5b中。
实施例2
在实施例1中,活性层20由In0.15Ga0.85As量子阱21和GaAs0.91P0.09量子势垒22重复交替5次而生长,并且在量子阱21与量子势垒22之间生长GaAs缓冲层24/Ga0.50In0.50P应变补偿层23/GaAs缓冲层24。其中,Ga0.50In0.50P应变补偿层23不具有拉伸应变。测量具有图2的层结构的中心波长为1000nm的二极管10的PL强度。将测量结果表示在图6中。
比较实施例3
在实施例1中,活性层20由In0.15Ga0.85As量子阱21和GaAs0.91P0.09量子势垒22重复交替5次而生长,并且在量子阱21与量子势垒22之间生长GaAs缓冲层24/Ga0.47In0.53P应变补偿层23/GaAs缓冲层24。其中,Ga0.47In0.53P应变补偿层具有3000ppm的压缩应变。测量中心波长为1000nm的二极管10的PL强度。将测量结果表示在图6中。
考察
图4示出根据(a)In0.15Ga0.85As量子阱层和(b)GaAs1-yPy应变调整层的XRD特性。所有层在GaAs基板上均以单一层形式生长,并且以omega-2theta条件被扫描。以GaAs基板(32.9角秒(arcsec))为基准,向更低的角秒(arcsec)方向移动时,具有压缩应变(compressive strain)特性,向更高的角秒方向移动时,具有拉伸应变(tensile strain)特性。
如图4所示,用作1000nm红外线发光二极管的光发射量子阱的In0.15Ga0.85As的情况下为32.05角秒,相对于GaAs基准(32.9角秒)具有非常大的压缩应变(+11000ppm),并且GaAs1-yPy具有拉伸应变。GaAs1-yPy表现出拉伸应变程度随着y值增加而增加的倾向,并且可知,具有GaAs0.97P0.03(-1500ppm)、GaAs0.94P0.06(-3000ppm)、GaAs0.91P0.09(-4500ppm)的拉伸应变。
如比较实施例1,当具有高压缩应变的量子阱层和没有压缩应变的GaAs量子势垒层交替层叠时,中心波长为1000nm的发光二极管的由量子阱层导致的压缩应变不会被改善,并且如图5的(a)所示,所述发光二极管具有4单元(unit)的低PL强度。
如比较实施例2-1、2-2、2-3,当具有高压缩应变的量子阱层和具有拉伸应变的GaAs1-yPy量子势垒层交替层叠时,中心波长为1000nm的发光二极管的由量子阱层导致的压缩应变通过具有拉伸应变的量子势垒层被部分改善,并且如图5的(b)所示,所述发光二极管具有5~6unit的改善的PL强度。与具有低拉伸应变的量子势垒层相比,具有高拉伸应变的量子势垒层具有相对高的PL强度。
如实施例1、实施例2以及比较实施例3,在In0.15Ga0.85As量子阱层和GaAs0.91P0.09量子势垒层交替层叠的状态下,当应变补偿层GazIn1-zP和缓冲层GaAs以GaAs/GazIn1-zP/GaAs复合层的形式位于量子阱层和量子势垒层之间时,PL特性受到应变补偿层GazIn1-zP的特性的影响。
如比较实施例3,当GazIn1-zP应变调整层以Ga0.53In0.47P的形式具有压缩应变(z=0.53)时,PL强度为6.2unit,与量子阱层和量子势垒层之间的GaAs没有GaAs/GazIn1-zP/GaAs层的情况(比较实施例2-3)相比,强度略低或几乎相同。
另一方面,如实施例1,当GazIn1-zP应变调整层以Ga0.47In0.53P的形式具有拉伸应变(z=0.47)时,PL强度为7.9unit,强度大幅增加。
另外,如实施例2,GazIn1-zP应变调整层以Ga0.50In0.50P的形式具有零应变(z=0.5)时,PL强度为7.2unit,强度大幅增加。这样的结果表示,GazIn1-zP应变调整层的拉伸应变(tensile strain)特性更均衡地调整In0.15Ga0.85As/GaAs0.91P0.09MQW中产生的应变不均条件(补偿应变条件:+6500ppm),相反地,GazIn1-zP应变调整层的压缩应变(compressivestrain)特性对这些不均条件产生较大影响,或者产生不利的影响。另外确认,即使在GazIn1-zP应变条件为零应变(zerostrain)的情况下特性显著改善,这是因为,在使用GazIn1-zP应变调整层时,In0.15Ga0.85As/GaAs0.91P0.09MQW层的不均匀性通过必须插入到界面的GaAs缓冲层而得到改善。

Claims (10)

1.一种红外线发光二极管,其特征在于,
所述红外线发光二极管包括活性层,所述活性层包括:
InxGa1-xAs量子阱层,具有压缩应变,其中0.13≤x≤0.15;
GaAs1-yPy量子势垒层,具有拉伸应变,其中0.07≤y≤0.11;
GaInP应变补偿层,与所述量子势垒层相比压缩应变小;以及
GaAs缓冲层。
2.根据权利要求1所述的红外线发光二极管,其特征在于,
所述InGaAs量子阱层和所述GaAsP量子势垒层交替层叠,
GaInP应变补偿层位于交替层叠的InGaAs量子阱层与GaAsP量子势垒层之间。
3.根据权利要求1所述的红外线发光二极管,其特征在于,
所述GaAs缓冲层层叠在InGaAs量子阱层与GaInP应变补偿层之间以及所述GaAsP量子势垒层与GaInP应变补偿层之间。
4.根据权利要求1所述的红外线发光二极管,其特征在于,
所述红外线发光二极管中,InGaAs量子阱层和GaAsP量子势垒层交替层叠,并且在交替层叠的InGaAs量子阱层与GaAsP量子势垒层之间生长GaAs缓冲层/GaInP应变补偿层/GaAs缓冲层而层叠。
5.根据权利要求1所述的红外线发光二极管,其特征在于,
所述红外线发光二极管是中心波长为1000nm的红外线发光二极管。
6.根据权利要求1至5中任一项所述的红外线发光二极管,其特征在于,
所述红外线发光二极管包括:
GaAs基板;
第一型AlGaAs下部限制层,生长在所述基板上;
活性层,生长在所述第一型AlGaAs下部限制层上;
第二型AlGaAs上部限制层,生长在所述活性层上;
P型窗口层,形成在所述上部限制层上;以及
上部电极和下部电极,分别相接在所述p型窗口层的上表面和所述GaAs基板的下表面。
7.根据权利要求1所述的红外线发光二极管,其特征在于,
所述量子阱层是In0.15Ga0.85As,
所述量子势垒层是GaAs0.91P0.09
8.根据权利要求1所述的红外线发光二极管,其特征在于,
所述GaInP应变补偿层是零应变GaInP。
9.据权利要求1所述的红外线发光二极管,其特征在于,
所述GaInP应变补偿层是GazIn1-zP,其中0.50<z<0.59。
10.根据权利要求1所述的红外线发光二极管,其特征在于,
所述GaAs是非掺杂GaAs层。
CN201910424575.9A 2018-05-21 2019-05-21 高效率1000nm红外线发光二极管及其制造方法 Pending CN110518104A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0057922 2018-05-21
KR1020180057922A KR101988932B1 (ko) 2018-05-21 2018-05-21 고효율 1000 nm 적외선 발광 다이오드 및 그 제조 방법

Publications (1)

Publication Number Publication Date
CN110518104A true CN110518104A (zh) 2019-11-29

Family

ID=66847505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910424575.9A Pending CN110518104A (zh) 2018-05-21 2019-05-21 高效率1000nm红外线发光二极管及其制造方法

Country Status (5)

Country Link
US (1) US20190355871A1 (zh)
JP (1) JP2019204951A (zh)
KR (1) KR101988932B1 (zh)
CN (1) CN110518104A (zh)
TW (1) TW202005108A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960248A (zh) * 2023-09-15 2023-10-27 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319618B2 (ja) * 2020-08-12 2023-08-02 株式会社東芝 半導体発光装置
JP7458332B2 (ja) 2021-01-15 2024-03-29 株式会社東芝 半導体発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610440B1 (ko) * 2013-11-27 2016-04-20 광전자 주식회사 다이아몬드 상 카본 보호필름을 가지는 적외선 발광다이오드 및 그 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960248A (zh) * 2023-09-15 2023-10-27 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法
CN116960248B (zh) * 2023-09-15 2024-01-19 江西兆驰半导体有限公司 一种发光二极管外延片及制备方法

Also Published As

Publication number Publication date
KR101988932B1 (ko) 2019-06-13
TW202005108A (zh) 2020-01-16
JP2019204951A (ja) 2019-11-28
US20190355871A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
CN110518104A (zh) 高效率1000nm红外线发光二极管及其制造方法
TWI502766B (zh) Iii族氮化物磊晶基板及使用該基板之深紫外發光元件
WO2001043206A1 (en) Light-emitting device
CN107046071A (zh) 基于多孔DBR的InGaN基谐振腔增强型探测器芯片
CN102136536A (zh) 应变平衡发光器件
KR101199677B1 (ko) 반도체 발광 소자 및 그 제조 방법
JP5521068B1 (ja) Iii族窒化物半導体発光素子
CA2360502A1 (en) Optical semiconductor device with multiple quantum well structure
CN111492494B (zh) 半导体发光元件及其制造方法
JPH1140850A (ja) 3族窒化物半導体素子の製造方法
CN106299058A (zh) 一种用于倒装红外发光二极管的外延片
CN106098882A (zh) 一种发光二极管外延片及其制备方法
CN105514232A (zh) 一种发光二极管外延片、发光二极管及外延片的制作方法
JP3105981B2 (ja) 半導体発光素子
CN108878607A (zh) 具有变形补偿层的红外线发光二极管及其制造方法
CN104885195B (zh) 晶体层叠结构体和发光元件
KR102018688B1 (ko) 변형 보상 양자 장벽층 및 버퍼층을 포함하는 활성층을 가지는 적외선 발광 다이오드 및 그 제조 방법
US8878232B2 (en) Method for producing group III nitride semiconductor light-emitting device
JPH06260682A (ja) 青色発光素子
US11955581B2 (en) Group III nitride semiconductor device and production method therefor
KR101051327B1 (ko) 3족 질화물 반도체 발광소자
KR101117484B1 (ko) 반도체 발광소자
CN107919415B (zh) 发光二极管及其制作方法
CN112786746A (zh) 发光二极管的外延片及其制备方法
EP1401027B1 (en) Group III nitride based light emitting diode with a superlattice structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191129