CN110512423A - 超亲水/水下超疏油改性基底材料的制备方法 - Google Patents

超亲水/水下超疏油改性基底材料的制备方法 Download PDF

Info

Publication number
CN110512423A
CN110512423A CN201910849235.0A CN201910849235A CN110512423A CN 110512423 A CN110512423 A CN 110512423A CN 201910849235 A CN201910849235 A CN 201910849235A CN 110512423 A CN110512423 A CN 110512423A
Authority
CN
China
Prior art keywords
solution
super hydrophilic
preparation
maleic anhydride
modified substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910849235.0A
Other languages
English (en)
Other versions
CN110512423B (zh
Inventor
张干伟
邢佳乐
贾新应
白仁碧
沈舒苏
周晓吉
杨晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201910849235.0A priority Critical patent/CN110512423B/zh
Publication of CN110512423A publication Critical patent/CN110512423A/zh
Application granted granted Critical
Publication of CN110512423B publication Critical patent/CN110512423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • B01D2239/0421Rendering the filter material hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种利用商品化聚合物快速简便制备超亲水/水下超疏油改性基底材料的方法。具体可以通过以下方法及步骤实现分别配制一定浓度的苯乙烯马来酸酐共聚物溶液及聚乙烯亚胺溶液;将基底材料浸入苯乙烯马来酸酐共聚物溶液一定时间,取出沥干后,浸入聚乙烯亚胺溶液中一定时间,取出沥干后,用水清洗干净即得到具有超亲水/水下超疏油特性的改性基底材料。本发明所公开的方法极大改善了基底材料的超亲水/水下超疏油改性,适用于乳化油分离。

Description

超亲水/水下超疏油改性基底材料的制备方法
技术领域
本发明属于聚合物材料领域,特别涉及一种利用商品化聚合物快速简便制备超亲水/水下超疏油改性基底材料的方法。
背景技术
增长的能源消耗对石油化工行业产生了非常大的需求,根据预测,整个世界的石油产品需求量每年已经达到880亿加仑。目前,因为世界上很多油田已经处于中后期开采阶段,因而开采的原油含水量较高;由钻井平台、油罐或者油轮运输等泄漏导致的原油污染事故每年频繁发生;石油精炼、石油加工、食用油生成、金属加工及其他相关行业都会产生大量含油废水。含油废水能够改变土壤的物理化学特性、影响饮用水的质量、破坏生态系统并且威胁人类健康。所以,开发有潜力的含油废水处理技术或者方法已经变成一个非常重要的任务。
现有技术中已经有一些传统的方法被用于油水分离,比如絮凝法、浮选法、重力分离法和离心法等。这些方法对于分离含浮油和不稳定的分散油的含油废水来说是非常有效,但对同时含有乳化油的含油废水分离效果有限,因为乳化油油滴小于10μm,在水溶液中非常稳定,传统的油水分离方法很难去除乳化油。因而,不仅能用于普通含油废水分离,而且能用于乳化油分离的先进分离材料和方法技术变得格外重要。在这些新的方法中,基于超亲水和水下超疏油材料的基底材料引起广泛的关注,因为这些材料对水有亲和力而对油有排斥力。因而能够被用于高效油水分离,特别是当孔径适合的时候,这些超亲水和水下超疏油材料可以用于乳化油分离。
普通的基底材料比如金属筛网、聚合物筛网和聚合物膜都是疏水的。已经有很多报道通过各种物理或者化学方法提供这些材料的赋予这些材料超亲水/水下超疏油性能。但是,目前的方法存在一定的缺陷,比如步骤多并且繁杂、化学条件苛刻或者改性涂层不稳定等。
综上所述,一种用于乳化油分离、制备简单,涂层稳定且具备超亲水/水下超疏油特性的改性基底材料的制备方法亟待开发。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种种用于乳化油分离、制备简单,涂层稳定且具备超亲水/水下超疏油特性的改性基底材料的制备方法,使涂层发生交联,进而固定其结构,从而实现对基底材料的亲水改性。
为实现上述目的及其他相关目的,本发明提供一种超亲水/水下超疏油改性基底材料的制备方法,其包括以下步骤:
步骤一、分别配制一定浓度的苯乙烯马来酸酐共聚物溶液及聚乙烯亚胺溶液;
步骤二、将基底材料浸入苯乙烯马来酸酐共聚物溶液一定时间,取出沥干后,浸入聚乙烯亚胺溶液中一定时间,取出沥干后,用水清洗干净即得到具有超亲水/水下超疏油特性的改性基底材料。
优选的,步骤一中,所述的苯乙烯马来酸酐共聚物溶液为是苯乙烯马来酸酐共聚物溶解在四氢呋喃、N,N-二甲基甲酰胺或丙酮溶剂中形成的溶液,其溶液浓度为0.1~30%(wt%)。
优选的,步骤一中,所述聚乙烯亚胺溶液是聚乙烯亚胺溶解在去离子水中形成的溶液,其溶液浓度为0.1~30%(wt%)。
优选的,所述的苯乙烯马来酸酐共聚物的重均分子量为500~100000g/mol。
优选的,所述的聚乙烯亚胺的重均分子量为1300~750000g/mol。
优选的,所述基底材料浸入苯乙烯马来酸酐共聚物溶液的时间为10~60s。
优选的,步骤二中,所述的材料浸入聚乙烯亚胺溶液中的时间为5~600min。
优选的,所述基底材料为不锈钢筛网、聚合物筛网、棉布或聚合物膜。
优选的,所述聚合物膜为PVDF微滤膜。
如上所述,本发明公开的超亲水/水下超疏油改性基底材料的制备方法具有以下有益效果:
1、本发明的苯乙烯马来酸酐共聚物和聚乙烯亚胺是商品化聚合物,非常容易得到;
2、本发明的基底材料涂层过程非常简单,仅仅需要两次浸涂即可完成;
3、本发明的苯乙烯马来酸酐共聚物和聚乙烯亚胺可以快速进行交联反应,因此基底材料涂层过程可以在10min内完成,是一种非常快速的涂层方式;
4、本发明的涂层聚合物苯乙烯马来酸酐共聚物和聚乙烯亚胺之间可以发生交联反应,因此所制备的涂层非常稳定;
5、本发明的苯乙烯马来酸酐共聚物和聚乙烯亚胺涂层改性基底材料具有超亲水/水下超疏油特性,可以用于各种含油废水的油水分离。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
本发明提供一种超亲水/水下超疏油改性基底材料的制备方法,其包括以下步骤:
步骤一、分别配制一定浓度的苯乙烯马来酸酐共聚物溶液及聚乙烯亚胺溶液;
步骤二、将基底材料浸入苯乙烯马来酸酐共聚物溶液一定时间,取出沥干后,浸入聚乙烯亚胺溶液中一定时间,取出沥干后,用水清洗干净即得到具有超亲水/水下超疏油特性的改性基底材料。
步骤一中,所述的苯乙烯马来酸酐共聚物溶液为是苯乙烯马来酸酐共聚物溶解在四氢呋喃、N,N-二甲基甲酰胺或丙酮溶剂中形成的溶液,其溶液浓度为0.1~30%(wt%)。
步骤一中,所述聚乙烯亚胺溶液是聚乙烯亚胺溶解在去离子水中形成的溶液,其溶液浓度为0.1~30%(wt%)。
所述的苯乙烯马来酸酐共聚物的重均分子量为500~100000g/mol。
所述的聚乙烯亚胺的重均分子量为1300~750000g/mol。
所述基底材料浸入苯乙烯马来酸酐共聚物溶液的时间为10~60s。
步骤二中,所述的材料浸入聚乙烯亚胺溶液中的时间为5~600min。
所述基底材料为不锈钢筛网、聚合物筛网、棉布或聚合物膜。
所述聚合物膜为PVDF微滤膜。
实施例1:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性不锈钢筛网的制备方法,包括以下步骤:
(1)将分子量为1600g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成2%的聚合物溶液;
(2)将分子量为10000g/mol的聚乙烯亚胺溶解在去离子水中,配制成2%的聚合物溶液;
(3)将不锈钢筛网浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留30min,取出沥干溶液后,用水清洗干净。
实施例2:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性尼龙网的制备方法,包括以下步骤:
(1)将分子量为1700g/mol的苯乙烯马来酸酐共聚物溶解在四氢呋喃中,配制成2%的聚合物溶液;
(2)将分子量为5000g/mol的聚乙烯亚胺溶解在去离子水中,配制成2%的聚合物溶液;
(3)将尼龙网浸入苯乙烯马来酸酐共聚物溶液,停留20s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留60min,取出沥干溶液后,用水清洗干净。
实施例3:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性棉布的制备方法,包括以下步骤:
(1)将分子量为1900g/mol的苯乙烯马来酸酐共聚物溶解在丙酮中,配制成2%的聚合物溶液;
(2)将分子量为25000g/mol的聚乙烯亚胺溶解在去离子水中,配制成5%的聚合物溶液;
(3)将棉布浸入苯乙烯马来酸酐共聚物溶液,停留20s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留300min,取出沥干溶液后,用水清洗干净。
实施例4:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性PVDF微滤膜的制备方法,包括以下步骤:
(1)将分子量为1700g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成2%的聚合物溶液;
(2)将分子量为25000g/mol的聚乙烯亚胺溶解在去离子水中,配制成2%的聚合物溶液;
(3)将孔径为0.45微米的PVDF微滤膜浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留600min,取出沥干溶液后,用水清洗干净。
实施例5:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的棉布的制备方法,包括以下步骤:
(1)将分子量为1600g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成0.5%的聚合物溶液;
(2)将分子量为10000g/mol的聚乙烯亚胺溶解在去离子水中,配制成0.5%的聚合物溶液;
(3)将棉布浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留5min,取出沥干溶液后,用水清洗干净。
实施例6:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性PVDF微滤膜的制备方法,包括以下步骤:
(1)将分子量为1700g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成5%的聚合物溶液;
(2)将分子量为25000g/mol的聚乙烯亚胺溶解在去离子水中,配制成0.5%的聚合物溶液;
(3)将孔径为0.45微米的PVDF微滤膜浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留10min,取出沥干溶液后,用水清洗干净。
实施例7:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性不锈钢筛网的制备方法,包括以下步骤:
(1)将分子量为1600g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成15%的聚合物溶液;
(2)将分子量为10000g/mol的聚乙烯亚胺溶解在去离子水中,配制成5%的聚合物溶液;
(3)将不锈钢筛网浸入苯乙烯马来酸酐共聚物溶液,停留50s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留30min,取出沥干溶液后,用水清洗干净。
实施例8:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性不锈钢筛网的制备方法,包括以下步骤:
(1)将分子量为80000g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成5%的聚合物溶液;
(2)将分子量为100000g/mol的聚乙烯亚胺溶解在去离子水中,配制成30%的聚合物溶液;
(3)将不锈钢筛网浸入苯乙烯马来酸酐共聚物溶液,停留5s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留5min,取出沥干溶液后,用水清洗干净。
实施例9:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性尼龙网的制备方法,包括以下步骤:
(1)将分子量为700g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成0.1%的聚合物溶液;
(2)将分子量为5000g/mol的聚乙烯亚胺溶解在去离子水中,配制成0.1%的聚合物溶液;
(3)将尼龙网浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留60min,取出沥干溶液后,用水清洗干净。
实施例10:
一种具有超亲水/水下超疏油特性并可用于含油废水处理的改性PVDF微滤膜的制备方法,包括以下步骤:
(1)将分子量为700g/mol的苯乙烯马来酸酐共聚物溶解在N,N-二甲基甲酰胺中,配制成20%的聚合物溶液;
(2)将分子量为500000g/mol的聚乙烯亚胺溶解在去离子水中,配制成20%的聚合物溶液;
(3)将PVDF微滤膜浸入苯乙烯马来酸酐共聚物溶液,停留10s,取出沥干溶液后,继续浸入聚乙烯亚胺溶液,停留10min,取出沥干溶液后,用水清洗干净。
按照以下方法对实施例制备得到的改性基质材料进行性能测试:
1、油水混合物和油水乳液配制:
在烧杯中加入25mL大豆色拉油和75mL去离子水,将混合溶液在220rpm搅拌过夜,得到油水混合物。在烧杯中加入1g大豆色拉油、少量表面活性剂和99mL去离子水,利用高速均质机搅拌30min,得到油水乳化液。
2、水接触角测试:
水接触角采用躺滴法测试,使用接触角测量仪在一个样品上测定10个点取平均值的方法表征改性前后膜表面的水接触角。
3、水下油接触角测试:
将改性基底浸入水下,油接触角采用水下油滴法测试,使用接触角测量仪在一个改性基底样品表面测定10个点取平均值的方法表征改性前后改性基底表面的水下油接触角,所用油样为正十六烷。
4、过滤通量测试:
采用抽滤法过滤油水混合物和油水乳液,测试计算过滤通量。
5、截留率测试:
通过TOC测试滤液中油含量,结合过滤前油浓度,计算油截留率。
实施例制备得到的改性基底材料和未改性基底材料的性能如下表所示:
表1:实施例中所制新型纳米二氧化硅改性PVDF微滤膜的性能
由表1看出,相对于为改性的四种基底材料,改性基底材料能够拥有超亲水/水下超疏油特性,改性基底材料可以有效地用于油水混合物分离,特别是改性聚合物膜具有非常好的乳化油分离效果。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

1.一种超亲水/水下超疏油改性基底材料的制备方法,其特征在于,包括以下步骤:
步骤一、分别配制一定浓度的苯乙烯马来酸酐共聚物溶液及聚乙烯亚胺溶液;
步骤二、将基底材料浸入苯乙烯马来酸酐共聚物溶液一定时间,取出沥干后,浸入聚乙烯亚胺溶液中一定时间,取出沥干后,用水清洗干净即得到具有超亲水/水下超疏油改性基底材料。
2.根据权利要求1所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,步骤一中,所述的苯乙烯马来酸酐共聚物溶液为苯乙烯马来酸酐共聚物溶解在四氢呋喃、N,N-二甲基甲酰胺或丙酮溶剂中形成的溶液,其溶液浓度为0.1~30%(wt)。
3.根据权利要求1所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,步骤一中,所述聚乙烯亚胺溶液是聚乙烯亚胺溶解在去离子水中形成的溶液,其溶液浓度为0.1~30%(wt%)。
4.根据权利要求1~3任一项所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,所述的苯乙烯马来酸酐共聚物的重均分子量为500~100000g/mol。
5.根据权利要求4所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,所述的聚乙烯亚胺的重均分子量为1300~750000g/mol。
6.根据权利要求5所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,步骤二中,所述基底材料浸入苯乙烯马来酸酐共聚物溶液的时间为10~60s。
7.根据权利要求6所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,步骤二中,所述的材料浸入聚乙烯亚胺溶液中的时间为5~600min。
8.根据权利要求1、2、3、5、6或7所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,所述基底材料为不锈钢筛网、聚合物筛网、棉布或聚合物膜。
9.根据权利要求8所述的超亲水/水下超疏油改性基底材料的制备方法,其特征在于,所述聚合物膜为PVDF微滤膜。
CN201910849235.0A 2019-09-09 2019-09-09 超亲水/水下超疏油改性基底材料的制备方法 Active CN110512423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910849235.0A CN110512423B (zh) 2019-09-09 2019-09-09 超亲水/水下超疏油改性基底材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910849235.0A CN110512423B (zh) 2019-09-09 2019-09-09 超亲水/水下超疏油改性基底材料的制备方法

Publications (2)

Publication Number Publication Date
CN110512423A true CN110512423A (zh) 2019-11-29
CN110512423B CN110512423B (zh) 2022-07-22

Family

ID=68631687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910849235.0A Active CN110512423B (zh) 2019-09-09 2019-09-09 超亲水/水下超疏油改性基底材料的制备方法

Country Status (1)

Country Link
CN (1) CN110512423B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804158A (zh) * 2020-06-16 2020-10-23 武汉工程大学 一种功能化苯乙烯-马来酸酐共聚物/二氧化硅复合纤维膜材料及其制备方法
CN112354376A (zh) * 2020-11-16 2021-02-12 武汉工程大学 一种改性聚丙烯油水分离膜的制备方法及其制备得到的改性聚丙烯油水分离膜
CN112376271A (zh) * 2020-11-30 2021-02-19 嘉兴学院 一种超亲水自清洁阻燃棉布的制备方法
CN112516817A (zh) * 2020-11-03 2021-03-19 贵州省材料产业技术研究院 一种聚偏氟乙烯疏松纳滤膜及其制备方法和应用
CN112717899A (zh) * 2020-12-04 2021-04-30 佛山市南海区苏科大环境研究院 一种改性聚合物膜及其制备方法和应用
CN114849489A (zh) * 2022-03-31 2022-08-05 浙江泰林生命科学有限公司 一种亲水性聚偏氟乙烯微滤膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106634275A (zh) * 2016-12-15 2017-05-10 复旦大学 一种超亲水/水下超疏油涂层材料及其制备方法
CN107096402A (zh) * 2016-02-19 2017-08-29 中国科学院苏州纳米技术与纳米仿生研究所 水中抗油吸附和粘附材料、膜、涂层及其制备方法与应用
CN107200848A (zh) * 2017-05-08 2017-09-26 苏州科技大学 一种改性纳米二氧化硅和pvdf微滤膜及其用途
CN108404684A (zh) * 2018-03-14 2018-08-17 同济大学 一种超亲水改性的抗污染pvdf分离膜的制备方法
CN109316981A (zh) * 2018-12-10 2019-02-12 天津工业大学 一种具有破乳功能的超亲水聚合物膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096402A (zh) * 2016-02-19 2017-08-29 中国科学院苏州纳米技术与纳米仿生研究所 水中抗油吸附和粘附材料、膜、涂层及其制备方法与应用
CN106634275A (zh) * 2016-12-15 2017-05-10 复旦大学 一种超亲水/水下超疏油涂层材料及其制备方法
CN107200848A (zh) * 2017-05-08 2017-09-26 苏州科技大学 一种改性纳米二氧化硅和pvdf微滤膜及其用途
CN108404684A (zh) * 2018-03-14 2018-08-17 同济大学 一种超亲水改性的抗污染pvdf分离膜的制备方法
CN109316981A (zh) * 2018-12-10 2019-02-12 天津工业大学 一种具有破乳功能的超亲水聚合物膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONEST MAKAMBA ET AL.: "Stable Permanently Hydrophilic Protein-Resistant Thin-Film Coatings on Poly(dimethylsiloxane) Substrates by Electrostatic Self-Assembly and Chemical Cross-Linking", 《ANALYTICAL CHEMISTRY》 *
张雨奇: "PVDF膜的表面智能修饰及其在油水分离中的应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
徐建 等: "苯乙烯马来酸酐共聚物化学改性研究进展", 《化学研究》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804158A (zh) * 2020-06-16 2020-10-23 武汉工程大学 一种功能化苯乙烯-马来酸酐共聚物/二氧化硅复合纤维膜材料及其制备方法
CN112516817A (zh) * 2020-11-03 2021-03-19 贵州省材料产业技术研究院 一种聚偏氟乙烯疏松纳滤膜及其制备方法和应用
CN112354376A (zh) * 2020-11-16 2021-02-12 武汉工程大学 一种改性聚丙烯油水分离膜的制备方法及其制备得到的改性聚丙烯油水分离膜
CN112376271A (zh) * 2020-11-30 2021-02-19 嘉兴学院 一种超亲水自清洁阻燃棉布的制备方法
CN112717899A (zh) * 2020-12-04 2021-04-30 佛山市南海区苏科大环境研究院 一种改性聚合物膜及其制备方法和应用
CN112717899B (zh) * 2020-12-04 2023-01-03 佛山市南海区苏科大环境研究院 一种改性聚合物膜及其制备方法和应用
CN114849489A (zh) * 2022-03-31 2022-08-05 浙江泰林生命科学有限公司 一种亲水性聚偏氟乙烯微滤膜的制备方法
CN114849489B (zh) * 2022-03-31 2023-11-28 浙江泰林生命科学有限公司 一种亲水性聚偏氟乙烯微滤膜的制备方法

Also Published As

Publication number Publication date
CN110512423B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN110512423A (zh) 超亲水/水下超疏油改性基底材料的制备方法
CN108905296B (zh) 一种具有高稳定性可生物降解的双网络油水分离网膜的制备方法
Zhang et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation
Shakiba et al. Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite
CN107158959B (zh) 一种超亲水及水下超疏油多孔复合膜制备方法
US11117100B2 (en) Hydrophilic polymer and membrane for oil-water separation and method of producing the same
CN106422421B (zh) 一种滤纸改性制备油水分离膜的方法及应用
Karimnezhad et al. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation
CN107200848B (zh) 一种改性纳米二氧化硅和pvdf微滤膜及其用途
CN109092087A (zh) 一种氧化石墨烯改性聚酰胺复合纳滤膜及其制备方法
Jing et al. A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation
CN110280149A (zh) 超亲水聚合物微孔膜、其制备方法及应用
CN104368247A (zh) 亲水-水下疏油的高分子多孔膜、其制备方法及应用
CN107082890A (zh) 聚合物混合接枝纳米二氧化硅和pvdf微滤膜及其用途
Wang et al. Biobased mussel-inspired underwater superoleophobic chitosan derived complex hydrogel coated cotton fabric for oil/water separation
CN113144921B (zh) 适用于严苛环境下油水分离的超亲水复合膜及其制备方法
CN110124527A (zh) 一种多巴胺辅助沉积制备高通量氧化石墨烯量子点复合纳滤膜的方法
Zhang et al. Facile fabrication of PVAc-g-PVDF coating on surface modified cotton fabric for applications in oil/water separation and heavy metal ions removal
CN109012217A (zh) 一种用于油水分离的pH响应性交联多层膜的制备方法
CN110227356A (zh) 一种海藻酸钙复合滤膜、及其制备方法和应用
Bowen et al. The effect of sulfonated poly (ether ether ketone) additives on membrane formation and performance
JP2011115705A (ja) 中空糸膜モジュールのろ過条件決定手法
CN107649008A (zh) 基于黏性多元胺水溶液的聚酰胺复合纳滤膜的制备方法
Zhou et al. One-pot fabrication of SF-DA@ PVDF membrane for dye adsorption and oil-in-water emulsion separation
Zhang et al. One-step rapid co-deposition of oxidant induced mussel-polyphenol coating on PVDF substrate for separating oily water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant