CN110496828B - 利用冷热形变差自破壳除垢方法、装置及打壳锤头 - Google Patents

利用冷热形变差自破壳除垢方法、装置及打壳锤头 Download PDF

Info

Publication number
CN110496828B
CN110496828B CN201910843021.2A CN201910843021A CN110496828B CN 110496828 B CN110496828 B CN 110496828B CN 201910843021 A CN201910843021 A CN 201910843021A CN 110496828 B CN110496828 B CN 110496828B
Authority
CN
China
Prior art keywords
cold
crust
expansion
shrinkage
hammer head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910843021.2A
Other languages
English (en)
Other versions
CN110496828A (zh
Inventor
胡狄辛
于目奎
曾宪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CISDI Chongqing Information Technology Co Ltd
Original Assignee
CISDI Chongqing Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CISDI Chongqing Information Technology Co Ltd filed Critical CISDI Chongqing Information Technology Co Ltd
Priority to CN201910843021.2A priority Critical patent/CN110496828B/zh
Publication of CN110496828A publication Critical patent/CN110496828A/zh
Application granted granted Critical
Publication of CN110496828B publication Critical patent/CN110496828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned

Abstract

本发明公开了一种利用冷热形变差自破壳除垢方法、装置及打壳锤头,正向热胀冷缩和逆向热缩冷胀材料,皆存于世;首先在打壳锤头表面,预先切割成,孔洞、凹槽、贯通立方块或者组合;随后嵌入冷胀热缩逆向特性材料,包括锑、铋、镓、或者它们的合金,保留的热胀冷缩锤头基底材质,与间隔嵌入的冷胀热缩材料之间,具有收缩与膨胀位移相反、存在形变差的锤头表面结构;最后锤头在冷热交替过程中,结垢物受局部收缩、膨胀的剪切应力作用,沿嵌入材料交界线,产生形变差位移裂隙,形成局部塌陷、鼓起交替区域,导致结垢壳体自破碎;等待再次执行打壳动作时,借助冲击震落、刮擦外力,将松弛的结垢壳体剥离掉,实现工作状态下的在线除垢。

Description

利用冷热形变差自破壳除垢方法、装置及打壳锤头
技术领域
本发明涉及设备制造技术领域,特别是涉及一种利用冷热形变差自破壳除垢方法、装置及打壳锤头。
背景技术
在有色和钢铁生产中,高温熔融金属液的表面会凝固一层硬壳,妨碍下料或倾倒,必须定时打掉这层硬壳,才能保持生产的正常进行。因此,打壳作业是一道重要的生产工序。表面凝固层的硬度和韧性较大,需要有快速有力的打壳机构。打壳机以压缩空气为动力,机头采用气动冲击气缸,通过气阀切换气路,完成锤头的上下运动,实现打壳功能。锤头和活塞钎杆采用螺纹或焊接连接,钎杆末端为锤头,锤头深度要到达熔融金属液内,否则易出现打壳不到位,进料口不开,倾倒不畅。
然而,锤头行程过深,在熔融金属液中浸泡时间延长,从而熔融金属液黏附物比较多,有助于“粘包”长大,随后降低打壳效率。例如,打壳气缸发出向下锤击动作时,气缸推动加上锤杆重量双力作用下,打壳效果显著;而打壳气缸发出向上提锤动作时,气缸需克服锤杆重量,提升回程较缓慢;另外,在气缸同时充气拉低管网气压,或者管接线路有泄漏发生时,打壳锤头提升动作无力,导致锤头在熔融金属液中浸泡时间更加延长,从而黏附物更多,“粘包”更容易长大,因此,亟需一种边打壳作业边消除锤头表面所产生的“粘包”的除垢方式。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种利用冷热形变差自破壳除垢方法及装置,用于解决现有技术中因打壳作业在锤头形成的粘包无法在线消除的问题。
为实现上述目的及其他相关目的,本发明提供一种利用冷热形变差自破壳除垢方法,包括:
打壳锤头表面,任意方向上间隔位置,预先切割成,点状孔洞、条纹状凹槽、贯通立方块,或者组合;
在切割成的孔洞、凹槽、立方块空间内,嵌入冷胀热缩逆向特性材料;
保留的热胀冷缩锤头基底材质,与间隔嵌入的冷胀热缩材料之间,具有收缩与膨胀位移相反、存在形变差的锤头表面结构;
粘附在锤头表面的结垢物,在冷热交替过程中,受收缩、膨胀形变差作用,沿嵌入材料交界线,产生位移裂隙,形成局部塌陷、鼓起交替区域,导致结垢壳体自破碎。
本发明的另一目的在于提供一种打壳锤头,能够自动裂解吸附在打壳锤头表面的结垢,包括:
在所述打壳锤头的表面间隔设置的多个预设形状的凹陷;
嵌入所述凹陷内的冷胀热缩材料,所述冷胀热缩材料与所述打壳锤头热胀冷缩的基底材料形成具有收缩和位移相反形变差的表面结构。
本发明还有一目的在于提供一种利用冷热形变差自破壳除垢装置,包括:
上述打壳锤头与驱动机构;其中,所述驱动机构驱动打壳锤头往返运动时借助打壳的外力剥离裂解的结垢。
如上所述,本发明的利用冷热形变差自破壳除垢方法及装置,具有以下有益效果:
本发明通过在打壳锤头表面间隔设置正向热胀冷缩材料和逆向热缩冷胀材料,在打壳锤头冷热交替过程中反向内应力,凹陷膨胀引起粘附的结垢物鼓起与基地材料收缩引起粘附的结垢物塌陷致使所述打壳锤头表面沿嵌入材料交界线产生位移裂缝,自然裂解凝结的结垢壳体,直到下次打壳动作时借助冲击震落、刮擦外力剥离松弛的结垢物,实现了工作状态下的在线除垢;相比密实结垢壳体随后清理容易得多,具有机理简单、破碎效率高、除垢方便的特点。
附图说明
图1显示为本发明提供的一种打壳锤头从挂料薄壳到粘包的流程图;
图2显示为本发明提供的一种打壳锤头表面切割示意图;
图3显示为本发明提供的一种打壳锤头表面凹陷嵌入逆向特性的冷胀热缩材料示意图;
图4显示为本发明提供的一种打壳锤头表面相反形变差引起裂隙示意图;
图5显示为本发明提供的一种打壳锤头表面嵌入冷胀热缩材料于贯通立方块内示意图;
图6显示为本发明提供的一种打壳锤头表面形成局部塌陷、鼓起交替区域示意图;
图7显示为本发明提供的一种利用冷热形变差自破壳除垢方法流程图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
在以下描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本申请的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。例如,第一转向摆动可以被称作第二转向摆动,并且类似地,第二转向摆动可以被称作第一转向摆动,而不脱离各种所描述的实施例的范围。
锤头(打壳锤头)在打壳作业时,会穿过高温熔融金属液的表面凝固硬壳层,深入到熔融金属液内,使打壳锤头不断地被黏附。究其原因,打壳锤头行程太深,并且在高温熔融金属液中浸泡时间过长,从而熔融黏附物比较多,有助于“粘包”长大,降低其后打壳效率,所以必须定期对打壳锤头进行更换。
请参阅图1,为本发明提供的一种打壳锤头从挂料薄壳到粘包的流程图,分别显示打壳锤头表面从无结垢、轻微结垢、中度结垢和重度结垢的效果流程图;新锤头投入打壳作业后,打壳锤头每打一次壳,粘一层熔融黏附物,一开始是轻微结垢;每一层黏附物,将导致打壳锤头结垢长大一圈,逐渐中度结垢;形成大型“粘包”后,重度结垢将无法再有效执行打壳、开孔作业。
为了防止熔融黏附物逐渐增多,形成“粘包”,请参阅图7,为本发明提供的一种利用冷热形变差自破壳除垢方法流程图,详述如下:
步骤S1,在打壳锤头表面,任意方向上间隔位置,预先切割成,点状孔洞、条纹状凹槽、贯通立方块,或者组合;
步骤S2,在切割成的孔洞、凹槽、立方块空间内,嵌入冷胀热缩逆向特性材料;
采用切割方式在所述打壳锤头的表面间隔设置多个预设形状的凹陷,该预设形状包括孔洞、凹槽、立方块、多边形或其组合,例如,点状孔洞、条纹状凹槽、贯通立方块等,只要满足预设形状的凹陷和打壳锤头基底材料之间间隔设置即可,以确保两种不同材料之间冷热交替过程中有反向内应力。沿着垂头表面的切割方向包括平行、垂直、倾斜于打壳钎杆和打壳锤头中心轴线的一种或多种形式;如图2所示,所述打壳锤头包括六角铁杆与削尖锤头,其中,削尖锤头设置在六角铁杆下端,利用其尖锐锤头打壳,而在削尖锤头表面分割凹陷,如图2所示,例如,图中A形为平行于中心轴线和竖直倾斜于中心轴线的开槽,图中B形为环式倾斜于中心轴线的开槽,开槽内C形、D形、E形为垂直于中心轴线的直角形、半圆形、多边形凹槽形式。
步骤S3,保留的热胀冷缩锤头基底材质,与间隔嵌入的冷胀热缩材料之间,具有收缩与膨胀位移相反、存在形变差的锤头表面结构;
众所周知,如果物体所受外界压力不变,大多数物体的体积都随温度的升高而增大,即热胀冷缩现象。但与大多数物质的性质相反,所述冷胀热缩逆向特性材料包括锑、铋、镓或其合金。
如图3所示,为本发明提供的一种打壳锤头表面凹陷嵌入逆向特性的冷胀热缩材料示意图,在凹陷空间内嵌入锑、铋、镓、或者它们的合金的冷胀热缩逆向特性材料,图3中以锑铋合金材质为例,分别显示以三角形、半圆形、立方块的形态嵌入锑铋合金材质,由于凹陷内嵌入的锑铋合金材质与打壳锤头表面的基底材料为间隔设置,构成冷胀热缩的逆向特性材料,与周边相邻的热胀冷缩锤头基底材质,间隔混搭在打壳锤头的表面。即热胀冷缩、冷胀热缩材料相互交织在一起的非均匀表面。
其中,打壳锤头在打壳动作时,金属液粘附在打壳锤头的表面形成结垢物。
步骤S4,粘附在锤头表面的结垢物,在冷热交替过程中,受收缩、膨胀形变差作用,沿嵌入材料交界线,产生位移裂隙,形成局部塌陷、鼓起交替区域,导致结垢壳体自破碎;
即,当所述打壳锤头热冷交替时,所述凹陷嵌入的材料膨胀引起粘附的结垢物鼓起与基底材料收缩引起粘附的结垢物塌陷致使所述打壳锤头表面的结垢物沿嵌入材料交界线产生位移裂缝,直至再次打壳时借助外力剥离所述结垢物。其中,打壳锤头表面基底材料与嵌入材料之间在热冷交替中产生了收缩和位移相反形变差,由于嵌入材料间隔设置在基底材料上从而导致吸附的结垢物沿嵌入材料交界线产生位移裂缝(松弛的结垢物)。
具体地,打壳锤头作为打壳工具,完成作业后,部分热态的高温熔融金属液,会粘附在锤头表面,结垢物初始还具有一定的流动性,在提锤等待下一次打壳过程中,随着在空气中暴露时间延续,而逐渐冷却、凝结、形成薄壳。
结垢物由热转冷时,凝结形成薄壳过程中,黏结在锤头表面基底上的粘附物,随锤头钢材质,发生收缩位移量,变得更加密实,很难再清除掉。
众所周知,温度与位移变化量关系描述,可用公式ΔL=L×ΔT×α表达,其中ΔL是变化尺寸,L是原长度,ΔT是温差,α是线膨胀系数。
以凹槽形式举例说明:锤头钢材质Q235-B,热膨胀系数取1.2×10-5/℃,如果直径100mm为假设原长度计算值;从高温800℃冷却到100℃,降温700℃;钢理论收缩位移量=100mm×700℃×1.2×10-5/℃=0.84mm,收缩形成的塌陷区域收缩位移量Ⅰ记为-0.84mm;
相邻间隔的冷胀热缩逆向特性材料,假如切割凹槽单侧深度10mm,环状槽嵌入双侧深度也就为20mm,原长度计算值即20mm;锑冷膨胀系数取1.05×10-5/℃;锑环理论膨胀位移量=20mm×700℃×1.05×10-5/℃=0.147mm,锑环膨胀位移量Ⅱ记为+0.147mm;
虽然凹槽内嵌入了锑材料外环20mm,但凹槽处内芯剩余钢(100mm-20mm)冷却后还要收缩,内芯剩余钢理论收缩位移量=80mm×700℃×1.2×10-5/℃=0.672mm,内芯剩余钢收缩位移量记Ⅲ为-0.672mm;
因此,嵌入有冷胀热缩逆向锑特性材料部位,其最终理论膨胀量=凹槽嵌入锑环膨胀位移量Ⅱ+内芯剩余钢收缩位移量记Ⅲ=+0.147mm+(-0.672mm)=-0.525mm,鼓起区域收缩位移量记Ⅳ为-0.525mm。
综上所述,锤头结垢物由热转冷时,凝结形成薄壳后,鼓起区域收缩位移量记Ⅳ为-0.525mm,塌陷区域收缩位移量Ⅰ记为-0.84mm,鼓起与塌陷区域之间高度差Δ=鼓起区域收缩位移量Ⅳ-塌陷区域收缩位移量Ⅰ=-0.525mm-(-0.84mm)=Δ0.375mm。
计算表明凹槽形式,即便凹槽内嵌入冷胀热缩逆向锑特性材料,实际上锤头基底材质和间隔嵌入了材料的区域,还是会冷却收缩,两者位移方向相同,但相对位移量存在差异Δ0.375mm。
如图4所示,为本发明提供的一种锤头表面相反形变差引起裂隙示意图,为图3中不同形状的凹陷打壳锤头在形成结垢后的不同状态图,相对于锤头基底材质而言,结垢物由热转冷时,冷却凝结形成薄壳过程中,薄壳产生收缩位移较大,形成局部塌陷;
相邻凹槽内嵌入冷胀热缩逆向锑特性材料部位,薄壳产生收缩位移较小,局部鼓起,相对间隔混搭的非均匀锤头表面,形成塌陷、鼓起交替区域,沿嵌入条纹交界线,剪切应力堆积,引起形变差裂隙,导致冷凝薄壳自破碎。
在本实施例中看,相比结合人工振打、超声清洗或化学腐蚀等其它手段,本发明中的结垢壳体裂解,随后清理工作要方便得多。
再以贯通立方块形式举例说明:如图5所示,为本发明提供的一种锤头表面嵌入冷胀热缩材料于贯通立方块内示意图,嵌入冷胀热缩材料于贯通立方块内示意图所示,沿锤头表面纵向(平行)、横向(垂直)或斜向方向将冷胀热缩材料贯入该立方块凹陷内,继续按找上述假设条件计算,冷胀热缩逆向特性材料,贯通嵌入锤头深度假如还是100mm,锑冷膨胀系数取1.05×10-5/℃,锑理论极大膨胀位移量=100mm×700℃×1.05×10-5/℃=0.735mm,锑立方块的鼓起区域位移量Ⅴ记为+0.735mm,此时无凹槽内芯剩余钢理论收缩位移量Ⅲ;
计算表明,锤头基底冷却收缩和间隔嵌入材料冷却膨胀,两者位移方向相反,相对位移量存在最大差异:鼓起与塌陷区域之间最大高度差Δ=锑立方块的鼓起区域位移量Ⅴ-塌陷区域收缩位移量Ⅰ=0.735mm-(-0.84mm)=Δ1.575mm。
如图6所示,为本发明提供的一种锤头表面形成局部塌陷、鼓起交替区域示意图,任意间隔混搭的非均匀锤头表面,锤头基底材质和间隔嵌入材料特征逆向,两者在冷热交替过程中,收缩与膨胀位移方向会相反,相对位移量存在差异,形变差引起裂隙,形成局部塌陷、鼓起交替区域,容易导致冷凝薄壳自破碎,预裂解处理为后续除垢创造了有利条件。
在本实施例中,首先,在打壳锤头表面,预先切割成孔洞、凹槽、贯通立方块或者组合等的凹陷(区);其次,在凹陷内嵌入冷胀热缩逆向特性材料,包括锑、铋、镓、或者它们的合金,保留的热胀冷缩锤头基底材质,与间隔嵌入的冷胀热缩材料之间,具有收缩与膨胀位移相反、存在形变差的锤头表面结构;最后,打壳锤头在冷热交替过程中,结垢物受局部收缩、膨胀的剪切应力作用,沿嵌入材料交界线,产生形变差位移裂隙,形成局部塌陷、鼓起交替区域,导致结垢壳体自破碎;等待再次执行打壳动作时,借助冲击震落、刮擦外力,将所述结垢物壳体剥离掉,实现工作状态下的在线除垢。
在一实施例中,一种打壳锤头,能够自动裂解吸附在打壳锤头表面的结垢,包括:
在所述打壳锤头的表面间隔设置的多个预设形状的凹陷;
嵌入所述凹陷内的冷胀热缩材料,所述冷胀热缩材料与所述打壳锤头热胀冷缩的基底材料形成具有收缩和位移相反形变差的表面结构;
当所述打壳锤头热冷交替时,所述凹陷嵌入的材料膨胀引起粘附的结垢物鼓起与基底材料收缩引起粘附的结垢物塌陷致使所述打壳锤头表面的结垢物沿嵌入材料交界线产生位移裂缝裂解吸附的结垢。
在另一实施例中,所述冷胀热缩包括锑、铋、镓或其合金。
在另一实施例中,所述预设形状包括孔洞、凹槽、立方块、多边形或其组合。
在另一实施例中,所述凹陷利用切割形成。
在另一实施例中,所述凹陷沿所述打壳锤头中心轴线的垂直方向、倾斜方向或/和平行方向切割。
具体地,通过在打壳锤头表面间隔设置冷胀热缩材料,使其与锤头表面为热胀冷缩的基底材料形成具有收缩和位移相反形变差的表面结构,正如上述实施例记载,当所述打壳锤头完成打壳动作进入高温熔融金属液后,部分金属液吸附在打壳锤头表面,在提锤等待下一次打壳过程中,随着在空气中暴露时间延续,而逐渐冷却、凝结、形成薄壳(结垢物);打壳锤头结垢物由热转冷时,所述凹陷嵌入的热胀热缩材料因温度降低膨胀引起粘附的结垢物鼓起,基底内热胀冷缩的材料因温度降低收缩引起粘附的结垢物塌陷,致使所述打壳锤头表面的结垢物沿嵌入材料交界线产生位移裂缝从而裂解吸附的结垢,即冷热形变差自破壳。
在其他实施例中,本发明提供还一种利用冷热形变差自破壳除垢装置,包括:
在所述打壳锤头的表面间隔设置的多个预设形状的凹陷;
嵌入所述凹陷内的冷胀热缩材料,所述冷胀热缩材料与所述打壳锤头热胀冷缩的基底材料形成具有收缩和位移相反形变差的表面结构;
当所述打壳锤头由热态变为冷态时,所述凹陷嵌入的材料膨胀引起粘附的结垢物鼓起与基底材料收缩引起粘附的结垢物塌陷致使所述打壳锤头表面的结垢物沿嵌入材料交界线产生位移裂缝以裂解吸附的结垢;
打壳锤头与驱动机构;所述驱动机构驱动打壳锤头往返运动时借助打壳的外力剥离裂解的结垢。
驱动机构可为打壳气缸、打壳液压缸或其它动力机构,例如,采用主供气压力约为6~8Bar(巴)打壳气缸,全程气动驱动控制,气控二位五通阀安装在竖立打壳缸的上端盖,形成阀缸一体型。
在本实施例中,由于打壳锤头和破壳除垢装置与上述破壳除垢方法的实施方式、具体技术细节及技术效果相同,在此不在一一赘述。
综上所述,本发明通过在锤头表面间隔设置正向热胀冷缩材料和逆向热缩冷胀材料,在锤头打壳冷热交替过程中反向内应力,凹陷膨胀引起粘附的结垢物鼓起与基地材料收缩引起粘附的结垢物塌陷致使所述锤头表面沿嵌入材料交界线产生位移裂缝,自然裂解凝结的结垢壳体,直到下次打壳动作时借助冲击震落、刮擦外力剥离松弛的结垢物,实现了工作状态下的在线除垢;相比密实结垢壳体随后清理容易得多,具有机理简单、破碎效率高、除垢方便的特点。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

1.一种利用冷热形变差自破壳除垢方法,其特征在于,包括:
打壳锤头表面,任意方向上间隔位置,预先切割成,点状孔洞、条纹状凹槽、贯通立方块,或者组合;
在切割成的孔洞、凹槽、立方块空间内,嵌入冷胀热缩逆向特性材料;
保留的热胀冷缩锤头基底材质,与间隔嵌入的冷胀热缩材料之间,具有收缩与膨胀位移相反、存在形变差的锤头表面结构;
粘附在锤头表面的结垢物,在冷热交替过程中,受收缩、膨胀形变差作用,沿嵌入材料交界线,产生位移裂隙,形成局部塌陷、鼓起交替区域,导致结垢壳体自破碎。
2.根据权利要求1所述的利用冷热形变差自破壳除垢方法,其特征在于,所述任意方向上间隔位置,预先切割成,点状孔洞、条纹状凹槽、贯通立方块或者组合,其切割方向,包括平行、垂直、倾斜与打壳锤头中心轴线。
3.根据权利要求1所述的利用冷热形变差自破壳除垢方法,其特征在于,所述嵌入冷胀热缩逆向特性材料,包括锑、铋、镓、或者它们的合金,构成冷胀热缩的逆向特性材料,与周边相邻的热胀冷缩锤头基底材质,间隔混搭的锤头表面。
4.根据权利要求1所述的利用冷热形变差自破壳除垢方法,其特征在于,所述收缩与膨胀位移相反、存在形变差的锤头表面结构,当嵌入冷胀热缩逆向特性材料时,锤头基底材质和间隔嵌入材料特征逆向,两者在冷热交替过程中,位移方向相反,形变差引起裂隙,导致冷凝薄壳自破碎。
5.一种打壳锤头,其特征在于,包括:
在所述打壳锤头的表面间隔设置的多个预设形状的凹陷;
嵌入所述凹陷内的冷胀热缩材料,所述冷胀热缩材料与所述打壳锤头热胀冷缩的基底材料形成具有收缩和位移相反形变差的表面结构。
6.根据权利要求5所述的打壳锤头,其特征在于,所述冷胀热缩材料包括锑、铋、镓或其合金。
7.根据权利要求5所述的打壳锤头,其特征在于,所述预设形状包括孔洞、凹槽、立方块、多边形或其组合。
8.根据权利要求5或7所述的打壳锤头,其特征在于,所述凹陷采用切割方式形成。
9.一种利用冷热形变差自破壳除垢装置,其特征在于,包括:采用权利要求5至8中任一所述的打壳锤头与驱动机构。
CN201910843021.2A 2019-09-06 2019-09-06 利用冷热形变差自破壳除垢方法、装置及打壳锤头 Active CN110496828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910843021.2A CN110496828B (zh) 2019-09-06 2019-09-06 利用冷热形变差自破壳除垢方法、装置及打壳锤头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910843021.2A CN110496828B (zh) 2019-09-06 2019-09-06 利用冷热形变差自破壳除垢方法、装置及打壳锤头

Publications (2)

Publication Number Publication Date
CN110496828A CN110496828A (zh) 2019-11-26
CN110496828B true CN110496828B (zh) 2023-08-15

Family

ID=68591389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910843021.2A Active CN110496828B (zh) 2019-09-06 2019-09-06 利用冷热形变差自破壳除垢方法、装置及打壳锤头

Country Status (1)

Country Link
CN (1) CN110496828B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238130B (zh) * 2019-05-27 2020-09-11 陈成龙 一种椭形石料风化层流水线温差粉碎装置及使用方法
CN111377146A (zh) * 2020-03-21 2020-07-07 王海龙 一种复合泡沫包装盒
CN113714258B (zh) * 2021-09-01 2023-01-24 中虹建设有限公司 一种基于绿色施工的建筑垃圾生态环保处理设备

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108791A (ja) * 1988-10-18 1990-04-20 Fujita Corp 弾性膨張体を用いた破砕方法
CA2310206A1 (en) * 2000-05-24 2001-11-24 Georges-Aime Bergeron Hammer head having a deformable sriking surface
JP2003253008A (ja) * 2002-03-04 2003-09-10 Gunze Ltd 生分解性熱収縮材
WO2004088001A1 (en) * 2003-04-03 2004-10-14 Alcan International Limited Method and apparatus for dispersing alumina in a molten electrolyte contained in an aluminum reduction cell
JP2005063886A (ja) * 2003-08-19 2005-03-10 Okamoto Ind Inc 発熱性ゴムシート及びその製造方法
KR20070013343A (ko) * 2007-01-09 2007-01-30 주식회사 지앤지테크놀러지 냉각장치와 고정브레이커를 이용한 지하수 심정 청소장치및 청소방법
KR101301047B1 (ko) * 2013-02-26 2013-08-28 곽은구 슬래그 팽창붕괴가 없는 슬래그 골재 제조방법
JP2016011236A (ja) * 2014-06-30 2016-01-21 AvanStrate株式会社 ガラス基板の製造方法
CN105880011A (zh) * 2016-06-08 2016-08-24 安徽开发矿业有限公司 一种清理强磁机介质盒内顽固杂质的方法
CN106824927A (zh) * 2016-12-21 2017-06-13 濮阳市顺康石油工程技术有限公司 一种烧结法清垢新工艺及其装置
CN107497793A (zh) * 2017-09-30 2017-12-22 中冶赛迪技术研究中心有限公司 一种铝槽打壳锤头超声振动清洗装置及方法
CN108820235A (zh) * 2018-08-31 2018-11-16 许国武 一种基于热胀冷缩清理镜头的火灾航拍设备
CN108916530A (zh) * 2018-09-20 2018-11-30 重庆共启科技有限公司 一种自清洁管道
CN109253321A (zh) * 2018-09-20 2019-01-22 重庆共启科技有限公司 一种抗菌自清洁ppr管材
CN210676219U (zh) * 2019-09-06 2020-06-05 中冶赛迪重庆信息技术有限公司 利用冷热形变差自破壳除垢装置及打壳锤头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325941A (ja) * 2004-05-14 2005-11-24 Tokai Rubber Ind Ltd 車両用制振装置
JP2006061966A (ja) * 2004-08-30 2006-03-09 Japan Atom Energy Res Inst fs(フェムト秒)域極短パルスkW級高平均出力レーザーを用いて鋼鉄及びステンレス鋼を含む合金鋼鉄の冷間加工に伴う応力腐食割れを防止する方法
FI122703B (fi) * 2006-12-14 2012-05-31 Foster Wheeler Energia Oy Likaantuvan pinnan ravistuslaite
US20100132747A1 (en) * 2008-12-01 2010-06-03 Ken Smith Thermal De-Scaling Surfaces With Cryogenic Liquids And Gases
DE102010004723A1 (de) * 2010-01-15 2011-07-21 Wacker Neuson SE, 80809 Bohr- und/oder Schlaghammer mit Freikonvektions-Kühlung
US9408428B2 (en) * 2010-12-23 2016-08-09 Gaudet Machine Works Inc. Force limiting device
US9192981B2 (en) * 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
CN106076980B (zh) * 2016-06-01 2019-07-16 京东方科技集团股份有限公司 一种清洁设备及清洁方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108791A (ja) * 1988-10-18 1990-04-20 Fujita Corp 弾性膨張体を用いた破砕方法
CA2310206A1 (en) * 2000-05-24 2001-11-24 Georges-Aime Bergeron Hammer head having a deformable sriking surface
JP2003253008A (ja) * 2002-03-04 2003-09-10 Gunze Ltd 生分解性熱収縮材
WO2004088001A1 (en) * 2003-04-03 2004-10-14 Alcan International Limited Method and apparatus for dispersing alumina in a molten electrolyte contained in an aluminum reduction cell
JP2005063886A (ja) * 2003-08-19 2005-03-10 Okamoto Ind Inc 発熱性ゴムシート及びその製造方法
KR20070013343A (ko) * 2007-01-09 2007-01-30 주식회사 지앤지테크놀러지 냉각장치와 고정브레이커를 이용한 지하수 심정 청소장치및 청소방법
KR101301047B1 (ko) * 2013-02-26 2013-08-28 곽은구 슬래그 팽창붕괴가 없는 슬래그 골재 제조방법
JP2016011236A (ja) * 2014-06-30 2016-01-21 AvanStrate株式会社 ガラス基板の製造方法
CN105880011A (zh) * 2016-06-08 2016-08-24 安徽开发矿业有限公司 一种清理强磁机介质盒内顽固杂质的方法
CN106824927A (zh) * 2016-12-21 2017-06-13 濮阳市顺康石油工程技术有限公司 一种烧结法清垢新工艺及其装置
CN107497793A (zh) * 2017-09-30 2017-12-22 中冶赛迪技术研究中心有限公司 一种铝槽打壳锤头超声振动清洗装置及方法
CN108820235A (zh) * 2018-08-31 2018-11-16 许国武 一种基于热胀冷缩清理镜头的火灾航拍设备
CN108916530A (zh) * 2018-09-20 2018-11-30 重庆共启科技有限公司 一种自清洁管道
CN109253321A (zh) * 2018-09-20 2019-01-22 重庆共启科技有限公司 一种抗菌自清洁ppr管材
CN210676219U (zh) * 2019-09-06 2020-06-05 中冶赛迪重庆信息技术有限公司 利用冷热形变差自破壳除垢装置及打壳锤头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
5机架冷连轧动态变规格逆流调节的非线性全量算法;毛尚伟;于目奎;毛迅;;冶金自动化(第06期);43-47 *

Also Published As

Publication number Publication date
CN110496828A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110496828B (zh) 利用冷热形变差自破壳除垢方法、装置及打壳锤头
Sooraj et al. Fine finishing of internal surfaces using elastic abrasives
TWI633949B (zh) 製造無縫複合管狀產品之方法,及管狀组件
CN210676219U (zh) 利用冷热形变差自破壳除垢装置及打壳锤头
EP2884635A2 (en) Abrasive cleaning of inner cooled generator coils
EP3589439A1 (en) Additive manufacturing
JP6447626B2 (ja) 押出材の押出方法
CN100523391C (zh) 动力锤装置
EP0288450B1 (en) Apparatus and method used in making wire and similar elongate members and wire made using same
JP2010512249A (ja) 粉末金属鍛造品とその製造方法及び製造装置
EP1288394A1 (en) Method and device for removing part of concrete structure
TW201345685A (zh) 易碎片狀工作物之裁切方法及裝置
WO2017163161A1 (en) A finisher die assembly and a forging process to make a pinion drive, and a pinion drive
WO2013152250A1 (en) Liquid drop peening method and apparatus therefor
JP6717142B2 (ja) 押出プレス
CN1231318C (zh) 槽型引锭头的修复方法
CN106513550A (zh) 锻造工作夹片热挤压通孔的预锻工艺
WO2008136515A1 (ja) 金属材料の面取り装置及び面取り方法
US20160069388A1 (en) Thrust ring and method of manufacturing or refurbishing a thrust ring
KR20140141282A (ko) 대형 파이프 이음용 대형 플랜지의 제조방법
CN216831500U (zh) 一种加气混凝土砖胚料翻转时垫体抹油装置
WO2000067946A1 (en) Automated apparatus for fracturing risers from castings within a mold
CN210996859U (zh) 基于冷作硬化效应的冲扭断管装置
JP3339665B2 (ja) ワークの鋳バリ除去装置
CN206296413U (zh) 一种墩头模具中的除渣机构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 401329 No. 5-6, building 2, No. 66, Nongke Avenue, Baishiyi Town, Jiulongpo District, Chongqing

Applicant after: MCC CCID information technology (Chongqing) Co.,Ltd.

Address before: Building 1, No. 11, Huijin Road, North New District, Yubei District, Chongqing

Applicant before: CISDI CHONGQING INFORMATION TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant