CN110474023A - 一种纤维状镍铋电池及其制备方法 - Google Patents

一种纤维状镍铋电池及其制备方法 Download PDF

Info

Publication number
CN110474023A
CN110474023A CN201910665249.7A CN201910665249A CN110474023A CN 110474023 A CN110474023 A CN 110474023A CN 201910665249 A CN201910665249 A CN 201910665249A CN 110474023 A CN110474023 A CN 110474023A
Authority
CN
China
Prior art keywords
nickel
bismuth
carbon nano
battery
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910665249.7A
Other languages
English (en)
Other versions
CN110474023B (zh
Inventor
彭慧胜
王梦莹
解松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201910665249.7A priority Critical patent/CN110474023B/zh
Publication of CN110474023A publication Critical patent/CN110474023A/zh
Application granted granted Critical
Publication of CN110474023B publication Critical patent/CN110474023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • H01M4/29Precipitating active material on the carrier by electrochemical methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/022Electrodes made of one single microscopic fiber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于纤维状电池技术领域,具体为一种纤维状镍铋电池及其制备方法。本发明在取向碳纳米管纤维上原位电化学沉积铋和还原氧化石墨烯的三维复合材料作为负极,将还原氧化石墨烯‑镍‑氧化镍的复合材料裹进碳纳米管纤维中作为正极,最后组装为纤维状镍铋电池。该纤维状电池具有高能量密度、高功率密度和高安全性;其能量密度为43.35 Wh/kg或者26.01 mWh/cm3,功率密度为6600 W/kg或者3.96 W/cm3,循环1万圈后,仍有96%的容量保持。本发明以水溶液为电解质易于实现工业放大以解决纤维状电子器件在实际使用中安全稳定性差、能量密度低等问题。本发明为制备高性能的水系纤维状电池提供了一种新的途径。

Description

一种纤维状镍铋电池及其制备方法
技术领域
本发明属于纤维状电池技术领域,具体涉及一种纤维状镍铋电池及其制备方法。
背景技术
随着可穿戴电子设备、信息技术、物联网的不断发展,纤维状能量储存器件得到了广泛的关注和快速的发展。对于纤维状能量储存器件的实际应用而言,高能量密度、功率密度和安全性是三个关键因素。比如,随着更多数量的新型的可穿戴电子设备被整合到电子织物中,能量储能器件也得相应地具备高的能量密度和功率密度才能满足其能量需求。纤维状能量储存器件通常被缝到衣服中,因此在使用过程中必须具备高的安全性。
目前,纤维状能量储存器件主要包括纤维状超级电容器和纤维状电池两大类。其中,虽然纤维状超级电容器具备较高功率密度和安全性,但是能量密度较低;纤维状电池,比如锂离子纤维状电池尽管具有较高的能量密度,但是功率密度较低,且大多采用传统的有机电解液体系,这决定了其在可穿戴应用时面临了很大的安全风险。因此,制备同时具备高能量密度、功率密度和安全性的纤维状能量储存器件仍然面临很大的挑战。
发明内容
本发明的目的是提供一种同时具备高能量密度、功率密度和高安全性的纤维状镍铋电池及其制备方法。
本发明提供的纤维状镍铋电池,以具有三维结构的还原氧化石墨烯-铋-碳纳米管纤维为负极,以具有分层导电结构的还原氧化石墨烯-镍-氧化镍碳纳米管纤维为正极;通过匹配正负极容量,最终得到性能稳定的纤维状镍铋电池。
本发明所述的纤维状镍铋电池的制备方法,具体步骤如下。
第一、还原氧化石墨烯-铋-碳纳米管纤维负极的制备
通过化学气相沉积法合成可纺的碳纳米管阵列,催化剂使用Fe (1~2nm)/ Al2O3 (10±2 nm),碳源为乙烯,气相载体为氩气和氢气的混合气体。随后,从碳纳米管阵列中拉出取向碳纳米管薄膜,叠加铺排于玻璃基底上,最后纺成取向碳纳米管纤维;
用Hummer法制备氧化石墨烯。在烧杯中加入体积浓度为0.01 ~ 0.09 mg/mL的氧化石墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1 ~0.5mol/L,在磁力搅拌器上搅拌成溶液后,加入一定量的五水硝酸铋(Bi(NO3)3·5H2O)(10 ~50mmol/L),用NaOH溶液调节PH至5~6,得到电镀液;
以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞-氧化汞电极为参比电极,以及上述制备的溶液作为电镀液进行恒电压电镀。电镀电压为-0.9V~-1.6V之间,电镀时间为1~ 10min。将电镀后得到的还原氧化石墨烯-铋-碳纳米管纤维在去离子水中浸泡除去表面电解液后,在热台上烘干。
第二、还原氧化石墨烯-镍-氧化镍碳纳米管纤维正极的制备
通过湿化学溶胶凝胶法制备氧化镍。在烧杯中加入体积浓度为0.5 ~ 1.5 mg/mL的氧化石墨烯水溶液,加入氧化镍,使其浓度为1 ~ 5mg/mL,在40~60 ℃超声10~30 min。然后加入一定量(与上述溶液体积比为1:100 ~ 1:400)的95%水合肼,在40~60 ℃下继续搅拌8~12h。将上述混合溶液离心,得到的沉淀物用去离子水和乙醇清洗多次,在40~60 ℃真空干燥箱中过夜得到还原氧化石墨烯-氧化镍复合物。将上述得到的复合物在400 ~600 ℃管式炉中氩气环境下退火1 ~ 5 h,得到还原氧化石墨烯-镍-氧化镍复合物;
将上述得到的复合物(5 ~ 15 mg)溶解在乙醇中(1 ~ 5 mL),在40~60 ℃下超声10~30min。将上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来后得到还原氧化石墨烯-镍-氧化镍碳纳米管纤维。
第三、纤维状镍铋电池的制备
以上述制备的还原氧化石墨烯-铋-碳纳米管纤维为负极,还原氧化石墨烯-镍-氧化镍碳纳米管纤维为正极进行匹配,并以氢氧化钾水溶液为电解质,组装得到纤维状镍铋电池。
步骤一中,优选氧化石墨烯水溶液浓度为0.02~0.05 mg/mL,更优选为0.03 mg/mL;优选乙二胺四乙酸二钠盐浓度为0.1~0.2mol/L,更优选为0.1mol/L;优选Bi(NO3)3·5H2O的浓度为10~100 mmol/L,更优选为50 mmol/L;优选溶液PH为4~7,更优选PH为5;优选取向碳纳米管纤维为工作电极;优选恒电压电镀法电镀电压为-1.2V ~-1.5V,更优选电镀电压为-1.4V;优选恒电压电镀时间为2 ~ 5 min,更优选电镀时间为5 min。
步骤二中,优选氧化石墨烯水溶液浓度为0.5~ 1.0 mg/mL,更优选为1.0 mg/mL;优选氧化镍浓度为1 ~ 2mg/mL,更优选为1.5 mg/mL;优选95%水合肼体积比为1:100 ~ 1:300,更优选为1:200;优选退火温度为500 ~600 ℃,更优选为600 ℃;优选退火时间为1 ~2 h,更优选为1h;优选乙醇中复合物浓度为4 ~ 8mg/mL,更优选为5mg/mL。
本发明中,由于采用电化学共沉积法,得到的负极材料还原氧化石墨烯-铋-碳纳米管纤维具备精细三维结构,大大提高了电子的传递效率和离子扩散速度。
本发明中,由于采用部分热还原的方法,得到的正极材料还原氧化石墨烯-镍-氧化镍纳米管纤维具有多级导电结构,进一步促进了碳纳米管纤维与活性材料之间的电子传输效率的提高;并且由于还原氧化石墨烯的引入,一方面提高了导电性能,另一方面也提高了活性材料与导电材料之间的接触面积,从而提高了活性材料的利用率。
本发明中,以氢氧化钾溶液为电解液,纤维状镍铋电池的的能量密度高达43.35Wh/kg或者26.01mWh/cm3(根据正负极活性材料的质量总和,纤维总体积来计算),这大约是商业薄片锂离子电池的两倍;功率密度高达6600 W/kg或者3.96 W/cm3,比超级电容器的功率密度还要高。此外,该纤维状镍铋电池具有极高的循环稳定性,充放电循环1万圈后仍有96%的能量保持。
附图说明
图1为纤维状镍铋电池示意图。
图2为还原氧化石墨烯-铋-碳纳米管纤维负极的制备过程示意图。
图3为还原氧化石墨烯-铋-碳纳米管纤维负极放电过程中电子传输和离子扩散示意图。
图4为负极纤维截面SEM照片。
图5为还原氧化石墨烯-镍-氧化镍复合物照片。其中,(a)为SEM照片,(b)为TEM照片。
图6为氧化镍、还原氧化石墨烯-氧化镍和还原氧化石墨烯-镍-氧化镍复合物的XRD图。
图7为铋SEM照片、含不同浓度氧化石墨烯溶液的电镀液得到的纤维负极的充放电性能图。
图8为还原氧化石墨烯-铋-碳纳米管纤维在不同电流密度下充放电性能图,含不同浓度氧化石墨烯溶液的电镀液得到的纤维负极的倍率性能。
图9为铋-碳纳米管纤维和还原氧化石墨烯-铋-碳纳米管纤维的循环稳定性能图。
图10为氧化镍、还原氧化石墨烯-氧化镍和还原氧化石墨烯-镍-氧化镍-碳纳米管纤维在5 A/g电流密度下的充放电性能图。
图11为还原氧化石墨烯-镍-氧化镍-碳纳米管纤维在不同电流密度下的充放电性能图,氧化镍、还原氧化石墨烯-氧化镍和还原氧化石墨烯-镍-氧化镍-碳纳米管纤维电极的倍率性能图。
图12为还原氧化石墨烯-镍-氧化镍-碳纳米管纤维电极的循环稳定性能图。
图13为纤维状镍铋电池在不同电压范围下的循环伏安曲线图,正负极纤维的充放电匹配示意图。
图14为纤维状镍铋电池在不同电流密度下的充放电曲线图。
图15为纤维状镍铋电池的循环稳定性示意图。
具体实施方式
(1)取向碳纳米管纤维的制备。
通过化学气相沉积法合成碳纳米管阵列,催化剂使用Fe (1~2nm)/ Al2O3 (10±2nm),碳源为乙烯,气相载体为氩气和氢气的混合气体。随后,从碳纳米管阵列中拉出取向碳纳米管薄膜,叠加铺排于玻璃基底上,最后纺成取向碳纳米管纤维。
(2)负极电镀液的配制。
用Hummer法制备得到氧化石墨烯。在烧杯中加入体积浓度分别为0 mg/mL、0.03mg/mL的氧化石墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1mol/L,在磁力搅拌器上搅拌成溶液后,加入一定量的五水硝酸铋(50mmol/L),用NaOH溶液调节PH至5.3,得到不同浓度的电镀液。
(3)纤维负极的制备。
以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞-氧化汞电极为参比电极,以及上述制备的溶液作为电镀液进行恒电压电镀。电镀电压为-1.2 V,电镀时间分别为1min、2min、5 min、10 min。将电镀后得到的还原氧化石墨烯-铋-碳纳米管纤维在去离子水中浸泡除去表面电解液后,在热台上烘干得到纤维负极,如图3。
(4)还原氧化石墨烯-镍-氧化镍复合物的制备。
通过湿化学溶胶凝胶法制备氧化镍。在烧杯中加入体积浓度为1mg/mL的氧化石墨烯水溶液,加入氧化镍,使其浓度为1 mg/mL,在60 ℃超声30 min。然后加入一定量(与上述溶液体积比为1:200)的95%水合肼,在60 ℃下继续搅拌12 h。将上述混合溶液离心,得到的沉淀物用去离子水和乙醇清洗多次,在60 ℃真空干燥箱中过夜得到还原氧化石墨烯-氧化镍复合物。将上述得到的复合物在600 ℃管式炉中氩气环境下退火1h,得到还原氧化石墨烯-镍-氧化镍复合物,如图4。
(5)还原氧化石墨烯-镍-氧化镍碳纳米管纤维的制备。
将上述得到的复合物(5mg、7mg、10mg)溶解在乙醇中(2mL),在60 ℃下超声10min。将上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来后得到还原氧化石墨烯-镍-氧化镍碳纳米管纤维。
(6)纤维状镍铋电池的制备。
将上述制备得到的正负极进行匹配,并以1 M氢氧化钾水溶液为电解质得到纤维状镍铋电池。
(7)正负极和纤维电池的测试
正负极的结构通过扫描电子显微镜(SEM,Hitachi FESEM S4800,工作电压1kV),来表征的。电极和电池的电化学性能在1M 氢氧化钾水溶液中测试。
本发明中,纤维状镍铋电池的的能量密度高达43.35 Wh/kg或者26.01 mWh/cm3(根据正负极活性材料的质量总和,纤维总体积来计算),这大约是商业薄片锂离子电池的两倍;功率密度高达6600 W/kg或者3.96 W/cm3,比超级电容器的功率密度还要高。此外,该纤维状镍铋电池具有极高的循环稳定性,充放电循环1万圈后仍有96%的能量保持。

Claims (4)

1. 一种纤维状镍铋电池的制备方法,其特征在于,具体步骤如下:
第一、还原氧化石墨烯-铋-碳纳米管纤维负极的制备
通过化学气相沉积法合成可纺的碳纳米管阵列,催化剂使用Fe / Al2O3,碳源为乙烯,气相载体为氩气和氢气的混合气体;随后,从碳纳米管阵列中拉出取向碳纳米管薄膜,叠加铺排于玻璃基底上,纺成取向碳纳米管纤维;
用Hummer法制备氧化石墨烯;在烧杯中加入体积浓度为0.01 ~ 0.09 mg/mL的氧化石墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1 ~0.5mol/L,在磁力搅拌器上搅拌成溶液,加入10 ~100mmol/L的五水硝酸铋,用NaOH溶液调节PH至4.5~5.5,得到电镀液;
以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞-氧化汞电极为参比电极,用上述制备的电镀液进行恒电压电镀;电镀电压为-0.9V~-1.6V,电镀时间为1 ~ 10min,得到还原氧化石墨烯-铋-碳纳米管纤维;将其放在去离子水中浸泡,除去表面电解液;在热台上烘干;
第二、还原氧化石墨烯-镍-氧化镍碳纳米管纤维正极的制备
通过湿化学溶胶凝胶法制备氧化镍;在烧杯中加入体积浓度为0.5~ 1.5mg/mL的氧化石墨烯水溶液,加入氧化镍,使其浓度为1~ 5mg/mL,在40~60 ℃超声10~30 min,得到氧化石墨烯、氧化镍混合溶液;然后加入浓度为95%的水合肼,水合肼与上述混合溶液体积比为1:100 ~ 1:400;在40~60 ℃下继续搅拌8~12 h;将上述混合溶液离心,得到的沉淀物用去离子水和乙醇清洗多次,在40~60 ℃真空干燥箱中过夜得到还原氧化石墨烯-氧化镍复合物;将上述得到的复合物在400 ~600℃管式炉中氩气环境下退火1 ~ 5 h,得到还原氧化石墨烯-镍-氧化镍复合物;
将上述5 ~ 15 mg复合物溶解在1 ~ 5 mL的乙醇中,在40~60 ℃下超声10~ 30min;将上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来,得到还原氧化石墨烯-镍-氧化镍碳纳米管纤维;
第三、纤维状镍铋电池的制备
以上述制备得到的还原氧化石墨烯-铋-碳纳米管纤维为负极,还原氧化石墨烯-镍-氧化镍碳纳米管纤维为正极进行匹配,并以氢氧化钾水溶液为电解质得到纤维状镍铋电池。
2. 根据权利要求1所述的制备方法,其特征在于,步骤一中,氧化石墨烯水溶液浓度为0.02~ 0.05mg/mL,乙二胺四乙酸二钠盐浓度为0.1 ~ 0.2mol/L,Bi(NO3)3·5H2O的浓度为40 ~ 60mmol/L;以取向碳纳米管纤维为工作电极,恒电压电镀时间为1 ~ 5 min。
3. 根据权利要求1所述的制备方法,其特征在于,步骤二中,氧化石墨烯水溶液浓度为0.5~ 1.0 mg/mL,氧化镍浓度为1 ~ 2mg/mL,退火温度为500 ~600 ℃,退火时间为1 ~ 2h,乙醇中复合物浓度为4 ~ 8mg/mL。
4. 如权利要求1 ~3之一所述制备方法得到的纤维状镍铋电池,其特征在于,以具有三维结构的还原氧化石墨烯-铋-碳纳米管纤维为负极,以具有分层导电结构的还原氧化石墨烯-镍-氧化镍碳纳米管纤维为正极;以氢氧化钾水溶液为电解质。
CN201910665249.7A 2019-07-23 2019-07-23 一种纤维状镍铋电池及其制备方法 Active CN110474023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910665249.7A CN110474023B (zh) 2019-07-23 2019-07-23 一种纤维状镍铋电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910665249.7A CN110474023B (zh) 2019-07-23 2019-07-23 一种纤维状镍铋电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110474023A true CN110474023A (zh) 2019-11-19
CN110474023B CN110474023B (zh) 2022-03-18

Family

ID=68508789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910665249.7A Active CN110474023B (zh) 2019-07-23 2019-07-23 一种纤维状镍铋电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110474023B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198213A (zh) * 2020-09-27 2021-01-08 中国科学院深圳先进技术研究院 一种用于检测谷氨酸浓度的非酶电化学传感器及采用其的检测方法
CN113258025A (zh) * 2021-05-07 2021-08-13 西北工业大学 一种高性能水系电池用铋基负极及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651180A (zh) * 2005-02-03 2005-08-10 复旦大学 含微量掺杂金属的Sn-Zn或Sn-Ag-Bi系列无铅焊料及其制备方法
CN103413920A (zh) * 2013-07-09 2013-11-27 复旦大学 一种锂离子电池用硅/取向碳纳米管复合负极材料及其制备方法
WO2015188113A1 (en) * 2014-06-05 2015-12-10 24M Technologies, Inc. Porous semi-solid electrode and methods of manufacturing the same
CN105960724A (zh) * 2014-02-04 2016-09-21 三井化学株式会社 锂离子二次电池用负极、锂离子二次电池、锂离子二次电池用负极用复合材料糊剂及锂离子二次电池用负极的制造方法
CN106025244A (zh) * 2016-07-30 2016-10-12 复旦大学 一种硒化镍/石墨烯/碳纳米管复合材料及其制备方法
US20170110717A1 (en) * 2015-10-15 2017-04-20 The Regents Of The University Of California Nanoporous tin powder for energy applications
CN106848338A (zh) * 2017-01-16 2017-06-13 济南大学 一种石墨烯负载Ni基氧化物的催化剂的制备方法
CN107338372A (zh) * 2017-06-26 2017-11-10 桂林电子科技大学 一种放电等离子烧结的铝基复合制氢材料的制备及其应用
CN107871877A (zh) * 2016-09-27 2018-04-03 三星电子株式会社 空气电池正极和包括其的锂空气电池、及制备正极的方法
CN108550800A (zh) * 2018-03-28 2018-09-18 深圳新源柔性科技有限公司 一种复合电极及电池
US20190173079A1 (en) * 2017-12-05 2019-06-06 Nanotek Instruments, Inc. Method of Producing Participate Electrode Materials for Alkali Metal Batteries

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651180A (zh) * 2005-02-03 2005-08-10 复旦大学 含微量掺杂金属的Sn-Zn或Sn-Ag-Bi系列无铅焊料及其制备方法
CN103413920A (zh) * 2013-07-09 2013-11-27 复旦大学 一种锂离子电池用硅/取向碳纳米管复合负极材料及其制备方法
CN105960724A (zh) * 2014-02-04 2016-09-21 三井化学株式会社 锂离子二次电池用负极、锂离子二次电池、锂离子二次电池用负极用复合材料糊剂及锂离子二次电池用负极的制造方法
WO2015188113A1 (en) * 2014-06-05 2015-12-10 24M Technologies, Inc. Porous semi-solid electrode and methods of manufacturing the same
US20170110717A1 (en) * 2015-10-15 2017-04-20 The Regents Of The University Of California Nanoporous tin powder for energy applications
CN106025244A (zh) * 2016-07-30 2016-10-12 复旦大学 一种硒化镍/石墨烯/碳纳米管复合材料及其制备方法
CN107871877A (zh) * 2016-09-27 2018-04-03 三星电子株式会社 空气电池正极和包括其的锂空气电池、及制备正极的方法
CN106848338A (zh) * 2017-01-16 2017-06-13 济南大学 一种石墨烯负载Ni基氧化物的催化剂的制备方法
CN107338372A (zh) * 2017-06-26 2017-11-10 桂林电子科技大学 一种放电等离子烧结的铝基复合制氢材料的制备及其应用
US20190173079A1 (en) * 2017-12-05 2019-06-06 Nanotek Instruments, Inc. Method of Producing Participate Electrode Materials for Alkali Metal Batteries
CN108550800A (zh) * 2018-03-28 2018-09-18 深圳新源柔性科技有限公司 一种复合电极及电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198213A (zh) * 2020-09-27 2021-01-08 中国科学院深圳先进技术研究院 一种用于检测谷氨酸浓度的非酶电化学传感器及采用其的检测方法
CN113258025A (zh) * 2021-05-07 2021-08-13 西北工业大学 一种高性能水系电池用铋基负极及制备方法

Also Published As

Publication number Publication date
CN110474023B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Huang et al. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries
Yu et al. Application of a novel redox-active electrolyte in MnO 2-based supercapacitors
CN111199835B (zh) 分级结构镍钴硒/镍钴双氢氧化物复合电极材料制备方法
CN110034283B (zh) 磷化锡复合材料及其制备方法和应用
CN110993944B (zh) 一种水系离子电池及其应用
Bulakhe et al. Facile synthesis of nickel cobalt sulfide nano flowers for high performance supercapacitor applications
CN110265643A (zh) 一种Sb2O5/碳布柔性钠离子电池负极材料的制备方法
CN111276679A (zh) 用于钠离子电池负极材料的双碳复合硫化钼复合材料及制备方法
CN109052367B (zh) 吡啶氮富集超薄碳纳米片材料及其金属复合材料的制备方法
CN112382514A (zh) 一种全固态柔性超级电容器用NiCo2O4@Ni-Co LDH复合电极的制备方法
Zeng et al. Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton
CN110739162B (zh) 一种柔性超级电容器正极材料的制备方法
Cai et al. Enhanced performance of asymmetric supercapacitor based on NiZn-LDH@ NiCoSe2 electrode materials
CN110474023A (zh) 一种纤维状镍铋电池及其制备方法
Shao et al. High-performance cobalt-doped carbon cloth supported porous Fe2O3 flexible electrode material in quasi-solid asymmetric supercapacitors
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Yan et al. Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
Zhang et al. Porous nitrogen-doped FeP/C nanofibers as promising anode for potassium-ion batteries
CN113809286B (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
CN105957724A (zh) 一种非对称超级电容器及其制备方法
CN114804039B (zh) 一种碳基体复合氮化钒纳米阵列及其制备方法与应用
CN110957145A (zh) 柔性全固态非对称纤维状储能器件及其制作方法
CN113896177B (zh) 电池负极材料及其制备方法、负极及锂离子电池
CN115881915A (zh) 一种由超快微波技术原位构建锌负极金属复合物保护层的规模化制备方法及其应用
Yu et al. Carbon‐anchored Sb nanoparticles as high‐capacity and stable anode for aqueous alkaline batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant