CN110471450A - 在高度速度剖面内直接规划再入轨迹的方法 - Google Patents

在高度速度剖面内直接规划再入轨迹的方法 Download PDF

Info

Publication number
CN110471450A
CN110471450A CN201910807220.8A CN201910807220A CN110471450A CN 110471450 A CN110471450 A CN 110471450A CN 201910807220 A CN201910807220 A CN 201910807220A CN 110471450 A CN110471450 A CN 110471450A
Authority
CN
China
Prior art keywords
section
reentry trajectory
maximum value
indicate
height velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910807220.8A
Other languages
English (en)
Other versions
CN110471450B (zh
Inventor
周文雅
聂振焘
杨峰
刘凯
王冠珺
李哲
徐洪刚
高飞雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910807220.8A priority Critical patent/CN110471450B/zh
Publication of CN110471450A publication Critical patent/CN110471450A/zh
Application granted granted Critical
Publication of CN110471450B publication Critical patent/CN110471450B/zh
Priority to PCT/CN2020/108383 priority patent/WO2021036778A1/zh
Priority to US17/031,829 priority patent/US11079239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Feedback Control In General (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种在高度速度剖面内直接规划再入轨迹的方法,包括以下步骤:S1、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax,求解再入轨迹的高度速度边界,即再入轨迹在高度速度剖面内的下边界;S2、根据再入运动微分方程,求解初始下降段的再入轨迹,并根据初始下降段轨迹确定滑翔段轨迹起点;S3、在高度速度剖面内的下边界的基础上,规划满足终端约束的高度速度剖面内的轨迹,计算对应的倾斜角,得到再入轨迹。所提方法能够准确规划再入轨迹,避免因忽略飞行路径角及其变化率造成再入轨迹可能不满足过程约束的风险,提高再入轨迹的可靠性,运算速率快、求解精度高。

Description

在高度速度剖面内直接规划再入轨迹的方法
技术领域
本发明涉及航空航天技术领域,具体而言,尤其涉及一种在高度速度剖面内直接规划再入轨迹的设计方法。
背景技术
升力式再入航天器具有速度快、航程远、机动性强等优势,能够实现全球快速攻击或者物资运送等军事任务。这种飞行器在再入飞行过程中表现为强非线性、强耦合、动态变化快等动力学特征,加之再入飞行需要满足驻点热流、动压、过载等过程约束和速度、位置、航向误差角等终端约束,使得再入轨迹设计极其困难。
常用描述再入运动的微分方程如下(忽略地球自转);
其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度,γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角;
其中ρ表示大气密度;Sref表示飞行器气动参考面积;CL和CD分别为升力系数和阻力系数(通常根据风洞试验得到升力系数、阻力系数与攻角α和速度V的关系)。
除上述六个运动状态量以外,方程中还包含两个控制变量,即倾斜角σ和攻角α。其中,攻角α的控制作用隐含在阻力系数CD和升力系数CL中。
对大气密度采用指数形式的模型,其具体的表达式如下:
ρ=ρ0e-h/β (9)
其中,ρ0是海平面处的大气密度;h代表海拔高度;β为大气常数;
重力模型如下:
其中,R0为地球半径,海拔高度h=r-R0,g0为海平面处重力加速度。
设计再入轨迹,须考虑过程约束和终端约束。过程约束包括驻点热流、动压和过载,分别如下:
三种过程约束的边界是关于地心距r和飞行速度V的等式。
终端约束包括飞行速度V达到终端速度要求,以及地心距、待飞航程和航向误差角在一定范围内:
|rf-rTAEM|<Δr (14)
Vf=VTAEM (15)
|Δψf|<ΔψTAEM (16)
Sf<STAEM (17)
其中,下标为f的量代表航天器再入轨迹终点处的值;下标为TAEM的量代表进入末端区域能量管理段时的状态。S表示待飞航程。飞行器所在点、目标点和地心所确定的平面为瞬时目标平面,待飞航程指瞬时目标平面内从当前位置到目标点投影到地球表面的大圆弧长。其中,目标点的经度θT和纬度φT已知。
S=cos-1(sinφsinφT+cosφcosφTcos(θ-θT))×R0 (18)
Δψ=ψLOS-ψ表示航向误差角,是目标点视线方向(Line of Sight,LOS)与当前航向的夹角;ψLOS表示飞行器当前位置到目标点的视线方位角(以正北为基准,顺时针为正),其表达式为:
再入轨迹设计就是通过设计两个控制量攻角α和倾斜角σ,使飞行器的运动轨迹满足过程约束和终端约束。其中,攻角α会离线设计完成并事先载入机载计算机,倾斜角通常根据再入任务的实际情况实时在线生成。
目前已有技术为基于“准平衡滑翔条件(Quasi Equilibrium GlidingCondition,QEGC)”的轨迹设计方法和规划飞行路径角剖面方法。
“准平衡滑翔条件”方法假设整个滑翔段飞行路径角γ及其变化率始终为零,则将微分方程(5)转换为代数方程:
方程(20)描述了两个控制量攻角α(隐含在升力L中)和倾斜角σ与两个状态量地心距r和飞行速度V之间的关系,又被称作“准平衡滑翔条件(QEGC)”。由于攻角α事先离线设计,因此方程(20)给出了倾斜角σ与地心距r和飞行速度V之间的关系,因此可以通过以上关系求出过程约束和“准平衡滑翔条件”对应的倾斜角σ边界,通过在控制量边界内规划控制量剖面,以达到设计再入轨迹的目的。
由于“准平衡滑翔条件”方法忽略了“飞行路径角及其变化率”,因此设计的再入轨迹可能不满足过程约束,降低了再入轨迹的可靠性。因此在此基础上,一种基于飞行路径角剖面规划的再入轨迹设计方法被提出。
在攻角α事先离线设计并且过程约束最大值已知的情况下,可将过程约束转化为地心距r关于速度V的函数表达式,即可在r-V剖面中绘制过程约束曲线。通过在r-V剖面中寻找初始下降段终点与过程约束的切线以及终端约束点与过程约束的切线,获得飞行路径角下边界。在飞行路径角下边界的基础上,规划满足约束要求的飞行路径角增量,进一步可以通过积分获得高度速度参数,从而求解出倾斜角σ,以达到设计再入轨迹的目的。
上述方法虽然考虑了“飞行路径角及其变化率”的影响,但是在求解倾斜角σ的过程中,需要通过数值积分求解当前飞行路径角剖面所对应的在r-V剖面内的曲线。这使得在求解过程中,重复地进行了由r-V剖面转换至飞行路径角剖面,再由飞行路径角剖面转换至r-V剖面的过程,降低了轨迹规划的效率。
发明内容
根据上述提出在求解倾斜角σ的过程中,重复地进行了由r-V剖面转换至飞行路径角剖面,再由飞行路径角剖面转换至r-V剖面的过程,降低了轨迹规划的效率的技术问题,而提供一种在高度速度剖面内直接规划再入轨迹的方法,不仅提高了再入轨迹的准确性,而且可靠性高,速度快,有利于在再入航天工程中应用。
本发明采用的技术手段如下:
一种在高度速度剖面内直接规划再入轨迹的方法,包括以下步骤:
S1、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax,求解再入轨迹的高度速度边界,即再入轨迹在高度速度剖面内的下边界。
S2、根据再入运动微分方程,求解初始下降段的再入轨迹,并根据初始下降段轨迹确定滑翔段轨迹起点。
S3、在高度速度剖面内的下边界基础上,规划满足终端约束的高度速度剖面内的轨迹,计算对应的倾斜角,得到再入轨迹。
进一步地,步骤S1中,具体包括以下步骤:
S11、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax
S12、根据驻点热流最大值动压最大值qmax和过载最大值nmax计算再入轨迹的过程约束。
S13、在高度速度剖面内绘制再入轨迹的过程约束,得到再入轨迹的高度速度边界,即再入轨迹下边界hmin(V)。
进一步地,步骤S2中,具体包括以下步骤:
S21、根据以下再入运动微分方程,求解初始下降段的飞行状态量并在高度速度剖面内绘制初始下降段的再入轨迹;
其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度,γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角。
S22、根据公式确定初始下降段轨迹的终点,即滑翔段轨迹的起点,其中,δ为根据任务需求选取的小量。
进一步地,步骤S3中,具体包括以下步骤:
S31、设定高度增量的两个初值Δh1(V)和Δh2(V),其中Δh(V)的形式不唯一,但必须保证其值始终大于零,且通过Δh(V)与下边界求和后,所得轨迹的两个端点位于滑翔段起点以及终端高度速度约束所确定的点。
S32、根据以下公式求出不同速度条件对应的高度值
h(V)=hmin(V)+Δh(V)。
S33、根据公式
求取对应的飞行路径角。
S34、根据公式
求取对应的倾斜角。
S35、使用倾斜角反转策略,通过改变倾斜角的正负值来满足横向轨迹控制要求。
S36、根据公式
S=cos-1(sinφsinφT+cosφcosφTcos(θ-θT))×R0
计算本轮设计末端点与滑翔段起点间的航程S;其中,φT表示目标点纬度,θT表示目标点经度,R0表示地球半径。
S37、判断当前轨迹是否满足误差要求,若不满足,根据以下公式更新高度增量Δh;
其中,下标n(n>2)表示第n次计算所得结果,Sif表示滑翔段起点与目标点间的待飞航程。
S38、反复执行步骤S32至S36,直至满足误差要求。
进一步地,步骤S12中,具体包括以下步骤:
根据驻点热流最大值动压最大值qmax和过载最大值nmax计算再入轨迹的过程约束,具体表达式如下:
根据以下公式求解当驻点热流达到最大值时对应的飞行速度VQ和地心距rQ
其中,kQ表示飞行器参数,ρ表示大气密度;
根据以下公式求解当动压达到最大值时对应的飞行速度Vq和地心距rq
根据以下公式求解当过载达到最大值时对应的飞行速度Vn和地心距rn
其中,L表示升力,D表示阻力;
经过上述计算可以求得包括驻点热流约束、动压约束以及过载约束在内的再入轨迹过程约束。
与现有技术相比较,本发明所述的在高度速度剖面内直接规划再入轨迹的方法,能够准确规划再入轨迹,避免因忽略飞行路径角及其变化率造成再入轨迹可能不满足过程约束的风险,提高再入轨迹的可靠性,运算速率快、求解精度高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明在高度速度剖面内直接规划再入轨迹的方法的计算流程图。
图2为本发明高度速度剖面内规划所得轨迹图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,本发明提供了一种在高度速度剖面内直接规划再入轨迹的方法,包括以下步骤:
S1、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax,求解再入轨迹在高度速度剖面内的下边界hmin(V),其具体步骤包括:
步骤S11、提取飞行器实际工作参数,并根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax
步骤S12、根据驻点热流最大值动压最大值qmax和过载最大值nmax计算再入轨迹的过程约束,具体表达式如下:
根据以下公式求解当驻点热流达到最大值时对应的飞行速度VQ和地心距rQ
其中,kQ表示飞行器参数,ρ表示大气密度;
根据以下公式求解当动压达到最大值时对应的飞行速度Vq和地心距rq
根据以下公式求解当过载达到最大值时对应的飞行速度Vn和地心距rn
其中,L表示升力,D表示阻力;
经过上述计算可以求得包括驻点热流约束、动压约束以及过载约束在内的再入轨迹过程约束。
步骤S13、在高度速度剖面内绘制再入轨迹过程约束,得到再入轨迹的高度速度边界,即再入轨迹下边界。
S2、根据再入运动微分方程,求解初始下降段的再入轨迹,并根据任务要求确定初始下降段的终点,即滑翔段轨迹的起点。其具体步骤包括:
步骤S21、根据以下再入运动微分方程,求解初始下降段的飞行状态量并在高度速度剖面内绘制初始下降段的再入轨迹:
其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度,γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角。经过上述微分方程计算可求得一系列高度速度剖面内的点(V,r);
步骤S22、根据公式确定初始下降段轨迹的终点。其中,δ为根据任务需求提前设置的小量;
S3、在高度速度剖面内轨迹下边界hmin(V)的基础上,规划满足终端约束的高度速度剖面内的再入轨迹h(V),计算对应的倾斜角,得到完整的再入轨迹。
其具体步骤包括:
步骤S31、设定高度增量Δh(V)的两个初始值Δh1(V)和Δh2(V);
步骤S32、根据以下公式求出不同速度条件下的高度参数;
h(V)=hmin(V)+Δh(V);
步骤S33、根据公式
求对应的飞行路径角;
步骤S34、根据公式
求取对应的倾斜角;
步骤S35、使用倾斜角翻转策略,改变倾斜角的正负值来满足横向轨迹控制;
步骤S36、根据公式
S=cos-1(sinφsinφT+cosφcosφTcos(θ-θT))×R0
计算本轮设计末端点与滑翔段起点间的航程S;其中,φT表示目标点纬度,θT表示目标点经度,R0表示地球半径。
步骤S37、判断是否满足要求,若不满足要求,根据以下公式更新高度增量Δh;
步骤S38、反复执行步骤S32至S36,直至误差满足要求。
本发明中,误差要求根据任务情况设定,通常终端约束包括飞行速度V达到终端速度要求,以及地心距、待飞航程和航向误差角在一定范围之内:
|rf-rTAEM|<Δr
Vf=VTAEM
|Δψf|<ΔψTAEM
Sf<STAEM
其中,下标为f的量代表航天器再入轨迹终端处的值;下标为TAEM的量代表进入末端区域能量管理段时的状态。S表示待飞航程:飞行器所在点、目标点和地心所确定的平面为瞬时目标平面,待飞航程指瞬时目标平面内从当前位置到目标点投影到地球表面的大圆弧长。其中,目标点的经度θT和纬度φT已知。
S=cos-1(sinφsinφT+cosφcosφTcos(θ-θT))×R0
Δψ=ψLOS-ψ表示航向误差角,是目标点视线方向(Line of Sight,LOS)与当前航向的夹角;ψLOS表示飞行器当前位置到目标点的视线方位角(以正北为基准,顺时针为正),其表达式为:
本发明能够准确规划再入轨迹,不会因为现有技术中忽略飞行路径角及其变化率,造成再入轨迹可能不满足过程约束的风险,提高再入轨迹的可靠性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

1.一种在高度速度剖面内直接规划再入轨迹的方法,其特征在于,包括以下步骤:
S1、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax,求解再入轨迹的高度速度边界,即再入轨迹在高度速度剖面内的下边界;
S2、根据再入运动微分方程,求解初始下降段的再入轨迹,并根据初始下降段轨迹确定滑翔段轨迹起点;
S3、在高度速度剖面内的下边界的基础上,规划满足终端约束的高度速度剖面内的轨迹,计算对应的倾斜角,得到再入轨迹。
2.根据权利要求1所述的在高度速度剖面内直接规划再入轨迹的方法,其特征在于,步骤S1中,具体包括以下步骤:
S11、提取飞行器实际工作参数,根据任务需求设置驻点热流最大值动压最大值qmax和过载最大值nmax
S12、根据驻点热流最大值动压最大值qmax和过载最大值nmax计算再入轨迹的过程约束;
S13、在高度速度剖面内绘制再入轨迹的过程约束,得到再入轨迹的高度速度边界,即再入轨迹下边界hmin(V)。
3.根据权利要求2所述的在高度速度剖面内直接规划再入轨迹的方法,其特征在于,步骤S2中,具体包括以下步骤:
S21、根据以下再入运动微分方程,求解初始下降段的飞行状态量并在高度速度剖面内绘制初始下降段的再入轨迹;
其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度,γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角;
S22、根据公式确定初始下降段轨迹的终点,即滑翔段轨迹的起点,其中,δ为根据任务需求选取的小量。
4.根据权利要求3所述的在高度速度剖面内直接规划再入轨迹的方法,其特征在于,步骤S3中,具体包括以下步骤:
S31、设定高度增量的两个初值Δh1(V)和Δh2(V),其中Δh(V)的形式不唯一,但必须保证其值始终大于零,且通过Δh(V)与下边界求和后,所得轨迹的两个端点位于滑翔段起点以及终端高度速度约束所确定的点;
S32、根据以下公式求出不同速度条件对应的高度值
h(V)=hmin(V)+Δh(V);
S33、根据公式
求取对应的飞行路径角;
S34、根据公式
求取对应的倾斜角;
S35、使用倾斜角反转策略,通过改变倾斜角的正负值来满足横向轨迹控制要求;
S36、根据公式
S=cos-1(sinφsinφT+cosφcosφTcos(θ-θT))×R0
计算本轮设计末端点与滑翔段起点间的航程S;其中,φT表示目标点纬度,θT表示目标点经度,R0表示地球半径;
S37、判断当前轨迹是否满足误差要求,若不满足,根据以下公式更新高度增量Δh;
其中,下标n(n>2)表示第n次计算所得结果,Sif表示滑翔段起点与目标点间的待飞航程;
S38、反复执行步骤S32至S36,直至满足误差要求。
5.根据权利要求2所述的在高度速度剖面内直接规划再入轨迹的方法,其特征在于,步骤S12中,具体包括以下步骤:
根据驻点热流最大值动压最大值qmax和过载最大值nmax计算再入轨迹的过程约束,具体表达式如下:
根据以下公式求解当驻点热流达到最大值时对应的飞行速度VQ和地心距rQ
其中,kQ表示飞行器参数,ρ表示大气密度;
根据以下公式求解当动压达到最大值时对应的飞行速度Vq和地心距rq
根据以下公式求解当过载达到最大值时对应的飞行速度Vn和地心距rn
其中,L表示升力,D表示阻力;
经过上述计算可以求得包括驻点热流约束、动压约束以及过载约束在内的再入轨迹过程约束。
CN201910807220.8A 2019-08-29 2019-08-29 在高度速度剖面内直接规划再入轨迹的方法 Active CN110471450B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910807220.8A CN110471450B (zh) 2019-08-29 2019-08-29 在高度速度剖面内直接规划再入轨迹的方法
PCT/CN2020/108383 WO2021036778A1 (zh) 2019-08-29 2020-08-11 在高度速度剖面内直接规划再入轨迹的方法
US17/031,829 US11079239B2 (en) 2019-08-29 2020-09-24 Method for directly planning reentry trajectory in height-velocity profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910807220.8A CN110471450B (zh) 2019-08-29 2019-08-29 在高度速度剖面内直接规划再入轨迹的方法

Publications (2)

Publication Number Publication Date
CN110471450A true CN110471450A (zh) 2019-11-19
CN110471450B CN110471450B (zh) 2020-07-14

Family

ID=68514014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910807220.8A Active CN110471450B (zh) 2019-08-29 2019-08-29 在高度速度剖面内直接规划再入轨迹的方法

Country Status (3)

Country Link
US (1) US11079239B2 (zh)
CN (1) CN110471450B (zh)
WO (1) WO2021036778A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930145A (zh) * 2020-08-24 2020-11-13 中国人民解放军火箭军工程大学 一种基于序列凸规划的高超声速飞行器再入轨迹优化方法
WO2021036778A1 (zh) * 2019-08-29 2021-03-04 大连理工大学 在高度速度剖面内直接规划再入轨迹的方法
CN112698569A (zh) * 2020-11-24 2021-04-23 中国运载火箭技术研究院 一种再入跨域飞行器轨迹一体化设计方法
CN113721646A (zh) * 2021-08-11 2021-11-30 中山大学 一种考虑二次拉升的组合动力飞行器轨迹快速规划方法
CN114114359A (zh) * 2022-01-27 2022-03-01 中国人民解放军32035部队 单星与地基设备联合的再入预报方法、装置和电子设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050682B (zh) * 2021-03-12 2022-04-22 中国人民解放军国防科技大学 导弹助推段校正制导方法、装置和高超声速飞行器
CN113051743B (zh) * 2021-03-18 2023-05-26 中国人民解放军火箭军工程大学 一种基于轨迹在线规划的末制导系统
CN113805599B (zh) * 2021-08-30 2024-03-19 北京理工大学 基于参数化控制剖面的多约束轨迹快速规划方法
CN113960926B (zh) * 2021-10-18 2024-04-16 北京理工大学 一种气动捕获制导参数边界的自适应调节方法
CN114036727B (zh) * 2021-10-22 2024-06-18 湖北航天技术研究院总体设计所 一种基于末制导的滑翔弹道快速规划方法
CN114111838A (zh) * 2021-11-08 2022-03-01 北京宇航系统工程研究所 一种发射深空探测器“赤纬-发射能量”可行性判定方法
CN114167888B (zh) * 2021-11-19 2023-06-20 湖北航天技术研究院总体设计所 一种滑翔高超声速飞行器末端位置和速度控制方法
CN114253296B (zh) * 2021-12-22 2024-06-07 中国人民解放军国防科技大学 高超声速飞行器机载轨迹规划方法、装置、飞行器及介质
CN114384935B (zh) * 2022-01-17 2023-12-08 北京理工大学 一种无人航空载运飞行器多约束气动减速控制方法
CN114935277B (zh) * 2022-03-05 2023-08-04 南京理工大学 一种滑翔增程制导炮弹理想弹道的在线规划方法
CN114545976A (zh) * 2022-03-08 2022-05-27 中山大学 一种飞行器的避障飞行控制方法、装置及系统
CN114690794A (zh) * 2022-03-31 2022-07-01 北京中科宇航技术有限公司 一种表格化实时控制飞行状态的方法及系统
CN115951585B (zh) * 2023-03-08 2023-06-02 中南大学 基于深度神经网络的高超声速飞行器再入制导方法
CN116702439B (zh) * 2023-05-19 2024-02-13 北京理工大学 基于再入落点预测模型的仿真用飞行器再入落点预测方法
CN117268391B (zh) * 2023-09-08 2024-04-26 中山大学 一种基于目标分层架构的变形飞行器智能规划方法及系统
CN117170252B (zh) * 2023-11-01 2024-03-19 北京理工大学 基于再入走廊凸规划的高超声速飞行器最优滚动制导方法
CN117826616B (zh) * 2024-03-04 2024-05-10 西北工业大学 一种基于序列凸优化的飞行器快速轨迹规划方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479469C1 (ru) * 2011-08-25 2013-04-20 Николай Николаевич Рябуха Планирующий космический аппарат (варианты) со створчатым головным обтекателем и способ управления его возвращением на аэродром
CN104732106A (zh) * 2015-04-08 2015-06-24 中国人民解放军国防科学技术大学 考虑不确定因素影响的飞行走廊计算方法
CN104809271A (zh) * 2015-03-23 2015-07-29 北京航天自动控制研究所 一种升力式飞行器的再入轨迹的计算方法
CN105205281A (zh) * 2015-10-13 2015-12-30 中国运载火箭技术研究院 一种再入弹道防热一体化设计方法
CN106354152A (zh) * 2016-08-18 2017-01-25 中国人民解放军国防科学技术大学 一种对辐射型禁飞区的再入轨迹优化设计方法
CN107941087A (zh) * 2017-10-18 2018-04-20 北京航空航天大学 一种基于阻力剖面的高升阻比高超平稳滑翔再入制导方法
CN107992074A (zh) * 2017-12-07 2018-05-04 大连理工大学 一种基于飞行路径角规划的再入轨迹设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301508A (en) * 1961-06-07 1967-01-31 United Aircraft Corp Guidance system with stellar correction
US3330503A (en) * 1964-08-10 1967-07-11 Trw Inc Re-entry guidance system
US3410502A (en) * 1965-08-06 1968-11-12 Gen Dynamics Corp Thermal attitude control device
CN110471450B (zh) * 2019-08-29 2020-07-14 大连理工大学 在高度速度剖面内直接规划再入轨迹的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2479469C1 (ru) * 2011-08-25 2013-04-20 Николай Николаевич Рябуха Планирующий космический аппарат (варианты) со створчатым головным обтекателем и способ управления его возвращением на аэродром
CN104809271A (zh) * 2015-03-23 2015-07-29 北京航天自动控制研究所 一种升力式飞行器的再入轨迹的计算方法
CN104732106A (zh) * 2015-04-08 2015-06-24 中国人民解放军国防科学技术大学 考虑不确定因素影响的飞行走廊计算方法
CN105205281A (zh) * 2015-10-13 2015-12-30 中国运载火箭技术研究院 一种再入弹道防热一体化设计方法
CN106354152A (zh) * 2016-08-18 2017-01-25 中国人民解放军国防科学技术大学 一种对辐射型禁飞区的再入轨迹优化设计方法
CN107941087A (zh) * 2017-10-18 2018-04-20 北京航空航天大学 一种基于阻力剖面的高升阻比高超平稳滑翔再入制导方法
CN107992074A (zh) * 2017-12-07 2018-05-04 大连理工大学 一种基于飞行路径角规划的再入轨迹设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘欣 等: "滑翔式飞行器再入弹道设计", 《弹箭与制导学报》 *
周文雅 等: "利用高斯伪谱法求解升力航天器最优再入轨迹", 《南京理工大学学报(自然科学版)》 *
周文雅 等: "高可靠性再入轨迹快速规划方法", 《系统工程与电子技术》 *
汤亮 等: "多约束条件下的升力滑翔式再入轨迹优化", 《导弹与航天运载技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021036778A1 (zh) * 2019-08-29 2021-03-04 大连理工大学 在高度速度剖面内直接规划再入轨迹的方法
US11079239B2 (en) 2019-08-29 2021-08-03 Dalian University Of Technology Method for directly planning reentry trajectory in height-velocity profile
CN111930145A (zh) * 2020-08-24 2020-11-13 中国人民解放军火箭军工程大学 一种基于序列凸规划的高超声速飞行器再入轨迹优化方法
CN111930145B (zh) * 2020-08-24 2022-09-23 中国人民解放军火箭军工程大学 一种基于序列凸规划的高超声速飞行器再入轨迹优化方法
CN112698569A (zh) * 2020-11-24 2021-04-23 中国运载火箭技术研究院 一种再入跨域飞行器轨迹一体化设计方法
CN113721646A (zh) * 2021-08-11 2021-11-30 中山大学 一种考虑二次拉升的组合动力飞行器轨迹快速规划方法
CN113721646B (zh) * 2021-08-11 2023-07-28 中山大学 一种考虑二次拉升的组合动力飞行器轨迹快速规划方法
CN114114359A (zh) * 2022-01-27 2022-03-01 中国人民解放军32035部队 单星与地基设备联合的再入预报方法、装置和电子设备
CN114114359B (zh) * 2022-01-27 2022-04-26 中国人民解放军32035部队 单星与地基设备联合的再入预报方法、装置和电子设备

Also Published As

Publication number Publication date
WO2021036778A1 (zh) 2021-03-04
CN110471450B (zh) 2020-07-14
US20210164783A1 (en) 2021-06-03
US11079239B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
CN110471450A (zh) 在高度速度剖面内直接规划再入轨迹的方法
CN107992074B (zh) 一种基于飞行路径角规划的再入轨迹设计方法
CN106773713A (zh) 针对欠驱动海洋航行器的高精度非线性路径跟踪控制方法
CN103557871B (zh) 一种浮空飞行器捷联惯导空中初始对准方法
Lu et al. Entry guidance for the X-33 vehicle
CN111306989A (zh) 一种基于平稳滑翔弹道解析解的高超声速再入制导方法
CN110672092B (zh) 一种降低固定翼无人机平台磁干扰的航迹生成方法
CN104035335A (zh) 基于高精度纵、横程解析预测方法的平稳滑翔再入制导律
CN109062241B (zh) 基于线性伪谱模型预测控制的自主全射向再入制导方法
CN109708639B (zh) 飞行器平飞跟踪直线和圆弧路径的侧向制导指令生成方法
CN103995540A (zh) 一种高超声速飞行器的有限时间轨迹快速生成方法
CN112550770B (zh) 一种基于凸优化的火箭软着陆轨迹规划方法
CN107844128B (zh) 一种基于复合比例导引的高超声速飞行器巡航段制导方法
CN103708045B (zh) 一种探月飞船跳跃式再入的在线参数辨识方法
CN106444822A (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
Stepanyan et al. Estimation, navigation and control of multi-rotor drones in an urban wind field
CN108388135A (zh) 一种基于凸优化的火星着陆轨迹优化控制方法
CN107957686B (zh) 基于预见控制的无人直升机自动着舰控制系统
CN105352502A (zh) 一种微惯性航姿参考系统的姿态获取方法
CN115248038B (zh) 一种发射系下的sins/bds组合导航工程算法
CN106802570A (zh) 一种无人直升机位置跟踪的方法与装置
CN115079565A (zh) 变系数的带落角约束制导方法、装置和飞行器
CN108562293B (zh) 基于干扰观测器的行星着陆有限时间控制方法
CN114442673B (zh) 一种基于混沌模型与dnn的飞行器智能轨迹规划方法
CN111651860B (zh) 一种可重复使用运载器再入段的预测校正鲁棒制导方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant