CN110449173A - 一种中空结构过渡金属纳米催化剂的制备方法 - Google Patents

一种中空结构过渡金属纳米催化剂的制备方法 Download PDF

Info

Publication number
CN110449173A
CN110449173A CN201910545831.XA CN201910545831A CN110449173A CN 110449173 A CN110449173 A CN 110449173A CN 201910545831 A CN201910545831 A CN 201910545831A CN 110449173 A CN110449173 A CN 110449173A
Authority
CN
China
Prior art keywords
catalyst
transition metal
hollow structure
preparation
nimop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910545831.XA
Other languages
English (en)
Other versions
CN110449173B (zh
Inventor
叶锋
刘鹏
王志明
禹航宇
徐超
杜小泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910545831.XA priority Critical patent/CN110449173B/zh
Publication of CN110449173A publication Critical patent/CN110449173A/zh
Application granted granted Critical
Publication of CN110449173B publication Critical patent/CN110449173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

一种中空结构过渡金属纳米催化剂及其制备方法,所述制备方法以合成Ni为核,过渡金属包覆Ni,部分形成Ni过渡金属合金,通过酸刻蚀单质Ni,合成出中空结构过渡金属纳米催化剂,通过调整前驱体的初始浓度、还原剂和前驱体的比例、以及反应温度等制备出高度分散、纳米尺度的中空结构过渡金属纳米催化剂。本发明不需要将金属前驱体进行预处理,也不需要任何表面活性剂或保护剂,液相下即可直接合成,通过电子效应有效调控可提高催化活性,而且制备过程操作简便可控,所制备的产品可以用于质子交换膜燃料电池阴极催化剂,还可以用于燃料电池阴、阳极催化剂,以及复合结构纳米材料、纳米技术、可控合成等领域。

Description

一种中空结构过渡金属纳米催化剂的制备方法
技术领域
本发明属于用纳米技术、化学方法生产纳米催化剂的技术领域和催化材料领域,特别涉及到以NiMoP/石墨烯为基础的中空结构过渡金属纳米催化剂的制备方法。
背景技术
质子交换膜(PEM)电解水制氢技术是获取氢能的重要途径之一,获得的氢气纯度高、无污染,目前此技术己成为国内外氢能技术领域的研究热点。制氢技术的关键材料之一是析氢催化剂,目前PEM电解水析氢催化剂主要为Pt基贵金属,其过高的成本限制了PEM电解水制氢技术的大规模推广应用。研制高活性、高稳定性、低成本的非贵金属析氢电催化剂是解决该问题的有效途径之一。过渡金属磷化物因其结构稳定、导电性能良好,被誉为“准铂催化剂”,成为国内外非贵金属析氢催化剂研究的前沿和热点。文献Xiao P,Sk M A,ThiaL,Ge X,Lim R J,Wang J Y,Wang X.Molybdenum phosphide as an efficientelectrocatalyst for the hydrogen evolution reaction.Energy&EnvironmentalScience,2014,7,2624–2629报道,首次确认了MoP的析氢催化性能,通过对MoP与Mo3P、Mo的比较,确认了P元素的引入对催化剂活性和稳定性具有较大的影响。这些催化剂主要通过优化过渡金属与P的量来获得富磷型或富金属型的单过渡金属磷化物催化剂。这些单过渡金属磷化物显示了从过渡金属到P的电子密度转移,即意味着产生了金属原子的阳离子状态,这与P原子的阴离子状态一致。具有负离子态的P原子作为一个活性中心,可以促进质子的放电。然而,在质子放电过程中,价电子转变所引起的一个负离子活性位点使质子放电过程不够充分,单过渡金属磷化物催化剂存在催化活性不强的问题。近年来,单过渡金属磷化物催化剂合金化,创造催化材料新功能,有望大幅度提高金属磷化物催化剂的催化活性。文献Lu A L,Chen Y Z,Dowd A,Cortie M B,Xie Q,Guo H Z,Qi Q Q,Peng D L.Magneticmetal phosphide nanorods as effective hydrogen-evolutionelectrocatalysts.International Journal of Hydrogen Energy,2014,39,18919–18928报道,采用一步法制备了纳米尺度的Co1.33Ni0.67P,并研究了析氢反应的活性和稳定性,结果表明Co1.33Ni0.67P催化性能高于Ni2P,研究者认为引入Co元素可以促进催化剂活性提高。单过渡金属磷化物和合金化磷化物纳米催化剂可以有效改善磷化物催化活性等问题,但存在的缺点是催化剂易团聚、利用率不高。现有技术CN108452816A、CN103123970A、CN109301267A、CN109107591A、CN107376958A、CN109647458A分别公开了金属磷化物催化剂的制备方法,但是同样存在上述缺陷。
发明内容
本发明提出采用液相法,通过改变反应物配比、反应温度、Ni核前驱体量、Mo前驱体量等来调控纳米Ni、NiMo和Ni@NiMo纳米颗粒的合成;通过调控三正辛基磷TOP(Trioctylphosphine)溶剂、还原剂浓度、NiMo与P的化学计量比来合成NiMoP;通过改变NiMoP与石墨烯负载量的比例并进行负载优化,使NiMoP纳米颗粒均匀吸附在石墨烯片层上;利用盐酸有选择的刻蚀去除单质镍和磷化结晶物中部分镍,以形成中空多孔结构NiMoP,从而制备出中空结构NiMoP/石墨烯纳米催化剂。可控的Ni、Mo、P比例,保持纳米尺度,不仅可以大幅度提高纳米催化剂催化性能,中空部分提高了催化剂利用率,而且制备过程容易控制,无需添加剂。
本发明中空结构过渡金属纳米催化剂,其制备过程包括以下步骤:
S1.以合成Ni为核,通过调控Ni过渡金属电子结构进行Ni的包覆;
S2.负载石墨烯;
S3.采用酸刻蚀部分单质Ni,将部分单质Ni去除,从而合成出中空结构中空结构过渡金属纳米催化剂。
本发明不是采用直接制备NiMoP负载石墨烯的方法,而是采用合成Ni为核,NiMo包覆Ni,进而进行负载石墨烯,之后采用盐酸刻蚀核部分单质Ni,利用Ni与盐酸反应,将部分单质Ni去除,从而合成出具有特殊的中空结构NiMoP/石墨烯纳米催化剂,可以提高催化剂利用率。
与现有技术相比,本发明不需要将金属前驱体进行预处理,也不需要任何表面活性剂或其它保护剂,过程包括混合、调节温度和还原、洗涤、干燥,简单高效,反应可控,制备成本较低。
本发明所制备的产品不仅可以用于质子交换膜燃料电池阴极催化剂,同时还可以用于其它燃料电池阴、阳极催化剂,以及气体重整、有机物裂解、污染物治理,以及复合结构纳米材料、纳米技术、有机物的合成等许多领域。
具体实施方式
实施例1:
将250mg乙酰丙酮镍加入到60mL油胺中,通入氩气进行还原反应,反应温度为150℃,反应120分钟,得到Ni纳米颗粒溶液;向其中加入640mg乙酰丙酮钼,在350℃搅拌下反应60分钟,得到Ni@NiMo颗粒;向反应液中加入20mL的TOP,反应温度为250℃,在反应210分钟后,向其中加入50mg的石墨烯,进行超声1h后,对反应液进行离心、过滤、用去离子水洗涤,在80℃下干燥12h,得到NiMoP/石墨烯纳米颗粒;将所制备的NiMoP/石墨烯纳米颗粒加到40mL 36.5%的盐酸中,室温下进行搅拌回流12h后,进行离心、分离、用去离子水洗涤,在120℃真空干燥后得到中空结构NiMoP/石墨烯纳米催化剂。
实施例2:
将500mg乙酰丙酮镍加入到40mL油胺中,通入氩气进行还原反应,反应温度为200℃,反应90分钟,得到Ni纳米颗粒溶液;向其中加入320mg乙酰丙酮钼,在270℃搅拌下反应120分钟,得到Ni@NiMo颗粒;向反应液中加入35mL的TOP,反应温度为350℃,在反应120分钟后,向其中加入120mg的石墨烯,进行超声1.5h后,对反应液进行离心、过滤、用去离子水洗涤,在120℃下干燥10h,得到NiMoP/石墨烯纳米颗粒;将所制备的NiMoP/石墨烯纳米颗粒加到30mL 36.5%的盐酸中,室温下进行搅拌回流24h后,进行离心、分离、用去离子水洗涤,在120℃真空干燥后得到中空结构NiMoP/石墨烯纳米催化剂。
实施例3:
将750mg乙酰丙酮镍加入到80mL油胺中,通入氩气进行还原反应,反应温度为350℃,反应60分钟,得到Ni纳米颗粒溶液;向其中加入960mg乙酰丙酮钼,在200℃搅拌下反应180分钟,得到Ni@NiMo颗粒;向反应液中加入50mL的TOP,反应温度为310℃,在反应300分钟后,向其中加入200mg的石墨烯,进行超声2h后,对反应液进行离心、过滤、用去离子水洗涤,在80℃下干燥12h,得到NiMoP/石墨烯纳米颗粒;将所制备的NiMoP/石墨烯纳米颗粒加到50mL 36.5%的盐酸中,室温下进行搅拌回流18h后,进行离心、分离、用去离子水洗涤,在120℃真空干燥后得到中空结构NiMoP/石墨烯纳米催化剂。
通过实施例1、实施例2和实施例3所制备的中空结构NiMoP/石墨烯纳米催化剂,采用合成Ni为核,通过调控NiMo电子结构进行Ni的包覆,进而进行负载石墨烯,之后采用酸刻蚀部分单质Ni,利用Ni与盐酸反应,将部分单质Ni去除,从而合成出具有特殊的中空结构NiMoP/石墨烯纳米催化剂,提高催化活性,从而提高催化剂利用率。
本发明通过上述实施例来说明本发明的详细过程和组成,但是本发明并不局限于上述详细过程和组成。本领域的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。

Claims (6)

1.一种中空结构过渡金属纳米催化剂的制备方法,其特征在于:包括以下步骤:
S1.以合成Ni为核,通过调控Ni过渡金属电子结构进行Ni的包覆;
S2.负载石墨烯;
S3.采用酸刻蚀部分单质Ni,将部分单质Ni去除,从而合成出中空结构中空结构过渡金属纳米催化剂。
2.根据权利要求1所述的制备方法,其特征在于:所述过渡金属包括Mo或W。
3.根据权利要求1所述的制备方法,其特征在于:
步骤S1包括:
S11:将250~750mg乙酰丙酮镍加入到40~80mL油胺,在100~350℃反应60~120分钟,得到Ni纳米颗粒油胺溶液;
S12:向上述Ni纳米颗粒油胺溶液中加入320~960mg乙酰丙酮钼,在200~350℃反应60~180分钟,得到Ni@NiMo纳米颗粒油胺溶液;
S13:向上述Ni@NiMo纳米颗粒油胺溶液中加入20~50mL的TOP溶液,在250~350℃反应120~300分钟,得到NiMoP纳米颗粒溶液。
4.根据权利要求3所述的制备方法,其特征在于:
步骤S2包括:S21:称取50~200mg的石墨烯,加入上述NiMoP纳米颗粒溶液,进行负载,超声1h~2h,得到Ni@NiMoP/石墨烯溶液;
S22:将上述Ni@NiMoP/石墨烯溶液进行离心、过滤、去离子水洗涤,在80~150℃下干燥8h~12h,得到Ni@NiMoP/石墨烯纳米颗粒。
5.根据权利要求4所述的制备方法,其特征在于:
步骤S3包括:
S33:将上述Ni@NiMoP/石墨烯纳米颗粒加入30~50mL36.5%的盐酸中,室温下进行搅拌,回流12h~24h后,待反应进行完毕,进行离心、过滤、去离子水洗涤、120℃进行干燥,得到中空结构NiMoP/石墨烯纳米催化剂。
6.一种中空结构过渡金属纳米催化剂,其特征在于:所述中空结构过渡金属纳米催化剂由权利要求1-5中任意一项所述的制备方法制备而成。
CN201910545831.XA 2019-06-23 2019-06-23 一种中空结构过渡金属纳米催化剂的制备方法 Active CN110449173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910545831.XA CN110449173B (zh) 2019-06-23 2019-06-23 一种中空结构过渡金属纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910545831.XA CN110449173B (zh) 2019-06-23 2019-06-23 一种中空结构过渡金属纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110449173A true CN110449173A (zh) 2019-11-15
CN110449173B CN110449173B (zh) 2020-11-06

Family

ID=68480837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910545831.XA Active CN110449173B (zh) 2019-06-23 2019-06-23 一种中空结构过渡金属纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110449173B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201797A (zh) * 2020-09-01 2021-01-08 深圳航天科技创新研究院 金属催化剂及其量产制备方法和燃料电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192086A (zh) * 2012-01-10 2013-07-10 中国科学院宁波材料技术与工程研究所 一种可控的双金属合金纳米颗粒的制备方法
US9636664B1 (en) * 2015-06-04 2017-05-02 Alliance For Sustainable Energy, Llc Metal phosphide catalysts and methods for making the same and uses thereof
CN107032313A (zh) * 2017-05-11 2017-08-11 常州大学 一种过渡金属磷化物纳米空心球的制备方法
CN107180944A (zh) * 2017-06-20 2017-09-19 大连理工常州研究院有限公司 一种金属磷化物纳米粒子的制备方法及其应用
KR20190036273A (ko) * 2017-09-27 2019-04-04 한국에너지기술연구원 포러스 카본 쉘을 포함하는 다중 층 코어-쉘 나노입자의 제조방법 및 이를 통해 제조된 코어-쉘 나노입자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192086A (zh) * 2012-01-10 2013-07-10 中国科学院宁波材料技术与工程研究所 一种可控的双金属合金纳米颗粒的制备方法
US9636664B1 (en) * 2015-06-04 2017-05-02 Alliance For Sustainable Energy, Llc Metal phosphide catalysts and methods for making the same and uses thereof
CN107032313A (zh) * 2017-05-11 2017-08-11 常州大学 一种过渡金属磷化物纳米空心球的制备方法
CN107180944A (zh) * 2017-06-20 2017-09-19 大连理工常州研究院有限公司 一种金属磷化物纳米粒子的制备方法及其应用
KR20190036273A (ko) * 2017-09-27 2019-04-04 한국에너지기술연구원 포러스 카본 쉘을 포함하는 다중 층 코어-쉘 나노입자의 제조방법 및 이를 통해 제조된 코어-쉘 나노입자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANFENG ZHENG,ET AL.: "Nickel/Nickel Phosphide Core-Shell Structured Nanoparticles: Synthesis, Chemical, and Magnetic Architecture", 《CHEMISTRY OF MATERIALS》 *
胡琳萍: "镍基合金催化剂析氢活性的密度泛函计算研究", 《中国优秀硕士学位论文全文数据库 工程科技1辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201797A (zh) * 2020-09-01 2021-01-08 深圳航天科技创新研究院 金属催化剂及其量产制备方法和燃料电池

Also Published As

Publication number Publication date
CN110449173B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
Lei et al. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
CN109235024A (zh) 一种碳布负载的硫化镍-硫化钼异质纳米片阵列结构及其制备方法
WO2022257328A1 (zh) 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
KR101349068B1 (ko) 연료전지용 코어-쉘 타입의 담지촉매 제조방법
Feng et al. Well-defined Fe, Fe 3 C, and Fe 2 O 3 heterostructures on carbon black: a synergistic catalyst for oxygen reduction reaction
CN108365230A (zh) 一种活性位点与电极结构结合的空气电极的普适性制备方法及应用
CN110743603B (zh) 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用
Zhang et al. Atomically dispersed iron cathode catalysts derived from binary ligand-based zeolitic imidazolate frameworks with enhanced stability for PEM fuel cells
CN112680746B (zh) 一种ZIF-67@MXene复合材料、制备方法及其应用
Lu et al. Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting
CN104923254A (zh) 一种铜基贵金属催化剂、其制备方法与应用
CN112635779B (zh) MOF衍生高活性Ni单原子氧气还原反应电催化剂制备方法
CN109926054A (zh) 一种高分散NiCo合金-石墨烯纳米复合催化剂的制备方法
JP6086981B2 (ja) カルベンダジム系触媒作用物質
CN103143717A (zh) 一种铂铜双金属纳米材料及其制备和应用
Wang et al. Mesoporous Rh nanotubes for efficient electro-oxidation of methanol
JP2016500560A (ja) 熱分解多重錯体化合物系orr用非pgm触媒
Song et al. Dual-modulation of electronic structure and active sites of PtCu nanodendrites by surface nitridation to achieve efficient methanol electrooxidation and oxygen reduction reaction
CN101444728A (zh) 一种新型纳米碳纤维载铂催化剂的制备方法
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
Xiao et al. Amorphous CoMoO4 with nanoporous structures for electrochemical ammonia synthesis under ambient conditions
CN113215611A (zh) 过渡金属磷化物催化剂纳米颗粒及其制备方法和电极
Wang et al. Achieving efficient urea electrolysis by spatial confinement effect and heterostructure
CN114164455B (zh) 一种通过电化学刻蚀提高贵金属基材料电催化性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant