CN110416615A - 一种抑制锂枝晶生长的电解液及锂电池 - Google Patents

一种抑制锂枝晶生长的电解液及锂电池 Download PDF

Info

Publication number
CN110416615A
CN110416615A CN201910717337.7A CN201910717337A CN110416615A CN 110416615 A CN110416615 A CN 110416615A CN 201910717337 A CN201910717337 A CN 201910717337A CN 110416615 A CN110416615 A CN 110416615A
Authority
CN
China
Prior art keywords
lithium
electrolyte
additive
battery
inhibiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910717337.7A
Other languages
English (en)
Inventor
熊训辉
王钢
范梦娜
马向东
罗煜翔
杨成浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Publication of CN110416615A publication Critical patent/CN110416615A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种抑制锂枝晶生长的电解液及锂电池。所述电解液包括添加剂、锂盐和有机溶剂,所述添加剂包括六氟磷锂、高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、氟硼酸锂、六氟铝酸锂、六氟砷酸锂、氟化锂、氯化锂、溴化锂、硝酸锂、多硫化锂、氮化锂、磷化锂、二草酸硼酸锂、氧化锂、亚硫酸锂、硫酸锂、乙酸锂、氢氧化锂和草酸锂中的至少一种,所述锂盐为不同于添加剂的锂盐。含有添加剂的锂电池,在充放电过程中不仅能在锂金属负极表面形成一层固态电解质膜,而且能够诱导电解液聚合形成一种低聚物覆盖在锂负极表面以及与之相匹配的正极材料的表面。该保护层可以有效的抑制锂枝晶的生长,从而提高电池的安全性能。

Description

一种抑制锂枝晶生长的电解液及锂电池
技术领域
本发明涉及锂金属电池负极材料及电化学领域,具体涉及一种抑制锂枝晶生长的电解液及锂电池。
背景技术
近年来,在传统化石能源日益枯竭与环境保护的双重作用下,锂离子电池的发展应用上升到了一个全新的阶段。特别是电动汽车的飞速发展使得动力电池成为国家、大型企业以及各科研机构的关注的焦点。目前,以石墨为负极的锂离子电池体系的能量密度已达到其瓶颈。且其负极理论比容量仅有372 mAh/g,在首次充放电过程中还存在较大的容量损失,其电化学性能远不能满足电动汽车对电池的要求。因此发展高比能量锂离子电池负极材料成为了目前研究的热点。
金属锂的理论比容量为3860 mAh/g,是石墨容量的10倍以上。以金属锂为负极的新一代可充电池具有重要的研究价值和广阔的应用前景,被称为能量之“圣杯”。然而,枝晶和库伦效率两大问题严重制约了锂电极的实用化,40多年来一直未能有效解决。
为了解决上述问题,国内外研究人员对此作了大量的改性工作。例如,Guo等在商用电解液体系中同时添加0.1 mol/L LiNO3和2%的VC,通过研究Li||Cu电池金属锂的电镀剥离行为,发现LiNO3可在金属锂表面形成一层Li3N的SEI膜,再经与VC共同作用,使得Li||Cu电池效率接近能够达到100%(参见参考文献[1]:Jing Guo, Zhaoyin Wen, Meifen Wu,Jun Jin,Yu Liu, Vinylene carbonate-LiNO3: A hybrid additive in carbonic esterelectrolytes for SEI modification on Li metal anode. Electrochem. Commun.2015, 51, 59-63)。Li等利用简单的亚硫酰氯(SOCl2)作为电解液添加剂,反应生成的LiCl和Li2SO3等无机物沉积在金属锂负极界面形成了均匀致密的人工SEI膜,同时实现了金属锂负极界面的稳定和锂硫电池长期循环性能的改善。由此组装的Li-S电池在0.4 mA/g的电流密度下放电比容量高达2202.3 mAh/g,其中超出理论容量的部分主要来自于添加剂的分解补偿(参见参考文献[2]:Sheng Li, Hongliu Dai, Yahui Li, Chao Lai, Jiulin Wang,Fengwei Huo, Chao Wang, Designing li-protective layer via SOCl2 additive forstabilizing lithium-sulfur battery. Energy Storage Materials, 2019, 18, 222-228)。Archer团队提出一种构筑有机/无机杂化SEI膜的策略,通过引入SiCl4作为一种交联剂,促进PC溶剂在金属负极表面发生交联,从而形成具有一定弹性的有机SEI膜,而且在交联反应发生的同时,会同时生成具有高离子电导率的LiCl,结果表明,无机成分LiCl可改善离子传输的动力学性能,而有机成分可提高SEI的机械稳定性(参见参考文献[3]:QingZhao, Zhengyuan Tu, Shuya Wei, Kaihang Zhang, Snehashis Choudhury, XiaotunLiu, Lynden A. Archer, Building Organic/Inorganic Hybrid Interphases for FastInterfacial Transport in Rechargeable Metal Batteries. Angew. Chem. Int. Ed.,2018, 57, 992-996)。上述研究成果为解决枝晶生长问题提供了新思路,然而这些方法仅仅在金属锂表面也能形成SEI膜,起到一定保护金属锂的作用。
发明内容
本发明的目的是针对锂金属负极在循环过程中由于枝晶生长而引起的循环性能不佳、库伦效率低、安全性差等问题,提供一种新型锂金属负极以及与之相匹配的正极材料保护用电解液添加剂,其能够有效抑制锂枝晶生长,提高锂沉积溶解效率,进而可提升锂金属电池的循环稳定性和安全性等性能。
本发明的目的通过以下技术方案实现。
本发明提供了一种抑制锂枝晶生长的电解液,包括添加剂、锂盐和有机溶剂,所述添加剂包括六氟磷锂(LiPF6)、高氯酸锂(LiClO4)、双三氟甲烷磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiCF3SO3)、氟硼酸锂(LiBF4)、六氟铝酸锂(Li3AlF6)、六氟砷酸锂(LiAsO6)、氟化锂(LiF)、氯化锂(LiCl)、溴化锂(LiBr)、硝酸锂(LiNO3)、多硫化锂(LiS x )、氮化锂(Li3N)、磷化锂(Li3P)、二草酸硼酸锂(LiBOB)、氧化锂(Li2O)、亚硫酸锂(Li2SO3)、硫酸锂(Li2SO4)、乙酸锂(CH3COOLi)、氢氧化锂(LiOH)和草酸锂(Li2C2O4)中的至少一种,所述锂盐为不同于添加剂的锂盐。
优选地,所述锂盐包括六氟磷锂(LiPF6)、高氯酸锂(LiClO4)、双三氟甲烷磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiCF3SO3)、氟硼酸锂(LiBF4)、六氟铝酸锂(Li3AlF6)、六氟砷酸锂(LiAsO6)中不同于所述添加剂的至少一种。
优选地,所述有机溶剂包括碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、1,4–丁丙酯(GBL)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、1,3-二氧戊环(DOL)、乙二醇二甲醚(DME)和二乙二醇二甲醚(DEDM)中的至少一种。
优选地,所述锂盐的浓度为0.6~10 mol/L。
优选地,所述添加剂的质量分数为0.01%~5%。
本发明还提供一种抑制锂枝晶生长的锂电池,包括正极、弹片、垫片、隔膜、负极,包括以上所述的抑制锂枝晶生长的电解液。
优选地,正极或负极材料为LiFePO4、LiV3(PO4)3、Li x CoO2 、Li y MnO2mLiMnO2•(1-m)LiAO2、LiNibCoaMn1-aO2、LiNi0.5Mn1.5O4、Li2TiO3、FeF3jH2O、S、Se、金属氧化物、金属硫化物中的至少一种, 其中0.4≤x≤1, 0.4≤y≤1,0<m<1, A选自Ni、 Co、 Mn、 Al、 Fe中的一种,0.5≤b≤1, 0≤a≤0.2,0≤j≤0.5;
所述隔膜选自GF隔膜、PE隔膜、PP隔膜、PP/PE隔膜或PP/PE/PP隔膜的至少一种。
本发明采用一种新型锂金属负极保护用电解液添加剂,其能够有效抑制锂枝晶及死锂的形成,提高锂沉积溶解效率,进而可延长锂金属电池的循环寿命和安全性等性能。
与现有技术相比,本发明具有如下的技术效果:
(1)本发明采用的功能添加剂与电解液兼容性好、适用性广、易于规模化生产。
(2)本发明锂离子电池电极材料用电解液添加剂能够提高锂离子电池的性能,由本发明锂离子电池电极材料用添加剂制造的锂离子电池对发展长寿命储能和动力锂离子电池具有显著地应用价值和前景。在充放电过程中,本发明采用的该添加剂不仅能在锂金属负极表面形成一层固态电解质膜,而且能够诱导电解液聚合形成一种低聚物覆盖在锂负极表面以及与之相匹配的正极材料的表面,能有效的降低界面间的副反应,抑制枝晶的生长,显著提高了锂金属电池的安全性能和电化学性能。
附图说明
图1为实施例1中采用添加剂的金属锂负极与铜箔组装成Li||Cu电池的库伦效率图;
图2为实施例1中采用添加剂的金属锂负极组装成对称电池Li||Li的充放电曲线图;
图3为实施例1中未采用添加剂金属锂负极循环50圈的SEM图;
图4为实施例1中采用添加剂金属锂负极循环50圈的SEM图;
图5为实施例2中采用添加剂的金属锂负极及未采用添加剂的金属锂负极分别与三元正极材料组装成全电池的循环性能图。
具体实施方式
以下结合实例与附图对本发明的具体实施作进一步详细说明,但本发明的实施方式不限于此。
下述实施例中的实验方法,如无特别说明,均为常规方法。
实施例1
在氩气气体保护下,将DOL和DME按1:1的体积比混合,按1 mol/L的锂盐浓度加入LiTFSI,搅拌得LiTFSI/(DOL+DME)溶液,再加入添加剂LiI,其中LiI的质量分数为2%,搅拌充分制成含添加剂的LiTFSI/(DOL+DME)功能电解液。
将金属锂负极,分别以LiTFSI/(DOL+DME)溶液和LiTFSI/(DOL+DME)功能电解液为电解液,PP为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为0.5 mA/cm2,沉积容量为1 mAh/cm2条件下,含有LiI添加剂的Li||Cu电池循环200圈后其库伦效率仍有98%(见图1)。分别以LiTFSI/(DOL+DME)溶液和LiTFSI/(DOL+DME)功能电解液为电解液,将其组装成Li||Li对称电池,在电流密度为0.5 mA/cm2,沉积容量为1 mAh/cm2条件下,含有LiI添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到1000h,滞后电压也得到了明显改善,约25 mV(见图2)。将循环50圈的电池拆开,用电解液反复冲洗之后,从扫描电镜图中我们可以看出,未采用添加剂的金属锂表面出现了大量的锂枝晶(见图3),而采用添加剂的金属锂表面非常平整(见图4),表明该添加剂有效的抑制了枝晶的生长。分别以LiTFSI/(DOL+DME)溶液和LiTFSI/(DOL+DME)功能电解液为电解液,与硫正极组装成全电池,在2 C(1 C=1675 mAh/g)电流密度下,以LiTFSI/(DOL+DME)功能电解液组装的全电池放电比容量仍高达640.8 mAh/g,显示了极为优异的倍率稳定性;而以LiTFSI/(DOL+DME)溶液为电解液组装的全电池放电比容量仅有576.9 mAh/g。
实施例2
在氩气气体保护下,将EC和DMC按1:1的体积比混合,按1 mol/L的锂盐浓度加入LiPF6,搅拌成LiPF6/(EC+DMC)溶液,再加入添加剂LiI,其中LiI的质量分数为2%,搅拌充分制成采用添加剂LiI的LiPF6/(EC+DMC)功能电解液。
将金属锂负极,分别以制得的LiPF6/(EC+DMC)溶液和LiPF6/(EC+DMC)功能电解液为电解液,PP为隔膜,与铜箔组装成Li||Cu电池,测试发现,采用添加剂的Li||Cu电池在电流密度为0.5 mA/cm2,沉积容量为1 mAh/cm2条件下,循环80圈后其库伦效率仍有94%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环80圈后的,库伦效率仅为61.2%(可参考实施例1中的图1)。分别以制得的LiPF6/(EC+DMC)溶液和LiPF6/(EC+DMC)功能电解液为电解液,将其组装成Li||Li对称电池,在电流密度为0.5 mA/cm2,沉积容量为0.5mAh/cm2条件下,采用LiI添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到600h,滞后电压也得到了明显改善,约53 mV;而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环600h其滞后电压高达320 mV,(可参照实施例1中的图2)。将循环50圈的电池拆开,用电解液反复冲洗之后,从扫描电镜图中我们可以看出,未采用添加剂的金属锂表面出现了大量的锂枝晶,而采用添加剂的金属锂表面非常平整,表明该添加剂有效的抑制了枝晶的生长(扫描电镜图可参照实施例1中的图3和图4)。分别以制得的LiPF6/(EC+DMC)溶液和LiPF6/(EC+DMC)功能电解液为电解液,与高镍三元材料组装成全电池,在1 C(1 C=180 mAh/g)电流密度下,采用添加剂的所述全电池初始放电比容量为167.4 mAh/g,经80圈循环后容量保持率为90.6%,显示了极为稳定的循环性能(可参见图5)。
实施例3
在氩气气体保护下,将DOL和DME按1:1的体积比混合,按1 mol/L的锂盐浓度加入LiCF3SO3,搅拌成均一溶液,得LiCF3SO3/(DOL+DME)溶液,再加入添加剂LiCl和LiNO3,其中LiCl的质量分数为1%,LiNO3的质量分数为2%,搅拌充分得采用添加剂的LiCF3SO3/(DOL+DME)功能电解液。
将金属锂负极,分别以LiCF3SO3/(DOL+DME)溶液和LiCF3SO3/(DOL+DME)功能电解液为电解液,PP为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为2 mA/cm2,沉积容量为4 mAh/cm2条件下,采用添加剂的Li||Cu电池循环40圈后其库伦效率仍有93%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环40圈后的,库伦效率仅为83.4%(可参考实施例1中的图1)。分别以LiCF3SO3/(DOL+DME)溶液和LiCF3SO3/(DOL+DME)功能电解液为电解液,组装成Li||Li对称电池,在电流密度为1 mA/cm2,沉积容量为4 mAh/cm2条件下,采用添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到300h,滞后电压也得到了明显改善(~75 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环300h其滞后电压高达450 mV,(可参照实施例1中的图2)。分别以LiCF3SO3/(DOL+DME)溶液和LiCF3SO3/(DOL+DME)功能电解液为电解液,与硒正极组装成全电池,在1 C(1 C=678 mAh/g)电流密度下,含有添加剂的所述全电池放电比容量仍高达224mAh/g,显示了极为优异的倍率稳定性;而以LiCF3SO3/(DOL+DME)溶液电解液组装的全电池放电比容量仅有196.7 mAh/g。
实施例4
在氩气气体保护下,将EC、PC和DMC按3:1:6的体积比混合,按5 mol/L的锂盐浓度加入LiBF4,搅拌成均一溶液,得LiBF4/(EC+PC+DMC)溶液,再加入LiPF6,其中LiPF6的质量分数为3%,搅拌充分,得采用添加剂的LiBF4/(EC+PC+DMC)功能电解液。
将金属锂负极,分别以LiBF4/(EC+PC+DMC)溶液和LiBF4/(EC+PC+DMC)功能电解液为电解液,PE为隔膜,与铜箔组装成Li||Cu电池,测试发现,采用添加剂的Li||Cu电池在电流密度为0.2 mA/cm2,沉积容量为0.5 mAh/cm2条件下,循环140圈后其库伦效率仍有86%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环140圈后的,库伦效率仅为50.7%(可参考实施例1中的图1)。分别以LiBF4/(EC+PC+DMC)溶液和LiBF4/(EC+PC+DMC)功能电解液为电解液,将其组装成Li||Li对称电池,在电流密度为0.2 mA/cm2,沉积容量为0.5mAh/cm2条件下,采用添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到450h,滞后电压也得到了明显改善(~34 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环450h其滞后电压高达180 mV,(可参照实施例1中的图2)。分别以LiBF4/(EC+PC+DMC)溶液和LiBF4/(EC+PC+DMC)功能电解液为电解液,与LiV3(PO4)3材料组装成全电池,在1 A/g电流密度下,采用添加剂的所述全电池放电比容量仍高达109.7 mAh/g,显示了优异的倍率性能;而以LiBF4/(EC+PC+DMC)溶液电解液组装的全电池放电比容量仅有81.5 mAh/g。
实施例5
在氩气气体保护下,将PC和DEC按1:2的体积比混合,按3 mol/L的锂盐浓度加入LiPF6,搅拌成均一溶液,得LiPF6/(PC+DEC)溶液,再加入LiTFSI,其中LiTFSI的质量分数为1.5%,搅拌充分,得采用添加剂的LiPF6/(PC+DEC)功能电解液。
将金属锂负极,分别以LiPF6/(PC+DEC)溶液和LiPF6/(PC+DEC)功能电解液为电解液,PE为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为2 mA/cm2,沉积容量为1mAh/cm2条件下,采用添加剂的Li||Cu电池循环100圈后其库伦效率仍有71%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环100圈后的,库伦效率仅为33.4%(可参考实施例1中的图1)。分别以LiPF6/(PC+DEC)溶液和LiPF6/(PC+DEC)功能电解液为电解液,将其组装成Li||Li对称电池,在电流密度为2 mA/cm2,沉积容量为1 mAh/cm2条件下,采用添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到200h,滞后电压也得到了明显改善(~66 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环200h其滞后电压高达248 mV,(可参照实施例1中的图2)。
实施例6
在氩气气体保护下,将EC和DEC按1:1的体积比混合,按1 mol/L的锂盐浓度加入LiClO4,搅拌成均一溶液,得LiClO4/(EC+DEC)溶液,再加入LiBr,其中LiBr的质量分数为1%,搅拌充分,得采用添加剂的LiClO4/(EC+DEC)功能电解液。
将金属锂负极,分别以LiClO4/(EC+DEC)溶液和LiClO4/(EC+DEC)功能电解液为电解液,GF为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为2 mA/cm2,沉积容量为3 mAh/cm2条件下,采用添加剂的Li||Cu电池循环50圈后其库伦效率仍有90%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环50圈后的,库伦效率仅为71.2%(可参考实施例1中的图1)。分别以LiClO4/(EC+DEC)溶液和LiClO4/(EC+DEC)功能电解液为电解液,将其组装成Li||Li对称电池,在电流密度为2 mA/cm2,沉积容量为4 mAh/cm2条件下,含有添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到700h,滞后电压也得到了明显改善(~110 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环700h其滞后电压高达670 mV,(可参照实施例1中的图2)。分别以LiClO4/(EC+DEC)溶液和LiClO4/(EC+DEC)功能电解液为电解液,与磷酸铁锂材料相匹配组装成全电池,测试发现,在2 C大电流密度循环300圈之后,采用添加剂的所述全电池放电比容量仍高达120.6 mAh/g,显示了优异的倍率性能;而以LiClO4/(EC+DEC)溶液电解液组装的全电池放电比容量仅有60.4 mAh/g。
实施例7
在氩气气体保护下,将EC和PC按4:1的体积比混合,按8 mol/L的锂盐浓度加入LiBF4,搅拌成均一溶液,得LiBF4/(EC+PC)溶液,再加入Li2S6,其中Li2S6的质量分数为3%,搅拌充分,得LiBF4/(EC+PC)功能电解液。
将金属锂负极,分别以LiBF4/(EC+PC)溶液和LiBF4/(EC+PC)功能电解液为电解液,PE为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为1.5 mA/cm2,沉积容量为1.5mAh/cm2条件下,采用添加剂的Li||Cu电池循环120圈后其库伦效率仍有99%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环120圈后的,库伦效率仅为84.1%(可参考实施例1中的图1)。分别以LiBF4/(EC+PC)溶液和LiBF4/(EC+PC)功能电解液为电解液,组装成Li||Li对称电池,在电流密度为1.5 mA/cm2,沉积容量为1.5 mAh/cm2条件下,采用添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到1200h,滞后电压也得到了明显改善(~73 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环1200h其滞后电压高达406 mV,(可参照实施例1中的图2)。分别以LiBF4/(EC+PC)溶液和LiBF4/(EC+PC)功能电解液为电解液,与硫化铁材料相匹配组装成全电池,测试发现,在2 A/g电流密度循环800圈之后,采用添加剂的所述全电池放电比容量仍高达480.1mAh/g,显示了优异的倍率性能;而以LiBF4/(EC+PC)溶液电解液组装的全电池放电比容量仅有114.5 mAh/g。
实施例8
在氩气气体保护下,将DOL和DME按2:3的体积比混合,按10 mol/L的锂盐浓度加入LiTFSI,搅拌成均一溶液,得LiTFSI/(DOL+DME)溶液,再加入LiPF6,其中LiPF6的质量分数为2.8%,搅拌充分,得采用添加剂的LiTFSI/(DOL+DME)电解液。
将金属锂负极,分别以LiTFSI/(DOL+DME)溶液和LiTFSI/(DOL+DME)电解液为电解液,PP为隔膜,与铜箔组装成Li||Cu电池,测试发现,在电流密度为10 mA/cm2,沉积容量为4mAh/cm2条件下,循环150圈后含有添加剂的Li||Cu电池库伦效率仍有83%;而未采用添加剂的电解液组成的Li||Cu电池在同样条件下的循环150圈后的,库伦效率仅为33.8%(可参考实施例1中的图1)。分别以LiTFSI/(DOL+DME)溶液和LiTFSI/(DOL+DME)电解液为电解液,组装成Li||Li对称电池,在电流密度为10 mA/cm2,沉积容量为4 mAh/cm2条件下,采用添加剂的Li||Li对称电池充放电曲线稳定,循环时间能够达到500h,滞后电压也得到了明显改善(~208 mV);而以未采用添加剂的电解液组成的Li||Li对称电池显示出波动的的充放电曲线,在循环500h其滞后电压高达983 mV,(可参照实施例1中的图2)。
综合以上,采用所述添加剂不仅能在锂金属负极表面形成一层固态电解质膜,而且能够诱导电解液聚合形成一种低聚物覆盖在锂负极表面以及与之相匹配的正极材料的表面,能有效的降低界面间的副反应,抑制枝晶的生长,显著提高了锂金属电池的安全性能和电化学性能。
以上所述,仅为本发明的较佳实施例而已,并非对本发明做任何形式上的限定。凡本领域的技术人员利用本发明的技术方案对上述实施例作出的任何等同的变动、修饰或演变等,均仍属于本发明技术方案的范围内。

Claims (7)

1.一种抑制锂枝晶生长的电解液,包括添加剂、锂盐和有机溶剂,其特征在于,所述添加剂为六氟磷锂、高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、氟硼酸锂、六氟铝酸锂、六氟砷酸锂、氟化锂、氯化锂、溴化锂、硝酸锂、多硫化锂、氮化锂、磷化锂、二草酸硼酸锂、氧化锂、亚硫酸锂、硫酸锂、乙酸锂、氢氧化锂和草酸锂中的至少一种,所述锂盐不同于添加剂。
2.根据权利要求1所述的抑制锂枝晶生长的电解液,其特征在于,所述锂盐为六氟磷酸锂、高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、氟硼酸锂、六氟铝酸锂、六氟砷酸锂中不同于所述添加剂的至少一种。
3.根据权利要求1所述的抑制锂枝晶生长的电解液,其特征在于,所述有机溶剂包括碳酸二甲酯、碳酸二乙酯、1,4–丁丙酯、碳酸乙烯酯、碳酸丙烯酯、1,3-二氧戊环、乙二醇二甲醚和二乙二醇二甲醚中的至少一种。
4.根据权利要求1所述的抑制锂枝晶生长的电解液,其特征在于,所述电解液中,锂盐的浓度为0.6~10 mol/L。
5.根据权利要求1所述的抑制锂枝晶生长的电解液,其特征在于,所述电解液中,添加剂的质量分数为0.01%~5%。
6.一种抑制锂枝晶生长的锂电池,包括正极、弹片、垫片、隔膜、负极,其特征在于,还包括权利要求1~5任意一项所述的抑制锂枝晶生长的电解液。
7.根据权利要求6所述的抑制锂枝晶生长的锂电池,其特征在于,正极或负极材料为LiFePO4、LiV3(PO4)3、Li x CoO2 、Li y MnO2mLiMnO2•(1-m)LiAO2、LiNibCoaMn1-aO2、LiNi0.5Mn1.5O4、Li2TiO3、FeF3jH2O、S、Se、金属氧化物、金属硫化物中的至少一种, 其中0.4≤x≤1, 0.4≤y≤1,0<m<1, A选自Ni、 Co、 Mn、 Al、Fe中的一种,0.5≤b≤1, 0≤a≤0.2,0≤j≤0.5;
所述隔膜选自GF隔膜、PE隔膜、PP隔膜、PP/PE隔膜或PP/PE/PP隔膜的至少一种。
CN201910717337.7A 2019-05-15 2019-08-05 一种抑制锂枝晶生长的电解液及锂电池 Pending CN110416615A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910405536 2019-05-15
CN2019104055364 2019-05-15

Publications (1)

Publication Number Publication Date
CN110416615A true CN110416615A (zh) 2019-11-05

Family

ID=68365799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910717337.7A Pending CN110416615A (zh) 2019-05-15 2019-08-05 一种抑制锂枝晶生长的电解液及锂电池

Country Status (1)

Country Link
CN (1) CN110416615A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854436A (zh) * 2019-11-28 2020-02-28 广东工业大学 一种二次锂金属电池电解液及其制备方法
CN111129593A (zh) * 2019-12-25 2020-05-08 广东工业大学 一种二次锂金属电池电解液的添加剂、电解液及制备方法
CN112448037A (zh) * 2020-11-30 2021-03-05 广州天赐高新材料股份有限公司 一种补锂组合物、补锂电解液、锂二次电池补锂方法
CN112786824A (zh) * 2021-01-26 2021-05-11 武汉大学 一种基于亲核反应的锂离子电池正极材料表面修饰方法
CN112864459A (zh) * 2019-11-28 2021-05-28 广东工业大学 一种电解液及其制备方法和二次锂金属电池
CN113675469A (zh) * 2021-07-19 2021-11-19 华南理工大学 一种含硝酸锂的碳酸酯类电解液及其制备方法与在锂金属电池中的应用
CN113903993A (zh) * 2021-11-18 2022-01-07 中国科学院大学 一种锂金属电池电解液添加剂及其电解液和电池
CN113921824A (zh) * 2021-10-12 2022-01-11 松山湖材料实验室 锂离子二次电池
CN113937356A (zh) * 2020-06-29 2022-01-14 深圳新宙邦科技股份有限公司 一种电解液及电池
CN114373988A (zh) * 2020-11-20 2022-04-19 扬州大学 含氨基酸添加剂的锂金属电池电解液及其制备方法
CN114421010A (zh) * 2020-10-28 2022-04-29 陕西泽邦环境科技有限公司 一种补锂型锂离子电池电解液及其应用
CN114614088A (zh) * 2022-01-10 2022-06-10 天津大学 一种容量补偿型电解液添加剂、制备方法、应用以及含有该添加剂的电解液和二次电池
CN114899487A (zh) * 2022-05-18 2022-08-12 湖南大学 一种苯基三氟甲砜作为添加剂的电解液及其锂离子电池
CN114914543A (zh) * 2022-05-09 2022-08-16 四川大学 一种高效抑制枝晶的电解液添加剂及其应用和锂金属二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501897A (zh) * 2006-08-10 2009-08-05 奥克斯能源有限公司 带有金属锂电极的电池或电池组以及用于该电池或电池组的电解质
CN107275671A (zh) * 2017-07-07 2017-10-20 东莞市航盛新能源材料有限公司 一种抑制锂枝晶的电解液及制备方法和锂电池
KR20180025581A (ko) * 2016-09-01 2018-03-09 주식회사 엘지화학 리튬 폴리설파이드 첨가제를 포함하는 리튬-공기 전지용 전해질 및 이를 포함하는 리튬-공기 전지
CN108448058A (zh) * 2018-01-31 2018-08-24 华南理工大学 一种锂金属电池锂负极的表面修饰改性方法及锂金属电池
CN109148956A (zh) * 2018-09-21 2019-01-04 成都新柯力化工科技有限公司 一种提高安全稳定性的锂硫电池电解液
US20190013552A1 (en) * 2017-07-07 2019-01-10 GM Global Technology Operations LLC Electrolyte system suppressing or minimizing metal contaminants and dendrite formation in lithium ion batteries
CN109509912A (zh) * 2017-09-15 2019-03-22 浙江省化工研究院有限公司 一种抑制金属锂枝晶生长的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501897A (zh) * 2006-08-10 2009-08-05 奥克斯能源有限公司 带有金属锂电极的电池或电池组以及用于该电池或电池组的电解质
KR20180025581A (ko) * 2016-09-01 2018-03-09 주식회사 엘지화학 리튬 폴리설파이드 첨가제를 포함하는 리튬-공기 전지용 전해질 및 이를 포함하는 리튬-공기 전지
CN107275671A (zh) * 2017-07-07 2017-10-20 东莞市航盛新能源材料有限公司 一种抑制锂枝晶的电解液及制备方法和锂电池
US20190013552A1 (en) * 2017-07-07 2019-01-10 GM Global Technology Operations LLC Electrolyte system suppressing or minimizing metal contaminants and dendrite formation in lithium ion batteries
CN109509912A (zh) * 2017-09-15 2019-03-22 浙江省化工研究院有限公司 一种抑制金属锂枝晶生长的方法
CN108448058A (zh) * 2018-01-31 2018-08-24 华南理工大学 一种锂金属电池锂负极的表面修饰改性方法及锂金属电池
CN109148956A (zh) * 2018-09-21 2019-01-04 成都新柯力化工科技有限公司 一种提高安全稳定性的锂硫电池电解液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GANG WANG等: "Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes", 《ENERGY STORAGE MATERIALS》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854436B (zh) * 2019-11-28 2021-11-30 广东工业大学 一种二次锂金属电池电解液及其制备方法
CN110854436A (zh) * 2019-11-28 2020-02-28 广东工业大学 一种二次锂金属电池电解液及其制备方法
CN112864459A (zh) * 2019-11-28 2021-05-28 广东工业大学 一种电解液及其制备方法和二次锂金属电池
CN111129593A (zh) * 2019-12-25 2020-05-08 广东工业大学 一种二次锂金属电池电解液的添加剂、电解液及制备方法
CN113937356A (zh) * 2020-06-29 2022-01-14 深圳新宙邦科技股份有限公司 一种电解液及电池
CN114421010A (zh) * 2020-10-28 2022-04-29 陕西泽邦环境科技有限公司 一种补锂型锂离子电池电解液及其应用
CN114373988A (zh) * 2020-11-20 2022-04-19 扬州大学 含氨基酸添加剂的锂金属电池电解液及其制备方法
CN112448037A (zh) * 2020-11-30 2021-03-05 广州天赐高新材料股份有限公司 一种补锂组合物、补锂电解液、锂二次电池补锂方法
CN112786824A (zh) * 2021-01-26 2021-05-11 武汉大学 一种基于亲核反应的锂离子电池正极材料表面修饰方法
CN112786824B (zh) * 2021-01-26 2022-04-01 武汉大学 一种基于亲核反应的锂离子电池正极材料表面修饰方法
CN113675469A (zh) * 2021-07-19 2021-11-19 华南理工大学 一种含硝酸锂的碳酸酯类电解液及其制备方法与在锂金属电池中的应用
CN113921824A (zh) * 2021-10-12 2022-01-11 松山湖材料实验室 锂离子二次电池
CN113921824B (zh) * 2021-10-12 2023-03-10 松山湖材料实验室 锂离子二次电池
CN113903993A (zh) * 2021-11-18 2022-01-07 中国科学院大学 一种锂金属电池电解液添加剂及其电解液和电池
CN113903993B (zh) * 2021-11-18 2024-04-09 中国科学院大学 一种锂金属电池电解液添加剂及其电解液和电池
CN114614088A (zh) * 2022-01-10 2022-06-10 天津大学 一种容量补偿型电解液添加剂、制备方法、应用以及含有该添加剂的电解液和二次电池
CN114614088B (zh) * 2022-01-10 2024-05-07 天津储翕科技有限公司 一种容量补偿型电解液添加剂、制备方法、应用以及含有该添加剂的电解液和二次电池
CN114914543A (zh) * 2022-05-09 2022-08-16 四川大学 一种高效抑制枝晶的电解液添加剂及其应用和锂金属二次电池
CN114899487A (zh) * 2022-05-18 2022-08-12 湖南大学 一种苯基三氟甲砜作为添加剂的电解液及其锂离子电池

Similar Documents

Publication Publication Date Title
CN110416615A (zh) 一种抑制锂枝晶生长的电解液及锂电池
CN111342138B (zh) 一种提高成膜性的锂离子电池电解液的使用方法
CN101207197B (zh) 锂离子电池正极材料和含有该材料的正极和锂离子电池
CN110112465B (zh) 富锂锰基正极材料体系电池用电解液及锂离子电池
CN106159325B (zh) 一种锂离子电池用低温电解液及低温锂离子电池
CN107017432A (zh) 非水电解液及锂离子电池
CN109088099A (zh) 一种兼顾高低温性能的磺酰类电解液添加剂及含该添加剂的电解液
CN109888385B (zh) 一种锂金属二次电池用电解液及锂金属二次电池
CN108649265A (zh) 电解液添加剂、锂电池电解液及锂电池
CN110875490B (zh) 一种锂离子电池及其制备方法
CN113659203A (zh) 一种含复合添加剂的电解液及其应用
CN114300750A (zh) 锂离子电池电解液及锂离子电池
CN111129593A (zh) 一种二次锂金属电池电解液的添加剂、电解液及制备方法
CN112216865A (zh) 一种锂金属电池电解液及锂金属电池
CN113206293A (zh) 一种锂金属电池电解液及其制备方法与应用
CN112670574A (zh) 一种用于金属电池的电解液及金属电池
CN110176622B (zh) 一种金属锂二次电池电解液及其制备方法与应用
CN116207346A (zh) 一种抑制金属锂二次电池循环体积膨胀的电解液及制备方法
CN111934015A (zh) 一种锂离子电池非水电解液及含该非水电解液的锂离子电池
CN114024030B (zh) 一种非水电解液及含有该非水电解液的电池
CN113809401A (zh) 锂离子电池非水电解液及其应用
CN108598589A (zh) 一种锂离子电池的注液方法
CN114497739B (zh) 一种锂二次电池电解液及其应用
CN113871712B (zh) 锂离子电池电解液及其制备方法和锂离子电池
CN115548437A (zh) 一种阴离子调控的锂金属电池电解液

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105

RJ01 Rejection of invention patent application after publication