CN110408911A - 一种大面积薄膜的可控制备装置及方法 - Google Patents

一种大面积薄膜的可控制备装置及方法 Download PDF

Info

Publication number
CN110408911A
CN110408911A CN201910634635.XA CN201910634635A CN110408911A CN 110408911 A CN110408911 A CN 110408911A CN 201910634635 A CN201910634635 A CN 201910634635A CN 110408911 A CN110408911 A CN 110408911A
Authority
CN
China
Prior art keywords
quartz tube
ultraviolet
gas
growth substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910634635.XA
Other languages
English (en)
Other versions
CN110408911B (zh
Inventor
王跃
李雪松
青芳竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910634635.XA priority Critical patent/CN110408911B/zh
Publication of CN110408911A publication Critical patent/CN110408911A/zh
Application granted granted Critical
Publication of CN110408911B publication Critical patent/CN110408911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本领域属于薄膜材料制备技术领域,涉及化学沉积装置,具体为一种大面积薄膜的可控制备装置及方法。本发明在管式炉(石英管)中放入紫外发生装置,利用紫外光(波长为10~400nm)具有极高的能量、能够在一定波长的情况下使化合物裂解的特性,通过紫外光对碳氢化合物等进行裂解,使薄膜的生长温度大大降低,能够在低温甚至在常温下进行制备;同时,紫外发生装置能够任意方向移动,进而能够制备出特定形状的薄膜,这样极大地节省了能源和制备成本,提高了效率。

Description

一种大面积薄膜的可控制备装置及方法
技术领域
本领域属于薄膜材料制备技术领域;具体为一种大面积薄膜的可控制备装置及方法。
背景技术
二维材料是指几个原子厚度以下的层状材料,目前,二维材料是科学研究的热点,其具有非常优越的性能,如导电导热等性能,在半导体等领域都有着极大的前景。
化学气相沉积(CVD)法是制备二维材料薄膜的常用方法,该方法一般使用金属作为衬底,使前驱体在金属衬底上催化裂解,沉积形成薄膜。例如,CVD法制备石墨烯是通过将衬底加热到上千度,然后通入碳氢化合物,其在衬底上裂解沉积形成石墨烯,反应结束后系统冷却至室温;生长在衬底上的石墨烯可以直接应用,也可以转移到其它衬底上进行应用。由于化学气相沉积法常是使用高温促使碳氢化合物等气体裂解沉积在衬底上成膜,这会浪费巨大的能源。为节省能源,在采用化学气相沉积法制备石墨烯或h-BN等二维材料薄膜时,可以在200℃等较低温下进行,但是这样依旧会损耗较大的能源,而且气体的有效转化率较低,即高温或者催化基底只能将小比例的碳氢化合物裂解,依旧会造成能源的浪费。
发明内容
本发明的目的在于针对上述技术问题,提供一种大面积薄膜的可控制备装置及方法;由于紫外光(波长为10~400nm)具有极高的能量,能够在一定波长的情况下使化合物裂解,故本发明中采用紫外光对碳氢化合物等进行裂解的方法,使薄膜在低温甚至在常温下进行制备;基于此,本发明提供一种新的CVD装置,用于对大面积薄膜进行特定形状的制备,同时,采用该装置对应的制备方法制备二维薄膜,能够极大地节省能源,对环境友好,且能够在基底上进行特定形状的薄膜制备。
为实现上述目的,本发明采用的技术方案如下:
一种大面积薄膜的可控制备装置,包括:进气管1、法兰2、石英管3、加热装置4、生长基底5、气体导管6、紫外发生装置7、紫外发出探头8、控制臂9、电机装置10、外接导线11、出气口12,隔热层13;其特征在于,
所述石英管3一端固定密封、并设置出气口12;
所述加热装置4包覆于石英管3侧壁、用于加热生长基底;
所述样品台5固定于石英管3中、且位于中心位置、用于放置生长基底;
所述紫外发出装置7与控制臂9位于石英管内、且均采用隔热层13包覆,所述紫外发出装置7通过紫外发出探头8发生的紫外光垂直照射生长基底,紫外发出探头7连接控制臂9、并通过控制臂9在电机装置10驱动下任意方向移动;所述电机装置10固定于石英管固定密封一端,并通过外接导线11连接电源以及控制系统;
所述石英管的另一端通过法兰2密封、且设置进气口1,所述气体导管6与进气口1对接、将反应气体导向生长基底。
采用上述装置的大面积薄膜的可控制备方法,包括以下步骤:
步骤1、将基底置于权利要求1所述大面积薄膜的可控制备装置的样品台上;
步骤2、将石英管抽至真空,后通入氩气至石英管内到达大气压;
步骤3、往石英管中通入1~1000sccm的氩气,作为保护气体;
步骤4、保持氩气的量不变,打开加热装置,将基底加热到50~200℃,退火1~100min;
步骤5、打开紫外发生器,设置紫外光波长为50~350nm,紫外光发出探头距生长基底1~103μm;同时,向石英管中通入1~500sccm的氢气和1~500sccm的甲烷,生长时间为1~1000min;关闭紫外发生器,最后冷却至室温,将基底取出。
与现有技术相比,本发明的有益效果在于:
本发明中,在管式炉(石英管)中放入紫外发生装置,通过紫外光对碳氢化合物等进行裂解,使薄膜的生长温度大大降低,极大地提高气体转化率;同时,紫外发生装置能够任意方向移动,进而能够制备出特定形状的薄膜,这样极大地节省了能源和制备成本,提高了效率。
附图说明
图1为本发明高效且可控制备大面积薄膜的装置主视示意图;
图2为本发明高效且可控制备大面积薄膜的装置局部剖视图;
其中,1为进气管、2为法兰、3为石英管、4为加热装置、5为样品台、6为气体导管、7为紫外发生装置、8为紫外发出探头、9为控制臂、10为电机装置、11为外接导线、12为出气口,13为隔热层。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本实施例提供一种高效且可控制备大面积薄膜的装置及方法,其装置示意图如图1、图2所示;具体包括:进气管1、法兰2、石英管3、加热装置4、样品台5、气体导管6、紫外发生装置7、紫外发出探头8、控制臂9、电机装置10、外接导线11、出气口12,隔热层13;其中,
所述石英管3一端固定密封、并设置出气口12;
所述加热装置4包覆于石英管3侧壁、用于加热生长基底;
所述样品台5固定于石英管3中、且位于中心位置、用于放置生长基底;
所述紫外发出装置7与控制臂9位于石英管内、且均采用隔热层13包覆,所述紫外发出装置7通过紫外发出探头8发生的紫外光垂直照射生长基底,紫外发出探头7连接控制臂9、并通过控制臂9在电机装置10驱动下任意方向移动;所述电机装置10固定于石英管固定密封一端,并通过外接导线11连接电源以及控制系统;
所述石英管的另一端通过法兰2密封、且设置进气口1,所述气体导管6与进气口1对接、将反应气体导向生长基底。
用以下实施过程来说明发明的可行性:
步骤1、将基底置于权利要求1所述大面积薄膜的可控制备装置的样品台上;
步骤2、将石英管抽至真空,后通入氩气至石英管内到达大气压;
步骤3、往石英管中通入100sccm的氩气,作为保护气体;
步骤4、保持氩气的量不变,打开加热装置,将基底加热到70℃,退火30min;
步骤5、打开紫外发生器,设置紫外光波长为150nm、紫外光发出探头距生长基底1mm;同时,向石英管中通入10sccm的氢气和50sccm的甲烷,生长时间为60min;关闭紫外发生器,最后冷却至室温,将基底取出。
本实施例中,以制备石墨烯为例,采用管式炉作为石墨烯的生长系统,在石英管中央放一紫外光发生器,其可以任意方向移动,以便可以制备特定性状的石墨烯;在出气口处放一紫外发生器的控制装置,其受系统外计算机的控制。生长基底为绝缘基底(如硅片等)或金属基底(如铜、镍等),基底平放在石英管中,当系统达到一定温度时,通入碳氢化合物等气体,打开紫外发生器,紫外光催化碳氢化合物裂解形成自由基,自由基极不稳定,极易再次聚合形成化合物,然而紫外光发出探头与生长基底距离很小,所以薄膜只在有紫外光的区域可以形成,可以直接在基底上制备石墨烯;而且随着紫外发生器的移动,石墨烯的生长区域也随之发生变化,达到了特定形状的制备;可以根据需要,通过改变紫外光的波长、发出紫外光的面积以及移动的速率,达到制备特定形状石墨烯的目的。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (2)

1.一种大面积薄膜的可控制备装置,包括:进气管(1)、法兰(2)、石英管(3)、加热装置(4)、生长基底(5)、气体导管6、紫外发生装置7、紫外发出探头(8)、控制臂(9)、电机装置(10)、外接导线(11)、出气口(12),隔热层(13);其特征在于,
所述石英管(3)一端固定密封、并设置出气口(12);
所述加热装置(4)包覆于石英管(3)侧壁、用于加热生长基底;
所述样品台(5)固定于石英管(3)中、且位于中心位置、用于放置生长基底;
所述紫外发出装置(7)与控制臂(9)位于石英管内、且均采用隔热层(13)包覆,所述紫外发出装置(7)通过紫外发出探头(8)发生的紫外光垂直照射生长基底,紫外发出探头(7)连接控制臂(9)、并通过控制臂(9)在电机装置(10)驱动下任意方向移动;所述电机装置(10)固定于石英管固定密封一端,并通过外接导线(11)连接电源以及控制系统;
所述石英管的另一端通过法兰(2)密封、且设置进气口(1),所述气体导管(6)与进气口(1)对接、将反应气体导向生长基底。
2.采用权利要求1所述装置的大面积薄膜的可控制备方法,包括以下步骤:
步骤1、将基底置于权利要求1所述大面积薄膜的可控制备装置的样品台上;
步骤2、将石英管抽至真空,后通入氩气至石英管内到达大气压;
步骤3、往石英管中通入1~1000sccm的氩气,作为保护气体;
步骤4、保持氩气的量不变,打开加热装置,将基底加热到50~200℃,退火1~100min;
步骤5、打开紫外发生器,设置紫外光波长为50~350nm,紫外光发出探头距生长基底1~103μm;同时,向石英管中通入1~500sccm的氢气和1~500sccm的甲烷,生长时间为1~1000min;
步骤6、关闭紫外发生器,冷却至室温。
CN201910634635.XA 2019-07-15 2019-07-15 一种大面积薄膜的可控制备装置及方法 Active CN110408911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910634635.XA CN110408911B (zh) 2019-07-15 2019-07-15 一种大面积薄膜的可控制备装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910634635.XA CN110408911B (zh) 2019-07-15 2019-07-15 一种大面积薄膜的可控制备装置及方法

Publications (2)

Publication Number Publication Date
CN110408911A true CN110408911A (zh) 2019-11-05
CN110408911B CN110408911B (zh) 2021-08-06

Family

ID=68361412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910634635.XA Active CN110408911B (zh) 2019-07-15 2019-07-15 一种大面积薄膜的可控制备装置及方法

Country Status (1)

Country Link
CN (1) CN110408911B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118475A (zh) * 2020-01-15 2020-05-08 中国科学院半导体研究所 用于碳化硅材料生长和后处理的高温装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328866A (ja) * 1986-07-23 1988-02-06 Mitsubishi Electric Corp 硬質炭素膜合成装置
JPS63288993A (ja) * 1987-05-20 1988-11-25 Sumitomo Electric Ind Ltd ダイヤモンドの気相合成法
JPH0967674A (ja) * 1995-08-28 1997-03-11 Sony Corp 薄膜形成方法及び装置
CN102418082A (zh) * 2011-11-21 2012-04-18 中国矿业大学 薄膜涂层微纳米织构制备方法及其装置
CN107924815A (zh) * 2015-07-30 2018-04-17 威科仪器有限公司 在化学气相沉积系统中用于受控制掺杂物掺入和活化的方法和设备
CN109877341A (zh) * 2019-02-21 2019-06-14 武汉大学 一种纳米金属颗粒的冶炼方法及其图案化的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328866A (ja) * 1986-07-23 1988-02-06 Mitsubishi Electric Corp 硬質炭素膜合成装置
JPS63288993A (ja) * 1987-05-20 1988-11-25 Sumitomo Electric Ind Ltd ダイヤモンドの気相合成法
JPH0967674A (ja) * 1995-08-28 1997-03-11 Sony Corp 薄膜形成方法及び装置
CN102418082A (zh) * 2011-11-21 2012-04-18 中国矿业大学 薄膜涂层微纳米织构制备方法及其装置
CN107924815A (zh) * 2015-07-30 2018-04-17 威科仪器有限公司 在化学气相沉积系统中用于受控制掺杂物掺入和活化的方法和设备
CN109877341A (zh) * 2019-02-21 2019-06-14 武汉大学 一种纳米金属颗粒的冶炼方法及其图案化的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118475A (zh) * 2020-01-15 2020-05-08 中国科学院半导体研究所 用于碳化硅材料生长和后处理的高温装置及方法

Also Published As

Publication number Publication date
CN110408911B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN108342716B (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN105568253B (zh) 一种等离子体化学气相沉积设备生长六方氮化硼的方法
CN108033439B (zh) 一种等离子体辅助溅射固态碳源的石墨烯低温制备方法
KR20210018855A (ko) 고효율 화학 기상 증착법 그래핀 주름 제거 방법
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
US20160060764A1 (en) Catalytic Chemical Vapor Deposition Apparatus
CN110666158A (zh) 一种石墨烯包覆纳米铜的方法
CN103352202A (zh) 一种常压化学气相沉积大面积高质量双层石墨烯薄膜的可控制备方法
KR100972962B1 (ko) 발열체 cvd 장치
CN110408911B (zh) 一种大面积薄膜的可控制备装置及方法
JP4581119B2 (ja) NiSi膜形成材料およびNiSi膜形成方法
CN107311157A (zh) 一种以co2为碳源低温制备石墨烯的方法
CN106555175A (zh) 一种高密度等离子体增强化学气相沉积设备
CN103350992A (zh) 一种高导电性氟化石墨烯薄膜的制备方法
CN109830413B (zh) GaN微米棒阵列/石墨烯场发射阴极复合材料制备方法
JP2001313272A (ja) プラズマcvd法およびそれに用いる装置
CN111910171A (zh) 一种电场和/或磁场调控合成二维材料的装置和方法
CN114804082B (zh) 一种台阶调控的石墨烯蓝宝石晶圆及其制备方法
CN111676450A (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
CN111393034A (zh) 一种石墨烯玻璃的连续生产系统及方法
JP2005317670A (ja) (100)配向した立方晶炭化珪素結晶膜の作製方法
CN114540952B (zh) 一种可重复利用衬底异质外延金刚石材料的方法
CN112921296B (zh) 一种在异型金属基底上生长石墨烯的方法
CN108893723B (zh) 一种快速制备超薄陶瓷片的方法
CN109244226B (zh) 一种复合膜、半导体器件及半导体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant