CN110365293A - 振荡装置 - Google Patents

振荡装置 Download PDF

Info

Publication number
CN110365293A
CN110365293A CN201910223357.9A CN201910223357A CN110365293A CN 110365293 A CN110365293 A CN 110365293A CN 201910223357 A CN201910223357 A CN 201910223357A CN 110365293 A CN110365293 A CN 110365293A
Authority
CN
China
Prior art keywords
voltage
oscillation
constant pressure
gradient
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910223357.9A
Other languages
English (en)
Other versions
CN110365293B (zh
Inventor
桶谷诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Corp
Original Assignee
Seiko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Corp filed Critical Seiko Corp
Publication of CN110365293A publication Critical patent/CN110365293A/zh
Application granted granted Critical
Publication of CN110365293B publication Critical patent/CN110365293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8236Combination of enhancement and depletion transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0062Bias and operating point
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0082Lowering the supply voltage and saving power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明涉及一种振荡装置,其在不设置用于调节温度特性的新的晶体管的条件下,在振荡装置的工作保证温度范围内使恒压电路所输出的恒压成为振荡电路的振荡停止电压以上且极力接近于振荡停止电压的电压。在所述振荡装置中,相对于产生成为恒压(VREG)的基础的基准电流(Iref)的耗尽型的N沟道晶体管(11a),而连接有在栅极与源极之间使基准电流(Iref)负反馈的电阻(11b)。电阻(11b)的电阻值具有与假设该电阻的电阻值相对于温度变化的梯度为0的情况下的、恒压与振荡停止电压的差分相对于温度变化的梯度为相同符号的相对于温度变化的梯度。

Description

振荡装置
技术领域
此发明涉及一种被用于各种电子设备中的振荡装置。
背景技术
已知一种由生成恒压的恒压电路、和通过所生成的恒压来使水晶振子振荡的晶体振荡电路所构成的振荡装置。这种振荡装置被广泛用于钟表、便携式电话等中,以期望抑制消耗电流。为了抑制振荡装置的消耗电流,极力减小用于驱动晶体振荡电路的电压较为重要。另一方面,晶体振荡电路具有由水晶振子的振荡特性、振荡逆变器、负载电容等而决定的振荡停止电压。众所周知,振荡停止电压在通常的动作温度范围、例如-40℃~80℃内,会以某种确定的相对于温度变化的梯度而线性地下降。因此,为了抑制振荡装置的消耗电流,需要在动作保障温度范围内,使恒压电路所输出的恒压高于振荡停止电压且极力接近于振荡停止电压。为此,需要在动作保障温度范围内,使恒压相对于温度变化的梯度极力接近于振荡停止电压相对于温度变化的梯度。因此,在专利文献1中,通过改变构成恒压电路的电流源的耗尽型晶体管的阈值电压,从而使恒压电路所输出的恒压相对于温度变化的梯度接近于振荡停止电压相对于温度变化的梯度。
然而,在上述的现有的技术中,振荡停止电压相对于温度变化的梯度根据晶体振荡电路而有所不同。因此,存在如下问题,即,在包括恒压电路和晶体振荡电路的半导体装置的制造工程中,必须匹配于与恒压电路组合的晶体振荡电路的振荡停止电压相对于温度变化的梯度来对恒压电路中的恒流源的耗尽型晶体管的阈值电压进行调节,从而实现对消耗电流进行了抑制的振荡装置较为困难。
专利文献1:日本特许第5788755号
发明内容
此发明的一种方式的振荡装置的特征在于,具有:恒压电路,其具备产生基准电流的恒流源、和产生与所述基准电流相对应的恒压的恒压产生部;振荡电路,其通过被施加所述恒压从而进行振荡,并且当在预定的温度范围内所述恒压成为振荡停止电压以下时停止振荡,所述恒流源具备:耗尽型的晶体管,其产生所述基准电流;反馈用元件,其在所述晶体管的栅极与源极之间使所述基准电流进行负反馈,所述反馈用元件的电阻值具有使所述恒压与所述振荡停止电压的差分相对于温度变化的梯度接近于0的相对于温度变化的梯度。在此,反馈用元件例如为电阻。
根据该方式,通过反馈用元件的电阻值相对于温度变化的梯度,从而使恒压与振荡停止电压的差分相对于温度变化的梯度接近于0。因此,能够在动作保障温度范围内使恒压电路所输出的恒压高于振荡停止电压、且接近于振荡停止电压,从而能够减小振荡电路的消耗电力。
在优选的方式中,所述恒压产生部产生根据所述基准电流的增加而上升的所述恒压,所述反馈用元件的电阻值相对于温度变化的梯度的符号,与所述反馈用元件的电阻值相对于温度变化的梯度为0的情况下的、所述恒压与所述振荡停止电压的差分相对于温度变化的梯度的符号相同。
在该方式中,在假设反馈用元件的电阻值相对于温度变化的梯度为0时的、恒压与振荡停止电压的差分相对于温度变化的梯度的符号为负的情况下,反馈用元件的电阻值相对于温度变化的梯度被设为负。在该情况下,反馈用元件的电阻值根据温度上升而减小,并且通过反馈量减小从而基准电流增加,且恒压上升。其结果为,预定的温度范围内的恒压与振荡停止电压的差分相对于温度变化的梯度接近于0。另一方面,在假设反馈用元件的电阻值相对于温度变化的梯度为0时的、恒压与振荡停止电压的差分相对于温度变化的梯度的符号为正的情况下,反馈用元件的电阻值相对于温度变化的梯度被设为正。在该情况下,反馈用元件的电阻值根据温度上升而增加,并且通过反馈量增加从而基准电流减小,且恒压下降。其结果为,预定的温度范围内的恒压与振荡停止电压的差分相对于温度变化的梯度接近于0。
在另一优选的方式中,所述恒压产生部产生根据所述基准电流的增加而下降的所述恒压,所述反馈用元件的电阻值相对于温度变化的梯度的符号,与所述反馈用元件的电阻值相对于温度变化的梯度为0的情况下的、所述恒压与所述振荡停止电压的差分相对于温度变化的梯度的符号不同。
在该方式中,在假设反馈用元件的电阻值相对于温度变化的梯度为0时的、恒压与振荡停止电压的差分相对于温度变化的梯度的符号为负的情况下,反馈用元件的电阻值相对于温度变化的梯度被设为正。在该情况下,反馈用元件的电阻值根据温度上升而增加,并且通过反馈量增加从而基准电流减小,且恒压上升。其结果为,预定的温度范围内的恒压与振荡停止电压的差分相对于温度变化的梯度接近于0。另一方面,在假设反馈用元件的电阻值相对于温度变化的梯度为0时的、恒压与振荡停止电压的差分相对于温度变化的梯度的符号为正的情况下,反馈用元件的电阻值相对于温度变化的梯度被设为负。在该情况下,反馈用元件的电阻值根据温度上升而减小,并且通过反馈量减小从而基准电流增加,且恒压下降。其结果为,预定的温度范围内的恒压与振荡停止电压的差分相对于温度变化的梯度接近于0。
附图说明
图1为表示一个实施方式的振荡装置的结构的框图。
图2为表示该实施方式中的恒压电路的结构的电路图。
图3为表示在该实施方式中,在假设反馈用元件的电阻值相对于温度变化的梯度为0的情况下的、恒压电路所产生的恒压和晶体振荡电路的振荡停止电压的温度特性的示例的图。
图4为表示在该实施方式中,恒压电路内的恒流源所产生的基准电流的温度特性的示例的图。
图5为表示在该实施方式中,恒压电路所产生的恒压和晶体振荡电路的振荡停止电压的温度特性的示例的图。
图6为表示在该实施方式中,在假设反馈用元件的电阻值的相对于温度变化的梯度为0的情况下的、恒压电路所产生的恒压和晶体振荡电路的振荡停止电压的温度特性的其他的示例的图。
图7为表示在该实施方式中,恒压电路所产生的恒压和晶体振荡电路的振荡停止电压的温度特性的另一个其他的示例的图。
具体实施方式
第一实施方式
以下,参照附图,对实施方式进行说明。
图1为表示作为一个实施方式的振荡装置的结构的框图。该振荡装置具有恒压电路1和晶体振荡电路2。恒压电路1输出恒压VREG。晶体振荡电路2将该恒压VREG作为电源电压来进行工作。晶体振荡电路2的振荡停止电压VSTO依赖于水晶振子的特性、振荡逆变器的特性、负载电容的特性,并且相对于温度上升而直线地下降。即,振荡停止电压VSTO相对于温度变化而具有负的梯度。
图2为表示恒压电路1的结构例的电路图。如图2所示,恒压电路1具有基准电压电路10、差动放大电路20和输出电路30。
基准电压电路10具有恒流源11、P沟道晶体管12及13、N沟道晶体管14和电容器15。
在此,P沟道晶体管12的源极与高电位电源VDD连接,且漏极及栅极被共同连接。在该P沟道晶体管12的漏极及栅极的共同连接节点与低电位电源VSS之间插入有恒流源11。
P沟道晶体管13的源极与高电位电源VDD连接,且栅极与P沟道晶体管12的栅极及漏极连接。N沟道晶体管14的源极与低电位电源VSS连接,且栅极及漏极与P沟道晶体管13的漏极连接。
在此,P沟道晶体管13和P沟道晶体管12作为电流镜而发挥功能,所述电流镜使与恒流源11中流动的基准电流Iref相对应的电流流向N沟道晶体管14。N沟道晶体管14通过使与该基准电流Iref相对应的电流流动,从而从漏极输出基准电压Vref。该基准电压Vref依赖于基准电流Iref,并且因基准电流Iref的增加而上升。与N沟道晶体管14并联连接的电容器15发挥使该基准电压Vref稳定化的作用。
差动放大电路20具有N沟道晶体管21~23、P沟道晶体管24及25。
在此,N沟道晶体管21及22各自的源极被共同连接,从而构成差动晶体管对。在N沟道晶体管21的栅极上被施加有基准电压Vref。此外,在N沟道晶体管22的栅极上被施加有来自输出电路30侧的反馈电压VFB。
在N沟道晶体管21及22的各源极的共同连接节点上连接有N沟道晶体管23的漏极,该N沟道晶体管23的源极与低电位电源VSS连接。在该N沟道晶体管23的栅极上被施加有基准电压Vref。因此,N沟道晶体管23作为与基准电流Iref相对应的电流值的恒流源而发挥功能。
P沟道晶体管24的源极与高电位电源VDD连接,且漏极与N沟道晶体管21的漏极连接。此外,P沟道晶体管25的源极与高电位电源VDD连接,且漏极与N沟道晶体管22的漏极连接。而且,P沟道晶体管24及25的各个栅极与P沟道晶体管25和N沟道晶体管22的漏极彼此的连接节点连接。
在该差动放大电路20中,实施基准电压Vref与反馈电压VFB的差动放大,并且作为差动放大结果的信号从N沟道晶体管21的漏极被输出至输出电路30。
输出电路30具有P沟道晶体管31、32、N沟道晶体管33以及电容器34、35。
P沟道晶体管31的源极与高电位电源VDD连接,且栅极与差动放大电路20的N沟道晶体管21的漏极连接。在P沟道晶体管31的栅极与漏极之间,插设有相位补偿用的电容器34。
P沟道晶体管32的源极与P沟道晶体管31的漏极连接,且栅极及漏极被共同连接。
N沟道晶体管33的源极与低电位电源VSS连接,且漏极与P沟道晶体管32的栅极及漏极的共同连接节点连接。而且,在N沟道晶体管33的栅极上被施加有基准电压Vref。因此,N沟道晶体管33作为与基准电流Iref相对应的电流值的恒流源而发挥功能。
在该输出电路30中,N沟道晶体管33的漏极电压作为反馈电压VFB而被供给至差动放大电路20的N沟道晶体管22的栅极。此外,P沟道晶体管31的漏极的电压作为恒压VREG而被输出。被插设于P沟道晶体管31的漏极与低电位电源VSS之间的电容器35发挥使恒压VREG稳定化的作用。在恒压VREG所产生的节点与反馈电压VFB所产生的节点之间,存在有栅极及漏极被共同连接的P沟道晶体管32。因此,反馈电压VFB成为从恒压VREG下降了与P沟道晶体管32的阈值电压相应的量的电压。
在以上的结构中,基准电压电路10中的除了恒流源11之外的电路、差动放大电路20和输出电路30作为产生与基准电流Iref相对应的恒压VREG的恒压产生部而发挥功能。
如果进一步进行详细叙述,则当反馈电压VFB高于由基准电流Iref所决定的基准电压Vref时,N沟道晶体管21的漏极电流将减小。由此,N沟道晶体管21的漏极电压将上升,P沟道晶体管31的接通(ON)电阻将增加,反馈电压VFB将下降。
另一方面,当反馈电压VFB低于由基准电流Iref所决定的基准电压Vref时,N沟道晶体管21的漏极电流将增加。由此,N沟道晶体管21的漏极电压将下降,P沟道晶体管31的接通电阻将减小,反馈电压VFB将上升。实施这样的负反馈的结果为,反馈电压VFB与基准电压Vref相等,恒压VREG成为与该反馈电压VFB(=基准电压Vref)相比而高出相当于P沟道晶体管32的阈值电压的电压。
如此,在恒压电路1中,产生与基准电流Iref相对应的基准电压Vref,并且产生与该基准电压Vref相对应的恒压VREG。在恒压电路1中,由于基准电压Vref因基准电流Iref的增加而上升,因此,恒压VREG也会因基准电流Iref的增加而上升。
在本实施方式中,基准电压电路10的恒流源11通过产生基准电流Iref的耗尽型的N沟道晶体管11a、和在N沟道晶体管11a的栅极与源极之间使基准电流Iref进行负反馈的作为反馈用元件的电阻11b而被构成。
如果进一步进行详细叙述,则N沟道晶体管11a的漏极与P沟道晶体管12的漏极连接,且栅极与低电位电源VSS连接。而且,电阻11b被插设于N沟道晶体管11a的源极与低电位电源VSS之间。
由于耗尽型的N沟道晶体管11a在栅极下被掺杂了高浓度的杂质,并且具有负的阈值电压,因此,即使栅极与源极之间的电压为0V,也会在栅极下形成沟道。因此,如图2所示,当栅极与源极间被短路时,N沟道晶体管11a将作为恒流源而发挥功能。在恒流源11中,基准电流Iref在该N沟道晶体管11a的源极与低电位电源VSS之间的电阻11b中流动,并且使负反馈起作用,所述负反馈使有助于N沟道晶体管11a的沟道形成的栅极及源极间偏流量下降与该电阻11b的电压下降相应的量。而且,当电阻11b的电阻值增加时,负反馈量变大从而基准电流Iref减小,当电阻11b的电阻值减小时,负反馈量变小从而基准电流Iref增加。
在本实施方式中,在作为晶体振荡装置的半导体装置的制造时,作为反馈用元件的电阻11b而制造如下的电阻,即,具有能够使恒压电路1所输出的恒压VREG与晶体振荡电路2的振荡停止电压VSTO的差分相对于温度变化的梯度接近于0的温度特性的电阻,即,具有上述的电阻值相对于温度变化的梯度的电阻。具体而言,在本实施方式中,由于恒压VREG因基准电流Iref的增加而上升,因此,作为电阻11b而制造具有与假设电阻11b的电阻值相对于温度变化的梯度为0的情况下的、恒压VREG与振荡停止电压VSTO的差分相对于温度变化的梯度相同符号的相对于温度变化的梯度的电阻。通过采用这种方式,从而能够在振荡装置的动作保证温度范围内,使恒压VREG高于振荡停止电压VSTO且极力接近于振荡停止电压VSTO。
接下来,对本实施方式的动作示例进行说明。图3为,表示假设电阻11b的电阻值相对于温度变化的梯度为0的情况下的恒压VREG与振荡停止电压VSTO的温度特性的示例的图。在该示例中,恒压VREG与振荡停止电压VSTO的差分相对于温度变化的梯度为负,并且恒压VREG随着温度上升而接近于振荡停止电压VSTO。在这样的状况下,为了避免在动作保证温度范围内恒压VREG成为振荡停止电压VSTO以下,从而需要充分地提高恒压VREG。然而,这会使晶体振荡电路2的消耗电流增加。
因此,在本实施方式中,将电阻11b设为电阻值相对于温度变化的梯度为负的电阻。在采用了这样的电阻11b的情况下,随着温度上升,由恒流源11的电阻11b所产生的负反馈量将减小。因此,如图4所示,随着温度上升,基准电流Iref将增加,并且恒压VREG根据该基准电流Iref的增加而上升。
其结果为,如图5所例示的那样,恒压VREG相对于温度变化的梯度变得平缓,从而恒压VREG相对于温度变化的梯度接近于振荡停止电压VSTO相对于温度变化的梯度。由此,能够遍及动作保障温度范围整体而使恒压VREG在振荡停止电压VSTO以上,且使其极力减小。
在图6所示的示例中,在假设电阻11b的电阻值相对于温度变化的梯度为0的情况下,恒压VREG与振荡停止电压VSTO的差分相对于温度变化的梯度为正,并且随着温度上升,恒压VREG与振荡停止电压VSTO分离。
在这样的情况下,将电阻11b设为电阻值相对于温度变化的梯度为正的电阻。在采用了这样的电阻11b的情况下,随着温度上升,由恒流源11的电阻11b所产生的负反馈量增加。因此,随着温度上升,基准电流Iref减小,并且恒压VREG根据该基准电流Iref的减小而下降。
其结果为,如图7所例示的那样,恒压VREG相对于温度变化的梯度变陡,从而恒压VREG相对于温度变化的梯度接近于振荡停止电压VSTO相对于温度变化的梯度。由此,能够遍及动作保障温度范围整体而使恒压VREG在振荡停止电压VSTO以上,且使其极力减小。
如上文所述,根据本实施方式,由于可以通过调节作为反馈用元件的电阻11b的温度特性从而对恒压电路1的温度特性进行调节,因此能够在不重新制造晶体管元件的条件下容易地遍及动作保障温度范围的整体而使恒压在振荡停止电压以上,且使其极力减小。
其他实施方式
以上,虽然对一个实施方式进行了说明,但也考虑到其他的实施方式。例如,如下文所述的方式。
(1)在上述实施方式中,采用了如下方式,即,由于恒压VREG因基准电流Iref的增加而上升,因此,作为电阻11b,制造与假设电阻11b的电阻值相对于温度变化的梯度为0的情况下的恒压VREG与振荡停止电压VSTO的差分相对于温度变化的梯度具有相同符号的、相对于温度变化的梯度的电阻。然而,根据基准电压电路10的结构,也可能存在恒压VREG因基准电流Iref的增加而下降的情况。在这样的情况下,只需采用如下方式即可,即,作为电阻11b,制造与假设电阻11b的电阻值相对于温度变化的梯度为0的情况下的恒压VREG与振荡停止电压VSTO的差分相对于温度变化的梯度具有不同的符号的、相对于温度变化的梯度的电阻。在该方式下,也可以获得与上述实施方式同样的效果。
(2)虽然在上述实施方式中,将反馈用元件设为电阻,但是也可以将电阻以外的元件、例如晶体管设为反馈用元件。
(3)作为反馈用元件的电阻11b也可以为作为振荡装置的半导体装置的外置的电阻。在这样的情况下,由于能够外置于半导体装置的电阻与能够形成于半导体装置内的电阻相比种类更丰富,因此具有诸如容易实现具有所需的温度特性的电阻的优点。
(4)除了作为上述各实施方式中所公开的振荡装置而被实施之外,该发明也可以将该振荡装置作为钟表用机芯、或者具有该钟表用机芯的钟表而被实施。
符号说明
1…恒压电路;2…晶体振荡电路;10…基准电压电路;20…差动放大电路;30…输出电路;12、13、24、25、31、32…P沟道晶体管;11a、14、21~23、33…N沟道晶体管;15、34、35…电容器;11b…电阻。

Claims (6)

1.一种振荡装置,其特征在于,具有:
恒压电路,其具备产生基准电流的恒流源、和产生与所述基准电流相对应的恒压的恒压产生部;
振荡电路,其通过被施加所述恒压从而进行振荡,并且当在预定的温度范围内所述恒压成为振荡停止电压以下时停止振荡,
所述恒流源具备:
耗尽型的晶体管,其产生所述基准电流;
反馈用元件,其在所述晶体管的栅极与源极之间使所述基准电流负反馈,
所述反馈用元件的电阻值具有,使所述恒压与所述振荡停止电压的差分相对于温度变化的梯度接近于0的、相对于温度变化的梯度。
2.如权利要求1所述的振荡装置,其特征在于,
所述恒压产生部产生根据所述基准电流的增加而上升的所述恒压,
所述反馈用元件的电阻值相对于温度变化的梯度的符号,与所述反馈用元件的电阻值相对于温度变化的梯度为0的情况下的、所述恒压与所述振荡停止电压的差分相对于温度变化的梯度的符号相同。
3.如权利要求1所述的振荡装置,其特征在于,
所述恒压产生部产生根据所述基准电流的增加而下降的所述恒压,
所述反馈用元件的电阻值相对于温度变化的梯度的符号,与所述反馈用元件的电阻值相对于温度变化的梯度为0的情况下的、所述恒压与所述振荡停止电压的差分相对于温度变化的梯度的符号不同。
4.如权利要求1至3中的任意一项所述的振荡装置,其特征在于,
所述反馈用元件为电阻。
5.一种钟表用机芯,其特征在于,
具有权利要求1至4中的任意一项所述的振荡装置。
6.一种钟表,其特征在于,
具有权利要求5所述的钟表用机芯。
CN201910223357.9A 2018-03-26 2019-03-22 振荡装置 Active CN110365293B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057732 2018-03-26
JP2018057732A JP7098997B2 (ja) 2018-03-26 2018-03-26 発振装置

Publications (2)

Publication Number Publication Date
CN110365293A true CN110365293A (zh) 2019-10-22
CN110365293B CN110365293B (zh) 2023-07-04

Family

ID=67985160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910223357.9A Active CN110365293B (zh) 2018-03-26 2019-03-22 振荡装置

Country Status (3)

Country Link
US (1) US10747248B2 (zh)
JP (1) JP7098997B2 (zh)
CN (1) CN110365293B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021153259A (ja) * 2020-03-24 2021-09-30 ミツミ電機株式会社 放電制御回路および電流源回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896898A (zh) * 2005-06-24 2007-01-17 株式会社理光 恒压电路,设有多个恒压电路的电源系统装置及其控制方法
CN101341453A (zh) * 2006-06-14 2009-01-07 株式会社理光 恒压电路与控制恒压电路的输出电压的方法
JP2010278853A (ja) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd 発振回路
JP2012231489A (ja) * 2012-06-14 2012-11-22 Seiko Epson Corp 発振装置、半導体装置、電子機器および時計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686792B2 (en) * 1997-03-04 2004-02-03 Seiko Epson Corporation Electronic circuit, semiconductor device, electronic equipment, and timepiece
JP3517343B2 (ja) * 1998-01-05 2004-04-12 セイコーインスツルメンツ株式会社 自己補正型定電流回路
JP5061677B2 (ja) 2007-03-23 2012-10-31 セイコーエプソン株式会社 発振装置、半導体装置、電子機器および時計
JP2011091759A (ja) 2009-10-26 2011-05-06 Seiko Epson Corp 電流源、増幅回路、電子回路、集積回路装置及び電子機器
JP5788755B2 (ja) * 2011-09-30 2015-10-07 セイコーインスツル株式会社 発振装置
TWI467916B (zh) 2012-11-14 2015-01-01 Universal Scient Ind Shanghai 電子系統、射頻功率放大器及其溫度補償方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896898A (zh) * 2005-06-24 2007-01-17 株式会社理光 恒压电路,设有多个恒压电路的电源系统装置及其控制方法
CN101341453A (zh) * 2006-06-14 2009-01-07 株式会社理光 恒压电路与控制恒压电路的输出电压的方法
JP2010278853A (ja) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd 発振回路
JP2012231489A (ja) * 2012-06-14 2012-11-22 Seiko Epson Corp 発振装置、半導体装置、電子機器および時計

Also Published As

Publication number Publication date
JP7098997B2 (ja) 2022-07-12
CN110365293B (zh) 2023-07-04
US10747248B2 (en) 2020-08-18
JP2019169906A (ja) 2019-10-03
US20190294190A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
TWI392219B (zh) 用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路
TWI461878B (zh) 可調整充電電流之充電電路及控制方法
JP4859754B2 (ja) 基準電圧発生回路及び基準電圧発生回路を使用した定電圧回路
TWI405402B (zh) 晶體振盪電路的電壓源電路
US7276984B2 (en) Oscillation circuit capable of having stable oscillation in wide temperature range
CN109917846B (zh) 稳压电路、半导体装置以及电源装置
JP4684616B2 (ja) 発振回路
CN103034276B (zh) 振荡装置
JP4397211B2 (ja) 基準電圧発生回路及びそれを用いた電源装置
CN110365293A (zh) 振荡装置
CN105811925B (zh) 环形振荡器
US7830207B2 (en) Amplifier circuit
US7768358B2 (en) Oscillatory signal output circuit for capacitive coupling an oscillating signal with bias voltage applied
JPH1167931A (ja) 基準電圧発生回路
US7928810B2 (en) Oscillator arrangement and method for operating an oscillating crystal
CN105278322B (zh) 模拟电子钟表
JP5198971B2 (ja) 発振回路
JP2012059097A (ja) 基準電圧発生回路及びそれを用いた電源装置
JP5318592B2 (ja) 定電流駆動発振回路
CN110266270A (zh) 振荡电路
CN104270113B (zh) 一种快速低功耗晶振起振电路
CN110880914B (zh) 起振电路及芯片
JP2005244546A (ja) 水晶発振回路
JP2008035302A (ja) 出力回路を備えた発振回路
JP2006222645A (ja) 温度補償型発振器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant