CN110328364B - 一种适用于陶瓷及其复合材料的增材制造方法及装置 - Google Patents

一种适用于陶瓷及其复合材料的增材制造方法及装置 Download PDF

Info

Publication number
CN110328364B
CN110328364B CN201910546152.4A CN201910546152A CN110328364B CN 110328364 B CN110328364 B CN 110328364B CN 201910546152 A CN201910546152 A CN 201910546152A CN 110328364 B CN110328364 B CN 110328364B
Authority
CN
China
Prior art keywords
spraying
layered
heating
forming
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910546152.4A
Other languages
English (en)
Other versions
CN110328364A (zh
Inventor
张海鸥
胡晓圻
王桂兰
杨成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201910546152.4A priority Critical patent/CN110328364B/zh
Publication of CN110328364A publication Critical patent/CN110328364A/zh
Priority to JP2020107993A priority patent/JP2021000825A/ja
Priority to US16/909,847 priority patent/US11890780B2/en
Priority to EP20181909.1A priority patent/EP3756798B1/en
Application granted granted Critical
Publication of CN110328364B publication Critical patent/CN110328364B/zh
Priority to US17/648,705 priority patent/US20220143868A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • B28B11/089Using impacting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F3/168Local deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • B28B11/0872Non-mechanical reshaping of the surface, e.g. by burning, acids, radiation energy, air flow, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

本发明属于高熔点材料的增材制造领域,并具体公开了一种适用于陶瓷及其复合材料的增材制造方法及装置。所述方法包括:S1将待成形工件的三维CAD模型进行分层切片处理;S2生成各个分层切片成形加工的数控代码;S3预热基板,然后根据各个分层切片的数控代码逐层进行喷涂沉积成形,同时,对喷涂区域进行加热,直至完成所有分层切片的喷涂沉积成形,得到成形件;S4采用激光冲击强化的方法对成形件表面进行表面改性处理。所述装置包括数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块。本发明能够获得组织性能稳定、制造精度高的成形件,因而尤其适用于高熔点材料,如陶瓷及陶瓷金属复合材料的增材制造。

Description

一种适用于陶瓷及其复合材料的增材制造方法及装置
技术领域
本发明属于高熔点材料的增材制造领域,更具体地,涉及一种适用于陶瓷及其复合材料的增材制造方法及装置。
背景技术
高熔点材料的增材制造方法主要有大功率激光沉积成形、电子束自由成形、等离子电弧沉积等成形方法。
其中,大功率激光沉积成形是采用大功率激光,逐层将送到基板上的金属粉末熔化,并快速凝固沉积成形,最终得到近终成形件;该方法成形精度较高,工件的密度远高于选择性激光烧结件,但成形效率、能量和材料的利用率不高、不易达到满密度、设备投资和运行成本高。电子束自由成形方法采用大功率的电子束熔化粉末材料,根据计算机模型施加电磁场,控制电子束的运动,逐层扫描直至整个零件成形完成;该方法成形精度较高、成形质量较好,然而其工艺条件要求严格,整个成形过程需在真空中进行,致使成形尺寸受到限制,设备投资和运行成本很高;且因采用与选择性烧结相同的层层铺粉方式,难以用于梯度功能材料零件的成形。等离子熔积成形方法是采用高度压缩、集束性好的等离子束熔化同步供给的金属粉末或丝材,在基板上逐层熔积形成金属零件或模具,该方法比前两种方法成形效率和材料利用率高,易于获得满密度,设备和运行成本低,但因弧柱直径较前两者大,成形的尺寸和表面精度不及前两者,故与大功率激光熔积成形方法相似,大都要在成形完后进行精整加工(参见文献:HaiouZhang,JipengXu,GuilanWang,Fundamental Study onPlasma Deposition Manufacturing,Surface and Coating Technology,v.171(1-3)2003,pp.112~118:以及张海鸥,吴红军,王桂兰,陈竞,等离子沉积直接成形高温合金件组织结构研宄,华中科技大学学报(自然科学版),v33,n11,2005,p54~56)。然而,直接成形的难加工材料零件因急冷凝固使表面硬度增大,导致加工非常困难:形状复杂的零件还需多次装夹,致使加工时间长,有时甚至要占整个制造周期的60%以上,成为高性能难加工零件低成本短流程生长制造的瓶颈。为此,出现了等离子沉积成形与铣削加工复合无模快速制造方法,即以等离子束为成形热源,在分层或分段沉积成形过程中,依次交叉进行沉积成形与数控铣削精加工,以买现短流程低成本的直接精确制造(参见文献:专利号为ZL00131288.X,专利名称为:直接快速制造模具与零件的方法及其装置;张海鸥,熊新红,王桂兰,等离子沉积/铣削复合直接制造高温合金双螺旋整体叶轮,中国机械工程,2007,Vo118,No.14:P1723~1725)。
上述三种方法中,大功率激光沉积成形法和等离子电弧成形法皆为无支撑、无模沉积成形匀质或复合梯度功能材料零件的方法。与电子束成形、选择性激光烧结/熔化,以及采用熔点低的纸、树脂、塑料等的LOM(Laminated Object Manufacturing纸叠层成形)、SLA(Stereolithography Apparatus光固化成形),FDM(Fused Deposition Modeling熔丝沉积制造)、(Selective Laser Sintering选择性激光烧结)等有支撑的无模沉积成形的方法相比,避免了成形时因需要支撑而须添加和去除支撑材料导致的材料、工艺、设备上的诸多不利,减少了制造时间,降低了成本,并可成形梯度功能材料的零件,但同时也因无支撑而在有悬臂的复杂形状零件的成形过程中,熔融材料在重力作用下,可能产生下落、流淌等现象,导致难以沉积成形。等离子沉积铣削复合制造方法虽通过分层的成形和铣削精整,降低了加工复杂程度,但对于侧面带大倾角尤其是横向悬角部分的复杂形状零件,沉积成形时因重力产生的流淌甚至塌落仍不能避免,以至难以横向生长成形。
为此,美国Michigan大学、Southern Methodist大学、新加坡国立大学等一些国外研宄机构研宄采用变方向切片技术,选择支撑条件最多的方向作为零件成形主方向,或将复杂形状零件分解成若干简单形状的部件依次成形;或开发五轴无模成形加工设备和软件,使熔融成形材料尽可能的处于有支撑的条件下(参见又献:P.Singh,D.Dutta,Multidirection slicing for layered manufacturing,Journal Of Computing andInformation Science and Engineering,2001,2,pp:129-142;Jianzhong Ruan,ToddE.Sparks,Ajay Panackal et al.Automated Slicing for a Multiaxis MetalDeposition System.Journal Of Manufacturing Science and Engineering.APRlL2007,Vol.129.pp:303-310;R.Dwivedi,R.Kovacevic,An expert system for generationOf machine inputs for laser-based multi-directional metal deposltion,International Journal of Machine Tools&Manufacture,46(2006)pp.1811-1822。)。
采用五轴加工技术,可显著改善生长成形的支撑条件,避免材料的下落,但对于复杂精细、薄壁形状的零件,采用气体保护的等离子弧/电弧、真空保护的电子束、熔渣保护的电渣焊与埋弧焊等热源沉积成形,虽可提高效率、降低成本,但因这些热源难以成形薄壁和精细形状,可成形精度和薄壁程度不及大功率激光沉积成形法(参见文献:Almeida P M S,Williams S,Innovative process model of Ti-6AI-4V additive layer manufacturingusing cold metal transfer(CMT)[C].Proceedings Of the 21th AnnualInternational Solid Freeform Fabrication Symposium,Austin,Texas,USA,2010:25-26),难以获得比激光成形精细和壁薄的零件。
表面附着材料以改善零件和模具表面性能的方法主要有冷喷涂和热喷涂两种。其中,热喷涂是指利用燃料气、电弧或等离子弧提供的热量,将粉状、带状或丝状的涂层材料加热熔化,用高速气流将其雾化成极细的颗粒,并以很高的速度喷射到工件表面,形成涂层。根据需要选用不同的涂层材料,可以获得耐磨损、耐腐蚀、抗氧化、耐热等方面的一种或数种性能。热喷涂技术可用来喷涂几乎所有的固体工程材料,如硬质合金、陶瓷、金属、石墨等。但其也存在着诸多缺陷,首先,喷涂工艺需要融化金属粒子,导致喷涂温度高,使机体内部产生热应力,机体表面产生热变形。其次,因为除火焰喷涂外都无法人工操作,操作危险。此外,传统热喷涂工艺很难控制喷涂面积与厚度,所以喷涂效果差且设备不便携带。冷喷涂是一种金属、陶瓷喷涂工艺,但是它不同于传统热喷涂,不需要将喷涂的金属粒子融化,其利用压缩空气加速金属粒子到临界速度(超音速),金属粒子直击到基体表面后发生物理形变,进而与基体产生物理结合。金属粒子撞扁在基体表面并牢固附着,整个过程金属粒子没有被融化,所以喷涂基体表面不会产生过高的温度以至于使金属发生氧化和相变。上述两种表面增强的喷涂工艺,虽然各自从不同角度解决了零件和模具的表面性能改善问题,但二者同时存在着难以获得较大厚度和致密度的涂层,难以满足当下航空发动机等高端航空航天设备对于零件表面改性的要求。
此外,航空航天、能源动力等行业对零部件的组织性能及其稳定性的要求很高,现有无模增材制造方法因其急速加热快速凝固和自由生长成形的特点,增材成形过程中的开裂、气孔等难以避免,组织性能及其稳定性尚不能满足要求。以上诸问题己成为制约沉积直接增材成形技术能否进一步发展和实现工业化应用所急需解决的关键技木难点和瓶颈问题。因此,需要开发可有效提高制造精度、改善成形性和零件组织性能的新方法。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种适用于陶瓷及其复合材料的增材制造方法及装置,其中结合陶瓷及陶瓷金属复合材料的增材制造自身的特征及热喷涂和冷喷涂工艺特点,并巧妙的将热喷涂和冷喷涂工艺相结合,既保持了冷喷涂的固态沉积、无稀释、低热输入、低氧化、低变形的优点,从而保证了原始粉末材料的成分和相,同时克服了冷喷涂无法成形高熔点材料(陶瓷等)的不足,以及热喷涂对成形件导致的材料热加工氧化、相变、烧蚀、晶粒长大等缺陷,使得该制造方法能够获得组织性能稳定、制造精度高的成形件,因而尤其适用于高熔点材料,如陶瓷及陶瓷金属复合材料的增材制造。
为实现上述目的,按照本发明的一个方面,提出了一种适用于陶瓷及其复合材料的增材制造方法,包括以下步骤:
S1根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,每个分层切片的数据包括该分层切片的厚度、形状、尺寸精度及材料熔点;
S2根据各个分层切片的数据进行成形路径规划,生成各个分层切片成形加工的数控代码;
S3预热基板,然后根据步骤S2获得的各个分层切片的数控代码,采用冷喷涂逐层进行喷涂沉积成形,与此同时,对喷涂区域进行加热,该加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,直至完成所有分层切片的喷涂沉积成形;
S4采用激光冲击强化的方法对成形件表面进行表面改性处理,使得成形件表面产生预设的残余压应力。
作为进一步优选的,步骤S3中,对喷涂区域进行加热包括:在加工第一层分层切片时,对基板进行加热,直至完成第一层分层切片的喷涂沉积成形;在成形分层切片的表面进行喷涂沉积成形时,对最上层成形分层切片的表面进行加热,直至完成所有分层切片的喷涂沉积成形。
作为进一步优选的,步骤S3中,所述基板的预热温度为600℃~1100℃,所述喷涂区域的温度为800℃~1400℃。
作为进一步优选的,步骤S3中,采用喷涂仓外加热炉、喷涂仓内等离子设备、电磁加热线圈中的任一种加热设备对基板进行加热。
作为进一步优选的,步骤S3中,采用激光加热或等离子加热的方式对成形分层切片的表面进行加热。
作为进一步优选的,步骤S3中,沉积成形时,在分层切片对应的成形层的厚度、形状及尺寸精度达不到要求的情况下,对该成形分层切片进行精整加工,该精整加工包括:采用轧辊轧制的方式对该成形分层切片的表面执行塑性等材加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求;采用铣削、研磨或/和抛光的方式对成形分层切片进行减材加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求。
按照本发明的另一方面,提供了一种实现上述制造方法的装置,包括数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,
所述数据处理模块用于根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,并根据各个分层切片的数据进行成形路径规划,生成各个分层切片成形加工的数控代码;
所述喷涂沉积模块用于根据所述数据处理模块获得的各个分层切片的数控代码逐层进行喷涂沉积成形;
所述加热模块用于预热基板,并对喷涂区域进行加热,使得喷射至喷涂区域的粉末呈熔融状态,直至完成所有分层切片的喷涂;
所述激光冲击强化模块用于对成形件表面进行表面改性处理,使得成形件表面产生预设的残余压应力。
作为进一步优选的,所述装置还包括数控机床,所述数控机床包括工作台、龙门机床以及设于所述龙门机床上的第一主轴,所述工作台设于所述龙门机床下方,所述龙门机床用于集成所述数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,所述喷涂沉积模块包括高速冷喷涂枪以及基板,所述高速冷喷涂枪设于所述第一主轴的底部,所述基板设于所述工作台上;所述加热模块包括第一加热单元和第二加热单元,所述第一加热单元设于所述基板上,所述第二加热单元设于所述第一主轴的底部。
作为进一步优选的,所述装置还包温度传感器、第二主轴、铣削/削磨设备以及微轧制设备,其中,
所述温度传感器设于所述第一主轴的底部,所述第二主轴设于所述龙门机床上,所述铣削/削磨设备设于所述第二主轴的底部,所述微轧制设备设于所述第一主轴的底部。
按进一步的,所述高速冷喷涂枪的喷头采用激光复合冷喷涂喷头,该喷头包括复合喷嘴外壁以及设于所述复合喷嘴外壁内部的复合喷嘴内壁,所述复合喷嘴外壁与所述复合喷嘴内壁之间设有分光器,所述复合喷嘴内壁的顶部设有粉末入口,所述复合喷嘴内壁的侧壁上设有高压气体入口,所述复合喷嘴内壁的底部设有喷嘴。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明巧妙的将热喷涂和冷喷涂工艺相结合,通过采用高速冷喷涂枪沉积粉末材料,同时辅以热源对喷涂区域进行实时加热,使得加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,保持了高速冷喷涂是一种低热量输入的“冷加工过程”,可有效避免热喷涂和激光、电子束、电弧等熔化沉积“热成形加工”过程中出现的热致不良影响,同时对成型件进行表面改性处理,使得成形件表面产生预设的残余压应力。本发明方法可以高质量、高速、低成本地获得金属、金属间化合物、金属陶瓷、陶瓷及其复合梯度功能材料的零件或模具。
2.本发明在加工第一层分层切片时,对基板进行加热,使得加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,直至完成第一层分层切片的喷涂沉积成形;在成形分层切片的表面进行喷涂沉积成形时,对成形分层切片的表面进行加热,使得加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,保持了高速冷喷涂是一种低热量输入的“冷加工过程”,可有效避免热喷涂和激光、电子束、电弧等熔化沉积“热成形加工”过程中出现的热致不良影响。
3.本发明所述基板的预热温度为600℃~1100℃,所述喷涂区域的温度为800℃~1400℃,根据材料的不同,可调整预热和加热的温度,使得喷涂区域的温度与材料熔融的温度相匹配,且不高于喷涂材料的熔点。
4.本发明方法沉积成形时,在分层切片对应的成形层的厚度、形状及尺寸精度达不到要求的情况下,对该成形分层切片进行精整加工,该精整加工包括:采用轧辊碾压的方式对该成形分层切片的表面执行塑性成形加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求;采用铣削、研磨或/和抛光的方式对成形分层切片进行铣削加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求,解决了实际工程问题,所制备的零件或者模具没有气孔、缩孔、未熔合、夹渣、稀释、氧化、分解、相变、变形、开裂、流淌、坍塌等热致不良影响,也没有组织力学性能不高的问题,还适用于硬质材料,可喷涂材料范围广,本发明方法还克服了冷喷涂后涂层表面呈锥形而导致沉积速率呈线性下降、设备和运营成本较高的问题。
5.本发明在用于零件或模具的表面修复或强化时,相比单一的冷喷涂或热喷涂,有效提升了涂层厚度,达到了更好的表面强化性能,同时克服了现有方法在修复或强化完后对急冷硬化的修复和强化层进行后续精加工非常困难的技术瓶颈问题。
6.本发明装置,其通过将数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块集成并相互配合,使得所制备的零件或者模具没有气孔、缩孔、未熔合、夹渣、稀释、氧化、分解、相变、变形、开裂、流淌、坍塌等热致不良影响,也没有组织力学性能不高的问题,还适用于硬质材料,可喷涂材料范围广,本发明方法还克服了冷喷涂后涂层表面呈锥形而导致沉积速率呈线性下降、设备和运营成本较高的问题。
7.本发明喷头,将冷喷涂枪与激光热源结合将激光与高压粉气混合物同轴输出,通过分光器将激光器产生的激光变换为环状激光,在喷嘴的出口一定距离处与粉气混合物交汇,形成喷涂热区域,进而连续进行喷涂增材加工过程,减小设备体积、增加本套喷涂设备的灵活性,以及使喷涂粉末和基体得到更有效地加热、减少热量损失。
附图说明
图1是本发明涉及的一种适用于陶瓷及其复合材料的增材制造方法的流程图;
图2是用于实现本发明一种适用于陶瓷及其复合材料的增材制造方法的装置结构示意图;
图3是图2中涉及的高速冷喷涂枪的激光复合冷喷涂喷头结构示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-龙门机床,2-铣削/削磨设备,3-第二主轴,4-微轧制设备,5-第一主轴,6-温度传感器,7-高速冷喷涂枪,8-第二加热单元,9-基板,10-工作台,11-复合喷嘴外壁,12-环状激光,13-喷嘴,14-分光器,15-粉末入口,16-高压气体入口,17-入射激光,18-已成形的部分零件。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明方法结合了高速冷喷涂技术和铣削加工成形或压力加工成形工艺,能够充分利用高速冷喷涂的优势,使制备的产品既没有热加工成形的缺陷,也没有高速冷喷涂工艺的缺陷,保证了产品最终的精度和性能。
如图1所示,本发明一种适用于陶瓷及其复合材料的增材制造方法包括以下步骤:
步骤1,根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,每个分层切片的数据包括该分层切片的厚度、形状以及尺寸精度。
步骤2,根据分层切片的数据进行成形路径规划,生成成形加工各层的数控代码。
步骤3,预热喷涂基板9,即预热基板9至指定温度,其中,预热温度范围在600℃~1100℃范围内,再根据步骤S2中获得的各层的数控代码,在基板上采用数控的高速冷喷涂枪7将粉末材料逐层依照设定的扫描轨迹进行冷喷涂沉积成形,同时辅以激光或电子束等热源对喷涂区域进行同步加热,保持喷涂区域和即将喷涂的粉末材料处于合适的喷涂温度。具体而言,在打印第一层分层切片时,采用激光或电子束等热源对基板9进行同步加热,使得基板9的温度与待打印熔融材料的温度相匹配,即该加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,喷射至基板9上的粉末可有效避免热喷涂和激光、电子束、电弧等熔化沉积“热成形加工”过程中出现的热致不良影响,完成第一层分层切片打印之后,在进行第二层切片打印的时,采用激光或电子束等热源对已经打印成形的第一层分型切片进行同步加热,使得已经打印成形的第一层切片与待打印熔融材料的温度相匹配,以此类推,依次采用激光或电子束等热源8对已经打印成形的最上一层切片进行同步加热,使得已经打印成形的最上一层切片与待打印熔融材料的温度相匹配,即该加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,直至完成所有切片的打印,以此方式,既保持了冷喷涂的固态沉积、无稀释、低热输入、低氧化、低变形的优点,保证了原始粉末材料的成分和相,同时,克服了冷喷涂无法成形高熔点材料(陶瓷等)的不足,以及热喷涂对成形件导致的材料热加工氧化、相变、烧蚀、晶粒长大等缺陷。其中,采用喷涂仓外加热炉预热、喷涂仓内等离子设备预热或者在喷涂工作台上附加电磁加热线圈预热等方式实现对基板9的预热。预热的温度根据沉积陶瓷及其复合材料的特性进行选择,一般情况而言,预热温度范围在600℃~1100℃范围内,其中,对于氧化锆陶瓷材料,其基板的预热温度为900℃~1100℃,对于氧化铝陶瓷,其基板的预热温度为600℃~800℃。所述激光或电子束等热源对待喷涂区域进行加热过程采用与喷涂枪同步的,置于喷涂枪同一个机架或者由单独机械手臂控制的激光发射设备,其功率、脉冲宽度及频率根据喷涂粉末材料特性的不同而调整。
在预热喷涂基体以及已经打印成形的最上一层切片的加热过程中,采用温度传感器6对加热区域的温度进行实时监控,根据不同喷涂材料的最佳沉积温度对激光或电子束参数(功率、脉冲宽度及频率)进行实时闭环反馈调整,以使得预热喷涂基体以及已经打印成形的最上一层切片的温度保持在最佳沉积温度,同时通过激光等热源加热的作用以降低沉积陶瓷及其合金等高熔点材料沉积所需的临界速度、临界温度以及降低对工作气体的要求,即在本发明方法中,可以使用N2代替He,以降低增材制造的成本。本发明通过在沉积的过程中同时软化已完成沉积的表层,以增强沉积层塑性,使得沉积过程能够更加稳定地进行,成形质量更高。所述的喷涂颗粒选自陶瓷、金属陶瓷、陶瓷复合物等高熔点材料,沉积成形时采用氩气或氮气等作为工作气体。
步骤4,沉积成形时,在分层切片对应的成形层的厚度、形状及尺寸精度达不到要求的情况下,对该成形分层切片进行精整加工,该精整加工包括:采用轧辊碾压的方式对该成形分层切片的表面执行塑性成形加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求;采用铣削、研磨或/和抛光的方式对成形分层切片进行铣削加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求。
步骤5,成形件在达到尺寸与表面精度要求之后,采用激光冲击强化,使用高频脉冲激光设备对成形件表面进行表面改性处理,以使得成形件表面形成较大的残余压应力,增加成形件的疲劳寿命。
如图2所示,按照本发明的另一个方面,提供一种适用于陶瓷及其复合材料的增材制造的装置,以实现上面所述的增材制造方法,包括数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,所述数据处理模块用于根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,并根据各个分层切片的数据进行成形路径规划,生成各个分层切片成形加工的数控代码;所述喷涂沉积模块用于根据所述数据处理模块获得的各个分层切片的数控代码逐层进行喷涂沉积成形;所述加热模块用于预热基板,并对喷涂区域进行加热,使得该加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,直至完成所有分层切片的喷涂;所述激光冲击强化模块用于对成形件表面进行表面改性处理,使得成形件表面产生预设的残余压应力。
具体而言,该装置还包括数控机床,所述数控机床包括工作台10、龙门机床1以及设于所述龙门机床1上的第一主轴5,所述工作台10设于所述龙门机床1下方,所述龙门机床1用于集成所述数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,所述喷涂沉积模块包括高速冷喷涂枪7以及基板9,所述高速冷喷涂枪7设于所述第一主轴5的底部,所述基板9设于所述工作台10上;所述加热模块包括第一加热单元和第二加热单元,所述第一加热单元设于所述基板9上,所述第二加热单元设于所述第一主轴5的底部。该装置还包温度传感器6、第二主轴3、铣削/削磨设备2以及微轧制设备4,其中,所述温度传感器6设于所述第一主轴5的底部,所述第二主轴3设于所述龙门机床1上,所述铣削/削磨设备2设于所述第二主轴3的底部,所述微轧制设备4设于所述第一主轴5的底部。该装置布置安装于五轴联动机床上,配合双龙门或机械臂来实现复合增材制造的设备,其中温度传感器6、高速冷喷涂枪7、第二加热单元8安装于一个龙门或机械臂上同步运动,即第一主轴5底部;微轧制设备3、铣削/磨削设备2安装于一个龙门或机械臂上,即第二主轴底部,同时各自配有升降装置,可以单独工作,以便独立地实现其精整加工的功能。工作台10可以实现一个自由度的平动和两个自由度的转动,可根据成形件的特征,在加工过程中始终保持加工面与冷喷涂枪垂直,以达到最佳的成形效果。
其工作流程如下:轨迹规划预先生成打印过程的数控程序,同时根据打印材料的不同在系统中设定预热温度、辅助热源(激光/等离子/电弧)参数;将数控程序与热源参数等数据写入经二次开发的机床数控系统中,机床数控系统根据热源参数与数控程序自动进行打印与微轧制过程;打印过程中,温度传感器监测打印层温度,并根据温度闭环实时调节热源参数;打印过程中,由线激光传感器测定表面形貌,在表面形貌误差达到一定阈值(≥1mm)时,自动调用铣削代码,对成形件表面进行铣削加工,控制表面平整度。
如图3所示,为了减小设备体积、增加本套喷涂设备的灵活性,以及使喷涂粉末和基体得到更有效地加热、减少热量损失,本发明将冷喷涂枪与激光热源结合,提供了一种激光复合冷喷涂喷头,该喷头应用于上述的高速冷喷涂枪7中,包括复合喷嘴外壁11以及设于所述复合喷嘴外壁11内部的复合喷嘴内壁,所述复合喷嘴外壁11与所述复合喷嘴内壁之间设有分光器14,用于将激光器产生的直射激光变换为环状激光,所述复合喷嘴内壁的顶部设有粉末入口15,所述复合喷嘴内壁的侧壁上设有高压气体入口16,所述复合喷嘴内壁的底部设有喷嘴13。所述喷嘴13为拉瓦尔(laval)喷嘴。该喷头将激光与高压粉气混合物同轴输出,通过分光器将激光器产生的激光变换为环状激光,在拉瓦尔喷嘴的出口一定距离处与粉气混合物交汇,形成喷涂热区域,进而连续进行喷涂增材加工过程。
该喷头的工作流程如下:由伺服送粉器送入的预热过的陶瓷或陶瓷复合材料粉末经粉末入口15送入激光复合冷喷涂喷嘴,同时可控压力气体经高压气体入口16流入喷嘴,高压气体裹挟粉末材料经laval喷嘴进一步加速之后,在喷嘴出口附近与经激光入口17进入并经过分光器14变换为环状激光的激光束重合,高速的粉气混合物经激光进一步加热,达到沉积温度并在基板或已成形部分零件上完成成形过程。
实施例1:
根据高温合金零件的使用性能要求,采用高温合金粉末进行高速冷喷涂成形。
采用喷涂仓外加热或附有加热线圈的仓内加热方式将成形基板加热到900℃~1000℃,再按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属沉积成形;
在成形过程中,固定于高速冷喷涂枪旁侧的热源同步对喷涂区域进行加热,加热温度为1200℃~1300℃,固定在高速冷喷涂枪之后的微型轧辊随枪运动,同步进行高速冷喷涂成形与连续冷锻滚压压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段利用铣削设备进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。成形件在达到尺寸与表面精度要求之后,采用激光冲击强化,使用高频脉冲激光设备对成形件表面进行表面改性处理,以使得成形件表面形成较大的残余压应力,增加成形件的疲劳寿命。
实施例2:
根据铝合金零件的使用性能要求,采用铝合金粉末进行高速冷喷涂成形。
采用喷涂仓外加热或附有加热线圈的仓内加热方式将成形基板加热到600℃~800℃,再按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属沉积成形;
在成形过程中,固定于高速冷喷涂枪旁侧的热源同步对喷涂区域进行加热,加热保持温度为900℃~1100℃,固定在高速冷喷涂枪之后的微型轧辊随枪运动,同步进行高速冷喷涂成形与连续冷锻滚压压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段利用铣削设备进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。成形件在达到尺寸与表面精度要求之后,采用激光冲击强化,使用高频脉冲激光设备对成形件表面进行表面改性处理,以使得成形件表面形成较大的残余压应力,增加成形件的疲劳寿命。
实施例3:
根据陶瓷零件的使用性能要求,采用氧化锆陶瓷粉末进行高速冷喷涂成形。
采用喷涂仓外加热或附有加热线圈的仓内加热方式将成形基板加热到900℃~1100℃,再按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属沉积成形;
在成形过程中,固定于高速冷喷涂枪旁侧的第一加热单元同步对喷涂区域进行加热,加热保持温度为1000℃~1200℃,固定在高速冷喷涂枪之后的微型轧辊随枪运动,同步进行高速冷喷涂成形与连续冷锻滚压压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段利用铣削设备进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。成形件在达到尺寸与表面精度要求之后,采用激光冲击强化,使用高频脉冲激光设备对成形件表面进行表面改性处理,以使得成形件表面形成较大的残余压应力,增加成形件的疲劳寿命。
实施例4:
根据金属和陶瓷梯度复合零件的使用性能要求,采用多路同步伺服送粉器和加速装置进行梯度复合材料高速冷喷涂成形。
采用喷涂仓外加热或附有加热线圈的仓内加热方式将成形基板加热到预定温度,再按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属沉积成形;
在成形过程中,固定于高速冷喷涂枪旁侧的第一加热单元同步对喷涂区域进行加热,固定在高速冷喷涂枪之后的微型轧辊随枪运动,同步进行高速冷喷涂成形与连续冷锻滚压压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段利用铣削设备进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。成形件在达到尺寸与表面精度要求之后,采用激光冲击强化,使用高频脉冲激光设备对成形件表面进行表面改性处理,以使得成形件表面形成较大的残余压应力,增加成形件的疲劳寿命。
本发明提供一种适用于高熔点的陶瓷、陶瓷金属复合材料等的增材制造方法,可有效解决现有高熔点材料零件与模具的无模生长制造方法的一些缺陷,比如,因采用金属熔化沉积“热成形加工”而存在的气孔、缩孔、未熔合、夹渣,以及稀释、氧化、分解、相变、变形、开裂、下落、流淌、坍塌等热致不良影响。又比如,采用单一高速冷喷涂沉积成形的喷涂层的致密度、塑性、韧性等组织力学性能不高、硬质材料难以实现有效沉积而喷涂材料范围小、持续冷喷涂后涂层表面呈锥形而导致沉积速率呈线性下降、表面和尺寸精度不高、设备和运营成本较高的问题。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种适用于陶瓷及其复合材料的增材制造装置,其特征在于,包括数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,
所述数据处理模块用于根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,并根据各个分层切片的数据进行成形路径规划,生成各个分层切片成形加工的数控代码;
所述喷涂沉积模块用于根据所述数据处理模块获得的各个分层切片的数控代码逐层进行喷涂沉积成形;
所述加热模块用于预热基板,并对喷涂区域进行加热,使得该加热温度在喷涂粉末熔点温度-200℃至喷涂粉末熔点温度范围内,直至完成所有分层切片的喷涂沉积成形;
所述激光冲击强化模块用于对成形件表面进行表面改性处理,使得成形件表面产生预设的残余压应力;
所述装置还包括数控机床,所述数控机床包括工作台(10)、龙门机床(1)以及设于所述龙门机床(1)上的第一主轴(5),所述工作台(10)设于所述龙门机床(1)下方,所述龙门机床(1)用于集成所述数据处理模块、喷涂沉积模块、加热模块以及激光冲击强化模块,其中,所述喷涂沉积模块包括高速冷喷涂枪(7)以及基板(9),所述高速冷喷涂枪(7)设于所述第一主轴(5)的底部,所述基板(9)设于所述工作台(10)上;所述加热模块包括第一加热单元和第二加热单元,所述第一加热单元设于所述基板(9)上,所述第二加热单元设于所述第一主轴(5)的底部;
所述高速冷喷涂枪(7)采用激光复合冷喷涂喷头,该喷头包括复合喷嘴外壁(11)以及设于所述复合喷嘴外壁(11)内部的复合喷嘴内壁,所述复合喷嘴外壁(11)与所述复合喷嘴内壁之间设有分光器(14),用于将激光器产生的直射激光变换为环状激光,所述复合喷嘴内壁的顶部设有粉末入口(15),所述复合喷嘴内壁的侧壁上设有高压气体入口(16),所述复合喷嘴内壁的底部设有喷嘴(13);工作时,该喷头将激光与高压粉气混合物同轴输出,通过分光器将激光器产生的激光变换为环状激光,在拉瓦尔喷嘴的出口一定距离处与粉气混合物交汇,形成喷涂热区域,进而连续进行喷涂增材加工过程。
2.根据权利要求1所述的装置,其特征在于,所述装置还包括第二主轴(3)、温度传感器(6)、铣削/削磨设备(2)以及微轧制设备(4),其中,所述第二主轴(3)设于所述龙门机床(1)上,所述铣削/削磨设备(2)设于所述第二主轴(3)的底部,所述温度传感器(6)和所述微轧制设备(4)设于所述第一主轴(5)的底部。
3.一种适用于陶瓷及其复合材料的增材制造方法,其特征在于,采用权利要求1或2所述的增材制造装置实现,包括以下步骤:
S1根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,每个分层切片的数据包括该分层切片的厚度、形状、尺寸精度及材料熔点;
S2根据各个分层切片的数据进行成形路径规划,生成各个分层切片成形加工的数控代码;
S3预热基板,然后根据步骤S2获得的各个分层切片的数控代码,采用冷喷涂逐层进行喷涂沉积成形,与此同时,对喷涂区域进行加热,该加热温度设置为喷涂粉末熔点温度-200℃至喷涂粉末熔点温度,直至完成所有分层切片的喷涂沉积成形,得到成形件;
S4采用激光冲击强化的方法对成形件表面进行表面改性处理,使得成形件表面具有预设的残余压应力;
步骤S3中,对喷涂区域进行加热包括:在加工第一层分层切片时,对基板进行加热,直至完成第一层分层切片的喷涂沉积成形;在成形分层切片的表面进行喷涂沉积成形时,对最上层成形分层切片的表面进行加热,直至完成所有分层切片的喷涂沉积成形;所述基板的预热温度为600℃~1100℃,所述喷涂区域的温度为800℃~1400℃,根据材料的不同,调整预热和加热的温度,使得喷涂区域的温度与材料熔融的温度相匹配,且不高于喷涂材料的熔点。
4.根据权利要求3所述的制造方法,其特征在于,采用喷涂仓外加热炉、喷涂仓内等离子设备、电磁加热线圈中的任一种加热设备对基板进行加热。
5.根据权利要求3所述的制造方法,其特征在于,采用激光加热或等离子加热的方式对成形分层切片的表面进行加热。
6.根据权利要求3-5任一项所述的制造方法,其特征在于,步骤S3中,喷涂沉积成形时,在成形分层切片对应的成形厚度、形状及尺寸精度达不到要求的情况下,对该成形分层切片进行精整加工,该精整加工包括:采用轧辊轧制的方式对该成形分层切片的表面执行塑性成形等材加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求;采用铣削、研磨或/和抛光的方式对成形分层切片进行减材加工,直至满足成形分层切片成形的厚度、形状及尺寸精度要求。
CN201910546152.4A 2019-06-24 2019-06-24 一种适用于陶瓷及其复合材料的增材制造方法及装置 Active CN110328364B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910546152.4A CN110328364B (zh) 2019-06-24 2019-06-24 一种适用于陶瓷及其复合材料的增材制造方法及装置
JP2020107993A JP2021000825A (ja) 2019-06-24 2020-06-23 セラミック及びその複合材料に適した積層造形法及び装置
US16/909,847 US11890780B2 (en) 2019-06-24 2020-06-23 Additive manufacturing method and device for ceramic and composite thereof
EP20181909.1A EP3756798B1 (en) 2019-06-24 2020-06-24 Additive manufacturing method and device for ceramic and composite thereof
US17/648,705 US20220143868A1 (en) 2019-06-24 2022-01-24 Additive manufacturing method and device for ceramic and composite thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910546152.4A CN110328364B (zh) 2019-06-24 2019-06-24 一种适用于陶瓷及其复合材料的增材制造方法及装置

Publications (2)

Publication Number Publication Date
CN110328364A CN110328364A (zh) 2019-10-15
CN110328364B true CN110328364B (zh) 2020-11-24

Family

ID=68142825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910546152.4A Active CN110328364B (zh) 2019-06-24 2019-06-24 一种适用于陶瓷及其复合材料的增材制造方法及装置

Country Status (4)

Country Link
US (2) US11890780B2 (zh)
EP (1) EP3756798B1 (zh)
JP (1) JP2021000825A (zh)
CN (1) CN110328364B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU218110U1 (ru) * 2022-12-20 2023-05-11 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство для лазерного нанесения металлокерамического покрытия

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3907570A1 (en) * 2015-02-12 2021-11-10 Glowforge Inc. Cloud controlled laser fabrication
WO2018098398A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
WO2018098399A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Controlled deceleration of moveable components in a computer numerically controlled machine
CN110484914B (zh) * 2019-09-03 2021-05-18 大连理工大学 一种随动超声辅助直接激光沉积陶瓷增强金属基复合材料的装置及方法
US20210187618A1 (en) * 2019-12-16 2021-06-24 National Research Council Of Canada Apparatus and method for temperature controlled cold spray
CN111299579A (zh) * 2020-03-09 2020-06-19 深圳市晶莱新材料科技有限公司 一种提高slm金属打印制品内部质量的方法
DE102020110431A1 (de) * 2020-04-16 2021-10-21 AEDITIVE GmbH Fertigungssystem zur generativen Herstellung von Bauteilen und Verfahren
CN111558810A (zh) * 2020-05-13 2020-08-21 西安交通大学 一种增减材和激光冲击强化复合的金属丝材增材制造工艺
CN111647884A (zh) * 2020-06-09 2020-09-11 西安建筑科技大学 一种梯度纳米晶、超细晶涂层及其制备方法
CN111979508B (zh) * 2020-06-23 2022-03-01 中北大学 一种废铝回收直接成形装置及方法
CN112139494B (zh) * 2020-06-28 2023-06-09 西安航天发动机有限公司 一种高精度、无支撑的激光选区熔化成形方法
CN111975297B (zh) * 2020-08-14 2023-02-03 中国人民解放军陆军装甲兵学院 一种铜合金表面高能微弧沉积层制备及滚压后处理强化工艺
CN114226729B (zh) * 2020-09-09 2023-04-11 华中科技大学 粉末流体热塑化喷射成形装置、复合成形系统及方法
CN112711231B (zh) * 2020-12-22 2022-07-12 北京航星机器制造有限公司 一种增材制造加工路径规划的方法及装置
US11740608B2 (en) 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication
WO2023039477A1 (en) * 2021-09-08 2023-03-16 Lsp Technologies, Inc. An integrated system and method for in-situ laser peening of a three-dimensional printed part
CN114535611A (zh) * 2021-12-27 2022-05-27 江苏亚威创科源激光装备有限公司 一种激光抛光-激光增材复合的增材制造方法
CN115255393A (zh) * 2022-06-21 2022-11-01 上海交通大学 一种激光辅助的金属微喷液体增材制造装置和方法
CN115233208B (zh) * 2022-07-07 2023-10-03 国网宁夏电力有限公司超高压公司 基于超音速激光沉积的高压隔离开关表面修复方法及装置
CN115537800A (zh) * 2022-09-29 2022-12-30 江苏大学 一种金属表面多级超疏水结构的加工系统及其制备方法
CN117183317B (zh) * 2023-09-18 2024-04-05 华中科技大学 一种增材制造同步退火去应力方法及装置
CN117400002A (zh) * 2023-12-15 2024-01-16 中科德迈(沈阳)智能装备有限公司 增等减材复合制造装置及质量监控与智能控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153393A (zh) * 2006-09-27 2008-04-02 宝山钢铁股份有限公司 含有激光照射的冷气动力喷涂方法
JP2011122213A (ja) * 2009-12-11 2011-06-23 Iwate Industrial Research Center コールドスプレーによる皮膜形成方法及びコールドスプレー装置
CN103920626A (zh) * 2014-03-19 2014-07-16 浙江工业大学 一种激光辅助冷喷涂方法及喷嘴装置
CN104018156A (zh) * 2014-06-18 2014-09-03 浙江工业大学 一种金属基/金刚石激光复合涂层及其制备方法
CN106694872A (zh) * 2016-11-18 2017-05-24 华中科技大学 一种适用于零件与模具的复合增材制造方法
CN107671288A (zh) * 2017-09-27 2018-02-09 武汉大学 增材制造装置及方法
CN108950533A (zh) * 2017-05-17 2018-12-07 上海柘火智能科技有限公司 一种激光-冷喷涂同轴复合沉积装置及方法
CN109136907A (zh) * 2018-09-30 2019-01-04 苏州普热斯勒先进成型技术有限公司 超音速冷喷涂装置和方法
CN109161886A (zh) * 2018-08-27 2019-01-08 北京石油化工学院 一种激光辅助冷喷涂增材制造的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147184A (ja) * 1988-11-28 1990-06-06 Komatsu Ltd レーザクラッディング方法及び装置
JPH0810978A (ja) * 1994-06-30 1996-01-16 Mitsubishi Heavy Ind Ltd レーザ加工ヘッド
JP3040720B2 (ja) * 1995-12-05 2000-05-15 三菱重工業株式会社 レーザー加工ヘッド及びレーザー加工方法
US6350326B1 (en) * 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
DE60041645D1 (de) * 2000-12-18 2009-04-09 Alstom Technology Ltd Verfahren zur Behandlung einer Beschichtung auf einem Substrat
CN1140377C (zh) 2000-12-20 2004-03-03 华中科技大学 直接快速制造模具与零件的方法及其装置
US20020129485A1 (en) * 2001-03-13 2002-09-19 Milling Systems And Concepts Pte Ltd Method and apparatus for producing a prototype
JP4161598B2 (ja) * 2002-03-15 2008-10-08 株式会社 レーザックス 溶接装置、溶接方法、および溶接された被溶接物を有する物品の製造方法
US7043330B2 (en) * 2002-10-31 2006-05-09 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US20060133947A1 (en) * 2004-12-21 2006-06-22 United Technologies Corporation Laser enhancements of cold sprayed deposits
WO2009073498A1 (en) * 2007-11-29 2009-06-11 3M Innovative Properties Company Three-dimensional fabrication
JP5738885B2 (ja) * 2009-12-04 2015-06-24 ザ リージェンツ オブ ユニバーシティー オブ ミシガン コールド・スプレー・ノズル組立体、及び基材に粒子の被膜を付着させる方法
JP4977234B2 (ja) * 2010-06-02 2012-07-18 株式会社東芝 レーザ衝撃硬化処理方法および装置
EP2554360A1 (de) * 2011-08-01 2013-02-06 MTU Aero Engines GmbH Generativ hergestelltes Bauteil mit wenigstens einer Marke und Verfahren zum Ausbilden, Reparieren und/oder Austauschen eines derartigen Bauteils
GB201118698D0 (en) * 2011-10-28 2011-12-14 Laser Fusion Technologies Ltd Deposition of coatings on subtrates
US20140147601A1 (en) * 2012-11-26 2014-05-29 Lawrence Livermore National Security, Llc Cavitation And Impingement Resistant Materials With Photonically Assisted Cold Spray
SG11201610234VA (en) * 2014-06-09 2017-01-27 Hybrid Mfg Technologies Ltd Material processing methods and related apparatus
DE102015212529A1 (de) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Pulverbettbasiertes additives Fertigungsverfahren mit Oberflächennachbehandlung und für dieses Fertigungsverfahren geeignete Anlage
FR3042139B1 (fr) * 2015-10-08 2017-11-03 Michelin & Cie Procede de chargement, piece metallique chargee ou rechargee
US11173662B2 (en) * 2015-12-28 2021-11-16 Dmg Mori Co., Ltd. Additive-manufacturing head, manufacturing machine, and manufacturing method
FR3055351B1 (fr) * 2016-08-25 2019-11-08 Safran Procede de realisation d'un systeme barriere thermique sur un substrat metallique d'une piece de turbomachine
US20180180125A1 (en) * 2016-12-23 2018-06-28 Hyundai America Technical Center, Inc Cold spray laser coated of iron/aluminum brake discs
US20180194076A1 (en) * 2017-01-12 2018-07-12 Voxei8, Inc. Techniques for hybrid additive and substractive manufacturing
US20180339344A1 (en) * 2017-05-23 2018-11-29 Huntington Ingalls Incorporated System and method for in-situ processing of additive manufacturing materials and builds
US20190134911A1 (en) * 2017-11-08 2019-05-09 General Electric Company Apparatus and methods for build surface mapping
CN108500275B (zh) * 2018-04-18 2019-11-26 西安交通大学 一种高致密度与低残余应力的零件增材制造设备及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153393A (zh) * 2006-09-27 2008-04-02 宝山钢铁股份有限公司 含有激光照射的冷气动力喷涂方法
JP2011122213A (ja) * 2009-12-11 2011-06-23 Iwate Industrial Research Center コールドスプレーによる皮膜形成方法及びコールドスプレー装置
CN103920626A (zh) * 2014-03-19 2014-07-16 浙江工业大学 一种激光辅助冷喷涂方法及喷嘴装置
CN104018156A (zh) * 2014-06-18 2014-09-03 浙江工业大学 一种金属基/金刚石激光复合涂层及其制备方法
CN106694872A (zh) * 2016-11-18 2017-05-24 华中科技大学 一种适用于零件与模具的复合增材制造方法
CN108950533A (zh) * 2017-05-17 2018-12-07 上海柘火智能科技有限公司 一种激光-冷喷涂同轴复合沉积装置及方法
CN107671288A (zh) * 2017-09-27 2018-02-09 武汉大学 增材制造装置及方法
CN109161886A (zh) * 2018-08-27 2019-01-08 北京石油化工学院 一种激光辅助冷喷涂增材制造的方法
CN109136907A (zh) * 2018-09-30 2019-01-04 苏州普热斯勒先进成型技术有限公司 超音速冷喷涂装置和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
激光辅助冷喷涂制备高硬度材料涂层的研究进展;杨理京等;《材料导报A综述篇》;20180228;第412-417页 *
超音速激光沉积WC/Ni60复合涂层组织与耐磨损性能研究;刘世铎;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20180915;B022-96 *
超音速激光沉积WC/Stellite 6复合涂层显微组织特征的研究;李祉宏等;《中国激光》;20151130;第1106002-1至1106002-8页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU218110U1 (ru) * 2022-12-20 2023-05-11 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство для лазерного нанесения металлокерамического покрытия

Also Published As

Publication number Publication date
EP3756798A1 (en) 2020-12-30
EP3756798B1 (en) 2022-03-23
CN110328364A (zh) 2019-10-15
US20220143868A1 (en) 2022-05-12
JP2021000825A (ja) 2021-01-07
US20200398457A1 (en) 2020-12-24
US11890780B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
CN110328364B (zh) 一种适用于陶瓷及其复合材料的增材制造方法及装置
US11298792B2 (en) Combined additive manufacturing method applicable to parts and molds
Jiménez et al. Powder-based laser hybrid additive manufacturing of metals: a review
JP7002142B2 (ja) 付加製造過程で部品の変形及び精度を並行制御する方法
EP3785827B1 (en) Forming system and method of hybrid additive manufacturing and surface coating
CN105945281B (zh) 零件与模具的熔积成形加工制造方法
Turichin et al. High-speed direct laser deposition: technology, equipment and materials
Wang et al. Additive manufacturing based on welding arc: a low-cost method
Peleshenko et al. Analysis of the current state of additive welding technologies for manufacturing volume metallic products
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
US20020165634A1 (en) Fabrication of laminate tooling using closed-loop direct metal deposition
Abdulrahman et al. Laser metal deposition of titanium aluminide composites: A review
WO2015185001A1 (zh) 一种用于零件或模具的增量制造方法
Stecker et al. Advanced electron beam free form fabrication methods & technology
Peyre et al. Additive manufacturing of metal alloys 1: processes, raw materials and numerical simulation
Hedayatnejad et al. Investigation of Additive Manufacturing Process by LMD Method, Affecting Process Parameters on Microstructure and Quality of Deposition Layers
CN114833351B (zh) 一种耐磨钛合金零件及其电子束熔丝增材制造方法
Hascoet et al. Additive manufacturing viewed from material science: state of the art & fundamentals
Gokhale et al. Directed Energy Deposition for Metals
Iqbal et al. Additive manufacturing and post-processing: An introduction
JP2021188136A (ja) 付加製造体の製造方法、および、付加製造体の製造装置
CN114622197A (zh) 3d打印金属陶瓷复合成型件及其制备方法
Singh et al. Post-processing techniques of additively manufactured Ti-6Al-4V alloy: A complete review on property enhancement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant