CN110327975B - 氢甲酰化催化剂及其制备方法和应用 - Google Patents

氢甲酰化催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110327975B
CN110327975B CN201910492315.5A CN201910492315A CN110327975B CN 110327975 B CN110327975 B CN 110327975B CN 201910492315 A CN201910492315 A CN 201910492315A CN 110327975 B CN110327975 B CN 110327975B
Authority
CN
China
Prior art keywords
metal
hydroformylation catalyst
aromatic ring
hydroxyl
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910492315.5A
Other languages
English (en)
Other versions
CN110327975A (zh
Inventor
王勇
王哲
巩玉同
吴雷
于丽丽
李浩然
陈志荣
马啸
毛建拥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Nhu Pharmaceutical Co ltd
Shandong Nhu Vitamin Co ltd
Zhejiang University ZJU
Zhejiang NHU Co Ltd
Original Assignee
Shandong Nhu Pharmaceutical Co ltd
Shandong Nhu Vitamin Co ltd
Zhejiang University ZJU
Zhejiang NHU Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Nhu Pharmaceutical Co ltd, Shandong Nhu Vitamin Co ltd, Zhejiang University ZJU, Zhejiang NHU Co Ltd filed Critical Shandong Nhu Pharmaceutical Co ltd
Priority to CN201910492315.5A priority Critical patent/CN110327975B/zh
Publication of CN110327975A publication Critical patent/CN110327975A/zh
Priority to DE112019003554.1T priority patent/DE112019003554T5/de
Priority to PCT/CN2019/115850 priority patent/WO2020244140A1/zh
Priority to US17/258,439 priority patent/US20220080400A1/en
Application granted granted Critical
Publication of CN110327975B publication Critical patent/CN110327975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种氢甲酰化催化剂,包括活性组分和承载所述活性组分的载体,所述活性组分包括作为中心原子的过渡金属以及与所述过渡金属结合的多羟基芳环基团,所述过渡金属与所述多羟基芳环基团之间通过金属‑羟基配位键和金属‑氧共价键中的至少一种结合,所述活性组分中包括至少一个所述金属‑羟基配位键和至少一个所述金属‑氧共价键。本发明还涉及一种氢甲酰化催化剂的制备方法以及所述氢甲酰化催化剂的应用。

Description

氢甲酰化催化剂及其制备方法和应用
技术领域
本发明涉及催化剂技术领域,特别是涉及一种氢甲酰化催化剂及其制备方法和应用。
背景技术
烯烃的氢甲酰化反应是制备醛类物质的主要方法之一。氢甲酰化最早由O.Roelen于1938年在德国Ruhrchemie化学公司发现。第一代氢甲酰化催化工艺以羰基钴为催化剂,Co2(CO)8首先溶解在反应液中,在反应条件下,形成的 HCo(CO)4被认为是反应的活性物种,但是该物种极易分解产生CO,需要在较高的CO压力下才能得以稳定存在。
第二代氢甲酰化催化工艺采用磷配体提升催化活性物种的稳定性,可有效降低反应所需压力,提高正构醛的比例。但磷配体会导致催化剂活性的下降,而且会加速烯烃及产物醛的加氢反应,造成醛选择性的下降。
第三代氢甲酰化催化工艺是以金属Rh为活性中心的油溶性铑配体络合物催化剂,该类催化剂可大大提升反应效率,如采用三苯基膦改性的Rh催化剂,反应条件温和,正构醛选择性高,烯烃加氢等副反应都极大降低,但其缺点是产物与催化剂是处在均一的液相中,产物与催化剂的分离以及催化剂的回收困难,蒸馏产物分离催化剂常会导致产物聚合、催化剂分解失活等问题。
第四代氢甲酰化催化工艺采用水溶性的磷配体和油-水两相反应体系,催化剂存在于水相,产物醛位于油相,反应后静置即可有效分离催化剂和产物,但由于两相反应传质效率较低,影响催化效果,需要加入相转移剂,但相转移剂的加入会导致乳化现象而增加相分离难度。
因此,如何获得活性高同时还能够分离回收的催化剂是我们亟待解决的问题。
发明内容
基于此,有必要提供一种氢甲酰化催化剂及其制备方法和应用。
本发明提供一种氢甲酰化催化剂,包括活性组分和承载所述活性组分的载体,所述活性组分包括作为中心原子的过渡金属以及与所述过渡金属结合的多羟基芳环基团,所述过渡金属与所述多羟基芳环基团之间通过金属-羟基配位键和金属-氧共价键中的至少一种结合,所述活性组分中包括至少一个所述金属- 羟基配位键和至少一个所述金属-氧共价键。
在其中一个实施例中,所述过渡金属与同一所述多羟基芳环基团之间通过金属-羟基配位键和金属-氧共价键结合,所述羟基优选为酚羟基。
在其中一个实施例中,所述活性组分具有如式(1)所示的结构:
Figure BDA0002087442410000021
式(1)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键, O与M之间的键为所述金属-氧共价键,R为H或取代基团,1≤n≤3,优选的,所述R为含有羟基的取代基团;n>1时,每个苯环上的R独立的选自H或取代基团。
在其中一个实施例中,n为3,所述活性组分结构如式(2)所示:
Figure BDA0002087442410000022
在其中一个实施例中,所述活性组分具有如式(3)所示的结构:
Figure BDA0002087442410000023
式(3)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键, O与M之间的键为所述金属-氧共价键,R1与R2独立的选自H或取代基团,1≤m1+m2≤12,m1≥1,m2≥1,优选的,所述R1与R2独立的选自含有羟基的取代基团。
在其中一个实施例中,多个所述活性组分之间通过所述多羟基芳环基团上的羟基之间形成的氢键交联形成网络。
在其中一个实施例中,所述活性组分的所述多羟基芳环基团上的羟基与所述载体之间通过氢键结合。
在其中一个实施例中,所述活性组分为所述载体质量的0.1%至20%。
本发明还提供一种氢甲酰化催化剂的制备方法,包括以下步骤:
提供载体、金属前驱体和多羟基芳环化合物在溶剂中形成的混合溶液,所述金属前驱体能够在所述溶剂中解离形成过渡金属离子;
通过碱性物质调节所述混合溶液pH至8~11,得到所述氢甲酰化催化剂。
在其中一个实施例中,所述氢甲酰化催化剂的制备方法还包括对所述载体进行化学基团修饰的步骤,所述化学基团包括羟基、巯基、氨基中的一种或多种。
在其中一个实施例中,所述载体选自活性炭、二氧化硅和金属氧化物中的一种或多种,所述金属氧化物优选为Al2O3、MoO3、WO3、V2O5、VO2、MgO、 ZnO中的一种或多种。
在其中一个实施例中,所述金属前驱体选自(NH4)2RuCl6、RuCl3、C15H21O6Ru、H12Cl6N3Rh、RhN3O9、RhCl3·3H2O中的一种或多种。
在其中一个实施例中,所述多羟基芳环化合物为含有两个或两个以上羟基的芳烃环化合物,所述羟基优选为酚羟基,所述酚羟基优选为邻位酚羟基。
在其中一个实施例中,所述多羟基芳环化合物选自邻苯二酚、间苯三酚、单宁酸中的一种或多种。
在其中一个实施例中,所述多羟基芳环基团与所述金属前驱体的质量比为 0.1:1至50:1。
在其中一个实施例中,所述载体与所述金属前驱体的质量比为5至1000。
本发明进一步提高一种所述的氢甲酰化催化剂在烯烃或炔烃的氢甲酰化反应中的应用。
本发明提供的氢甲酰化催化剂,以多羟基芳环基团连接具有催化活性的过渡金属形成活性组分,固相载体承载活性组分,实现均相催化剂的多相化,催化剂在反应后易于分离回收,可直接用于气相连续化生产,并且由于载体的存在,使过渡金属周围的空间位阻极大,可实现高选择性的氢甲酰化反应,有效调控直链产物和支链产物的分布。多羟基芳环基团与过渡金属之间既可通过金属-羟基配位键结合,又可通过金属-氧共价键结合,形成的活性组分中既包括金属-羟基配位键又包括金属-氧共价键,这样的结合方式比全部以配位键结合更稳定,作为中心原子的过渡金属不易脱落、团聚或流失;并且由于金属-氧共价键和金属-羟基配位键的共同作用,过渡金属元素呈现出独特的电子结构和几何结构,可进一步提高催化剂的活性。
本发明实施例提供的氢甲酰化催化剂制备方法,通过可解离形成过渡金属离子的金属前驱体、多羟基芳环化合物以及载体在pH为8~11的碱性条件下得到所述氢甲酰化催化剂。多羟基芳环化合物在pH为8~11的碱性条件下,其羟基基团可发生部分解离形成所述氢甲酰化催化剂中的所述多羟基芳环基团与金属前驱体解离出的过渡金属离子结合,所述羟基基团一部分解离为氧负离子与过渡金属离子形成非配位共价键,另一部分没解离的羟基基团在配位作用下与过渡金属离子形成配位键,从而形成所述活性组分,载体固载所述活性组分得到所述氢甲酰化催化剂。本发明实施例提供的氢甲酰化催化剂制备方法,简单可行,易操作,制得的氢甲酰化催化剂结构稳定、易分离回收。
附图说明
图1为本发明实施例制备的氢甲酰化催化剂结构示意图;
图2为本发明实施例制备的氢甲酰化催化剂的透射电镜图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明实施例提供一种氢甲酰化催化剂,包括活性组分20和承载所述活性组分的载体10,所述活性组分20包括作为中心原子的过渡金属 22以及与所述过渡金属结合的多羟基芳环基团24,所述过渡金属22与所述多羟基芳环基团24之间通过金属-羟基配位键和金属-氧共价键中的至少一种结合,所述活性组分20中包括至少一个所述金属-羟基配位键和至少一个所述金属-氧共价键。
本发明提供的氢甲酰化催化剂,以多羟基芳环基团连接具有催化活性的过渡金属形成活性组分,固相载体承载活性组分,实现均相催化剂的多相化,催化剂在反应后易于分离回收,可直接用于气相连续化生产,并且由于载体的存在,使过渡金属周围的空间位阻极大,可实现高选择性的氢甲酰化反应,有效调控直链产物和支链产物的分布。多羟基芳环基团与过渡金属之间既可通过金属-羟基配位键结合,又可通过金属-氧共价键结合,形成的活性组分中既包括金属-羟基配位键又包括金属-氧共价键,这样的结合方式比全部以配位键结合更稳定,作为中心原子的过渡金属不易脱落、团聚或流失;并且由于金属-氧共价键和金属-羟基配位键的共同作用,过渡金属元素呈现出独特的电子结构和几何结构,可进一步提高催化剂的活性。
所述多羟基芳环基团优选为含有苯环的刚性结构,可使所述活性组分微观结构稳定而不易变形。
所述多羟基芳环基团与所述过渡金属之间通过金属-羟基配位键和金属-氧共价键中的至少一种结合可形成不同结构的所述活性组分。
在一实施例中,所述过渡金属与同一所述多羟基芳环基团之间通过金属-羟基配位键和金属-氧共价键结合,所述羟基优选为酚羟基。所述活性组分具有如式(1)所示的结构:
Figure BDA0002087442410000051
式(1)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键,O与M之间的键为所述金属-氧共价键,1≤n≤3,优选的,n为1或3,更进一步的,n为3。
R为H或取代基团,所述取代基团包括C1-C10的烷基、C6-C20的芳基。优选的,所述R为卤素、氨基、羧基、羟基取代的C1-C10的烷基或C6-C20的芳基。更优选的,所述R为羟基取代的C1-C10的烷基或C6-C20的芳基。所述的羟基取代的C1-C10的烷基或C6-C20的芳基可以有1个或多个羟基取代,优选的含有1-3个羟基。
n>1时,每个苯环上的R可以相同,也可不同,每个苯环上的R独立的选自H或取代基团。
优选的,n为3,所述活性组分结构如式(2)所示:
Figure BDA0002087442410000061
在另一实施例中,所述活性组分具有如式(3)所示的结构:
Figure BDA0002087442410000062
式(3)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键, O与M之间的键为所述金属-氧共价键,1≤m1+m2≤12,m1≥1,m2≥1,优选的1≤m1+m2≤6。
上述的R1、R2可以相同、也可不同,R1与R2独立的选自H或取代基团,所述取代基团包括C1-C10的烷基、C6-C20的芳基。优选的,所述R1、R2为卤素、氨基、羧基、羟基取代的C1-C10的烷基或C6-C20的芳基。更优选的,所述R1、R2为羟基取代的C1-C10的烷基或C6-C20的芳基。所述的羟基取代的C1-C10的烷基或C6-C20的芳基可以有1个或多个羟基取代,优选的含有1-3 个羟基。
在一实施例中,所述多个活性组分之间通过所述多羟基芳环基团上的羟基之间形成的氢键交联形成网络,将所述过渡金属包围,进一步防止所述过渡金属的脱落、团聚以及流失问题,使催化剂更稳定。
在一实施例中,所述载体表面具有羟基、氨基及巯基中的一种或多种官能团,所述活性组分的所述多羟基芳环基团上的羟基与所述载体之间可通过氢键结合,由于氢键的作用可使所述活性组分和所述载体之间的结合更牢固。
在一实施例中,所述氢甲酰化催化剂中所述活性组分为所述载体质量的0.1%至20%,优选为0.2%至2%。
本发明实施例还提供一种氢甲酰化催化剂的制备方法,包括以下步骤:
S10,提供载体、金属前驱体和多羟基芳环化合物在溶剂中形成的混合溶液,所述金属前驱体能够在所述溶剂中解离形成过渡金属离子;
S20,通过碱性物质调节所述混合溶液pH至8~11,得到所述氢甲酰化催化剂。
本发明实施例提供的氢甲酰化催化剂制备方法,通过可解离形成过渡金属离子的金属前驱体、多羟基芳环化合物以及载体在pH为8~11的碱性条件下得到所述氢甲酰化催化剂。多羟基芳环化合物在pH为8~11的碱性条件下,其羟基基团可发生部分解离形成所述氢甲酰化催化剂中的所述多羟基芳环基团与金属前驱体解离出的过渡金属离子结合,所述羟基基团一部分解离为氧负离子与过渡金属离子形成非配位共价键,另一部分没解离的羟基基团在配位作用下与过渡金属离子形成配位键,从而形成所述活性组分,载体固载所述活性组分得到所述氢甲酰化催化剂。
所述金属前驱体选自但不限于(NH4)2RuCl6、RuCl3、C15H21O6Ru、H12Cl6N3Rh、 RhN3O9、RhCl3·3H2O中的一种或多种,优选为RuCl3和RhCl3·3H2O。
所述多羟基芳环化合物优选为含有两个或两个以上羟基的芳烃环化合物,所述羟基优选为酚羟基,例如对苯二酚、邻苯二酚、间苯三酚、单宁酸等,所述酚羟基优选为邻位酚羟基,例如邻苯二酚、单宁酸等。所述多羟基芳环化合物中含有邻位酚羟基时,所述氢甲酰化催化剂具有如式(1)所示的活性组分结构。更优选的,所述多羟基芳环化合物为单宁酸,单宁酸中含有大量的羟基和羟键,能够与所述载体更牢固的结合,同时单宁酸形成的所述多羟基芳环基团之间更容易交联形成网络。
所述载体选自但不限于活性炭、二氧化硅和金属氧化物中的一种或多种,所述金属氧化物可选自Al、Ti、Zr、Ce、Mo、W、V、Mg、Ca、Cr、Mn、Fe、 Zn、Ga、Ge、Sn、Bi、Y、Nb、La、Re中的一种或多种元素的氧化物,优选为 Al2O3、MoO3、WO3、V2O5、VO2、MgO、ZnO中的一种或多种。所述载体的形貌不限,在一实施例中,所述载体为颗粒状,所述颗粒状载体的粒径为6nm至250μm。在一实施例中,所述催化剂为多孔载体,所述载体的孔径为0.2至100nm。
在一实施例中,所述氢甲酰化催化剂的制备方法还包括对所述载体进行化学基团修饰的步骤,可采用化学方法或等离子体处理等方法将所述载体表面修饰上羟基、氨基、巯基等化学基团,所述载体表面修饰所述化学基团可使所述氢甲酰化催化剂的固载更牢固。
在一实施例中,所述多羟基化合物与所述金属前驱体的质量比为0.1:1~50:1。在一实施例中,所述催化剂载体与所述金属前驱体的质量比为5~1000。
步骤S10中,所述溶剂为可溶解所述金属前驱体和所述多羟基芳环化合物的溶剂,包括水、乙醇、环乙烷等。
制备所述混合溶液时,可通过搅拌或振荡等方式使所述混合溶液混合均匀。为使其混合均匀,优选的,先将所述金属前驱体溶解在所述溶剂中形成溶液,先向所述溶液中加入所述载体,通过搅拌或振荡的操作步骤使所述载体与所述金属前驱体混合均匀后,再加入所述多羟基芳环化合物进行混合。
步骤S20中,所述碱性物质可选自Na2CO3、NaHCO3、NaOH、NH3·H2O中的一种或多种。为防止沉淀的生成,优选的,调节pH时可将所述碱性物质的固体配制成一定浓度的溶液逐滴加入所述混合溶液。
所述混合溶液pH调节至8~11后,在室温条件下静置2小时至12小时,然后进行过滤,将得到的固体洗涤干燥得所述氢甲酰化催化剂,优选的,将所述固体置于70℃~90℃下干燥,干燥时间优选为24h~48h。
本发明还提供一种所述的氢甲酰化催化剂在烯烃和炔烃的氢甲酰化反应中的应用。例如所述的氢甲酰化催化剂可用于丙烯氢甲酰化反应生产正丁醇、2- 乙基己醇及其它高碳醇;庚烯氢甲酰化反应生产辛醇;混合烯烃氢甲酰化反应生产用于增塑剂和合成洗涤剂的C8~C10醇和C12~C16醇;丙炔的氢甲酰化反应反应生产有机玻璃的单体甲基丙烯酸甲酯(MMA)。
实施例1
称取20mg RuCl3溶于40mL水中,加入1g活性炭,搅拌10分钟后,加入 300mg单宁酸,搅拌10分钟;
逐滴加入0.1M的NaOH溶液直至溶液pH在10左右,继续反应2h;
反应结束后过滤得到固体,将固体洗涤,置于70度下干燥24h,得到氢甲酰化催化剂。
实施例2
与实施例1基本相同,不同之处在于,加入的金属前驱体为RhCl3·3H2O。
实施例3
与实施例1基本相同,不同之处在于,加入的催化剂载体为二氧化硅。
实施例4
与实施例1基本相同,不同之处在于,加入的金属前驱体为RhCl3·3H2O,加入的催化剂载体为二氧化硅。
实施例5
与实施例1基本相同,不同之处在于,加入的多羟基芳环化合物为对苯二酚。
实施例6
与实施例1基本相同,不同之处在于,加入的多羟基芳环化合物为均苯三酚,催化剂载体为二氧化硅。
对比例
与实施例1基本相同,不同之处在于,溶液pH为6~7。
实施例1-6制备的氢甲酰化催化剂均可高效催化烯烃或炔烃的甲酰化反应,以下以实施例4制备的氢甲酰化催化剂与对比例制备的氢甲酰化催化剂在甲酰化反应中的催化效果对比。
应用例1
Figure BDA0002087442410000101
采用实施例4和对比例中制备的氢甲酰化催化剂作为催化剂催化丙烯的甲酰化反应,反应条件相同。具体反应条件为:采用500mL高压反应釜中,在高压反应釜中加入催化剂50mg,10mL去离子水,丙烯0.4MPa,一氧化碳1MPa,氢气1MPa,反应温度为100℃,反应时间6h。反应结束后经测试,使用实施例 4中制备的氢甲酰化催化剂作为催化剂时,丙烯转化率为96%,正丁醛选择性为 96%,正丁醛/异丁醛的比例为28;使用对比例中制备的氢甲酰化催化剂作为催化剂时,丙烯转化率为93%,正丁醛选择性为49%,正丁醛/异丁醛的比例为4,丙烷的选择性为39%。
应用例2
Figure BDA0002087442410000102
采用实施例4和对比例中制备的氢甲酰化催化剂作为催化剂催化异丁烯的甲酰化反应,反应条件相同。具体反应条件为:采用500mL高压反应釜,在高压反应釜中加入催化剂50mg,10mL去离子水,异丁烯0.2MPa,一氧化碳1MPa,氢气1MPa,反应温度为100℃,反应时间6h。反应结束后经测试,使用实施例 4中制备的氢甲酰化催化剂作为催化剂时,异丁烯转化率为98%,异戊醛选择性为97%;使用对比例中制备的氢甲酰化催化剂作为催化剂时,异丁烯转化率为91%,异戊醛选择性为54%,异戊醛/新戊醛的比例为9,异丁烷选择性为40%。
应用例3
Figure BDA0002087442410000103
采用实施例4和对比例中制备的氢甲酰化催化剂作为催化剂催化异丁烯的甲酰化反应,反应条件相同。具体反应条件为:采用500mL高压反应釜,在高压反应釜中加入催化剂50mg,10mL正己烷,1-庚烯30mmol,一氧化碳1MPa,氢气1MPa,反应温度为100℃,反应时间8h。反应结束后经测试,使用实施例 4中制备的氢甲酰化催化剂作为催化剂时,1-庚烯转化率为99%,正辛醛选择性为98%;使用对比例中制备的氢甲酰化催化剂作为催化剂时,1-庚烯转化率为 82%,正辛醛选择性为47%,正丁醛/异丁醛的比例为3.3,正庚烷的选择性为39%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (22)

1.一种氢甲酰化催化剂,其特征在于,包括活性组分和承载所述活性组分的载体,所述活性组分包括作为中心原子的过渡金属以及与所述过渡金属结合的多羟基芳环基团,所述过渡金属与所述多羟基芳环基团之间通过金属-羟基配位键和金属-氧共价键中的至少一种结合,所述活性组分中包括至少一个所述金属-羟基配位键和至少一个所述金属-氧共价键,所述羟基为酚羟基,所述过渡金属为Ru或Rh,所述载体为活性碳、二氧化硅和金属氧化物中的一种或多种。
2.根据权利要求1所述的氢甲酰化催化剂,其特征在于,所述过渡金属与同一所述多羟基芳环基团之间通过金属-羟基配位键和金属-氧共价键结合,所述羟基优选为酚羟基。
3.根据权利要求1所述的氢甲酰化催化剂,其特征在于,所述活性组分具有如式(1)所示的结构:
Figure FDA0002439109690000011
式(1)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键,O与M之间的键为所述金属-氧共价键,R为H或取代基团,1≤n≤3。
4.根据权利要求3所述的氢甲酰化催化剂,其特征在于,n>1时,每个苯环上的R独立的选自H或取代基团。
5.根据权利要求3所述的氢甲酰化催化剂,其特征在于,所述R为含有羟基的取代基团。
6.根据权利要求3所述的氢甲酰化催化剂,其特征在于,n为3,所述活性组分结构如式(2)所示:
Figure FDA0002439109690000012
7.根据权利要求1所述的氢甲酰化催化剂,其特征在于,所述活性组分具有如式(3)所示的结构:
Figure FDA0002439109690000021
式(3)中M为所述过渡金属,OH与M之间的键为所述金属-羟基配位键,O与M之间的键为所述金属-氧共价键,R1与R2独立的选自H或取代基团,1≤m1+m2≤12,m1≥1,m2≥1。
8.根据权利要求7所述的氢甲酰化催化剂,其特征在于,所述R1与R2独立的选自含有羟基的取代基团。
9.根据权利要求1至8任一项所述的氢甲酰化催化剂,其特征在于,多个所述活性组分之间通过所述多羟基芳环基团上的羟基之间形成的氢键交联形成网络。
10.根据权利要求1至8任一项所述的氢甲酰化催化剂,其特征在于,所述活性组分的所述多羟基芳环基团上的羟基与所述载体之间通过氢键结合。
11.根据权利要求1至8任一项所述的氢甲酰化催化剂,其特征在于,所述活性组分为所述载体质量的0.1%至20%。
12.一种如权利要求1至11任一项所述的氢甲酰化催化剂的制备方法,其特征在于,包括以下步骤:
提供载体、金属前驱体和多羟基芳环化合物在溶剂中形成的混合溶液,所述金属前驱体能够在所述溶剂中解离形成过渡金属离子;
通过碱性物质调节所述混合溶液pH至8~11,得到所述氢甲酰化催化剂。
13.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,还包括对所述载体进行化学基团修饰的步骤,所述化学基团包括羟基、巯基、氨基中的一种或多种。
14.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述载体选自活性碳、二氧化硅和金属氧化物中的一种或多种。
15.根据权利要求14所述的氢甲酰化催化剂的制备方法,其特征在于,所述金属氧化物优选为Al2O3、MoO3、WO3、V2O5、VO2、MgO、ZnO中的一种或多种。
16.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述金属前驱体选自(NH4)2RuCl6、RuCl3、C15H21O6Ru、H12Cl6N3Rh、RhN3O9、RhCl3·3H2O中的一种或多种。
17.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述多羟基芳环化合物为含有两个或两个以上羟基的芳烃环化合物,所述羟基为酚羟基。
18.根据权利要求17所述的氢甲酰化催化剂的制备方法,其特征在于,所述酚羟基优选为邻位酚羟基。
19.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述多羟基芳环化合物选自邻苯二酚、间苯三酚、单宁酸中的一种或多种。
20.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述多羟基芳环基团与所述金属前驱体的质量比为0.1:1至50:1。
21.根据权利要求12所述的氢甲酰化催化剂的制备方法,其特征在于,所述载体与所述金属前驱体的质量比为5至1000。
22.一种如权利要求1至11任一项所述的氢甲酰化催化剂在烯烃或炔烃的氢甲酰化反应中的应用。
CN201910492315.5A 2019-06-06 2019-06-06 氢甲酰化催化剂及其制备方法和应用 Active CN110327975B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910492315.5A CN110327975B (zh) 2019-06-06 2019-06-06 氢甲酰化催化剂及其制备方法和应用
DE112019003554.1T DE112019003554T5 (de) 2019-06-06 2019-11-06 Hydroformylierungskatalysator sowie seine Herstellungsverfahren und Anwendungen
PCT/CN2019/115850 WO2020244140A1 (zh) 2019-06-06 2019-11-06 氢甲酰化催化剂及其制备方法和应用
US17/258,439 US20220080400A1 (en) 2019-06-06 2019-11-06 Hydroformylation catalyst, preparation method therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910492315.5A CN110327975B (zh) 2019-06-06 2019-06-06 氢甲酰化催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110327975A CN110327975A (zh) 2019-10-15
CN110327975B true CN110327975B (zh) 2020-05-19

Family

ID=68140927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910492315.5A Active CN110327975B (zh) 2019-06-06 2019-06-06 氢甲酰化催化剂及其制备方法和应用

Country Status (4)

Country Link
US (1) US20220080400A1 (zh)
CN (1) CN110327975B (zh)
DE (1) DE112019003554T5 (zh)
WO (1) WO2020244140A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327975B (zh) * 2019-06-06 2020-05-19 浙江新和成股份有限公司 氢甲酰化催化剂及其制备方法和应用
CN111085198B (zh) * 2019-11-28 2022-11-08 山东新和成维生素有限公司 一种氢甲酰化催化剂及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2823886T3 (da) * 2005-12-14 2019-09-23 Advanced Refining Technologies Llc Fremgangsmåde til at fremstille en hydrobehandlings-katalysator
CN100485539C (zh) * 2007-04-12 2009-05-06 湖北鼎龙化学股份有限公司 一种电荷调节剂以及碳粉
CN101798361B (zh) * 2010-02-10 2013-09-25 中国科学院上海有机化学研究所 烯烃聚合催化剂
EP2740535A1 (en) * 2012-12-04 2014-06-11 Dow Technology Investments LLC Bidentate ligands for hydroformylation of ethylene
WO2014197940A1 (en) * 2013-06-12 2014-12-18 The University Of Melbourne One step assembly of metal-polyphenol complexes for versatile film and particle engineering
DE102016206303A1 (de) * 2016-04-14 2017-10-19 Technische Universität Berlin Katalysator zur Hydroformylierung von Olefinen und dessen Verwendung
CN109746048B (zh) * 2017-11-03 2022-07-12 中国石油化工股份有限公司 一种多相铑基氢甲酰化催化剂及其制备方法和应用
CN109806911B (zh) * 2017-11-21 2022-01-21 中国科学院大连化学物理研究所 一种高选择性制备直链醛的催化剂及其制备和应用
KR102311809B1 (ko) * 2017-11-24 2021-10-08 주식회사 엘지에너지솔루션 분리막 및 이를 포함하는 전기화학소자
CN109836318B (zh) * 2017-11-27 2022-09-30 中国科学院大连化学物理研究所 一种烯烃氢甲酰化反应制备醛的方法
CN109174182B (zh) * 2018-08-02 2021-09-17 南京工业大学 一种提高MOFs材料催化氧化活性的方法及其应用
CN110215919B (zh) * 2019-05-28 2020-10-13 浙江大学 一种高分散负载型催化剂及其制备方法和应用
CN110201663B (zh) * 2019-05-28 2020-06-30 浙江大学 一种选择性加氢催化剂在加氢反应中作为催化剂的应用
CN110327975B (zh) * 2019-06-06 2020-05-19 浙江新和成股份有限公司 氢甲酰化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
WO2020244140A1 (zh) 2020-12-10
US20220080400A1 (en) 2022-03-17
CN110327975A (zh) 2019-10-15
DE112019003554T5 (de) 2021-04-01

Similar Documents

Publication Publication Date Title
Guo et al. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands
CN110215919B (zh) 一种高分散负载型催化剂及其制备方法和应用
CN109806911B (zh) 一种高选择性制备直链醛的催化剂及其制备和应用
CN110835359B (zh) 一种含p、n多孔有机笼配体及络合物催化剂和应用
CN107537481B (zh) 负载型单原子铑基催化剂及其在烯烃氢甲酰化反应中应用
CN109937090B (zh) 处理加氢甲酰化催化剂溶液的方法
CN110327975B (zh) 氢甲酰化催化剂及其制备方法和应用
US9527067B2 (en) Inorganic/polymeric hybrid catalytic materials containing metal nano-particles therein
CN1970143A (zh) 一种高活性加氢催化剂纳米Ru/C的制备方法
CN109847804B (zh) 一种酚羟基修饰聚苯乙烯固载化铑膦配合物催化剂及其制备方法与应用
CN110835343A (zh) 一种含p、n多孔有机笼配体及其制备和应用
Gorbunov et al. Phosphorus-free nitrogen-containing catalytic systems for hydroformylation and tandem hydroformylation-based reactions
CN115007216A (zh) 一种限域催化剂、制备方法及其催化氢甲酰化反应的用途
CN113713862A (zh) 烯烃氢甲酰化反应的Co基多相催化剂及制备和应用
CN111054437B (zh) 一种异辛烯醛选择加氢制备异辛醛的催化剂、制备方法及应用
CN114682303A (zh) 一种原位一步法合成贵金属@mof核壳催化剂的制备方法
WO2023207584A1 (zh) 一种蛋壳型催化剂及其制备方法和丙烯氢甲酰化反应应用
CN115282968B (zh) 一种金属掺杂自组装催化剂
CN113663725B (zh) 一种介孔金属有机膦酸盐催化剂、其制备方法及其在制备3-羟基丙醛中的应用
CN111056931B (zh) 一种丙烯醛选择加氢制备丙醛的方法
CN113731413A (zh) 一种MOFs限域金属催化剂及其制备方法与应用
Ruiz et al. Novel metal nanoparticles stabilized with (2R, 4R)-2, 4-bis (diphenylphosphino) pentane on SiO2. Their use as catalysts in Enantioselective hydrogenation reactions
CN110694657A (zh) 一种简易合成高碳醛催化剂
CN113398962B (zh) 用于高选择性制备异丁醛的Co@CuC/Al2O3催化剂的制备方法
CN117225408A (zh) 一种介孔CeO2负载Rh催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant