CN110317828A - 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 - Google Patents
修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 Download PDFInfo
- Publication number
- CN110317828A CN110317828A CN201910698527.9A CN201910698527A CN110317828A CN 110317828 A CN110317828 A CN 110317828A CN 201910698527 A CN201910698527 A CN 201910698527A CN 110317828 A CN110317828 A CN 110317828A
- Authority
- CN
- China
- Prior art keywords
- rice
- sequence
- grna
- seq
- cas9
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8281—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法。将核苷酸序列TACTGTACACCACCAAAAGT、ATATAAAAGCACCACAACTC和CCTCCAACCAGGTGCTAAGC同时构建于CRISPR/Cas9系统中,借助农杆菌介导的转基因体系,在水稻华占中定点突变OsSWEET11、OsSWEET13和OsSWEET14基因,获得了OsSWEET11、OsSWEET13和OsSWEET14基因启动子同时突变的水稻材料MS134HZ,广谱抗水稻白叶枯病。MS134HZ的感病基因OsSWEET11、OsSWEET13和OsSWEET14启动子EBE同时被修饰,抗白叶枯病能力提高且更广谱。在实际应用中可通过突变的MS134HZ植株与其它水稻品种杂交,培育抗病品系。
Description
技术领域
本发明属于生物工程技术领域,尤其是涉及一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法。
背景技术
由稻黄单胞菌白叶枯致病变种(Xanthomonas oryzae pv.oryzae,Xoo)引起的水稻白叶枯病,是水稻上最重要的细菌性病害之一。该病在我国各稻区均有发生,南方稻区发病较重,对水稻产量影响较大,能造成水稻减产20%-30%,严重时可达50%-60%甚至是绝收。培育和种植抗性品种是防治白叶枯病的最经济有效的手段。目前,国内外已报道了40多个抗白叶枯基因,但如何合理选用这些抗性基因及创制新的抗性基因资源依赖于对Xoo与水稻互作机理的研究。
转录因子类似效应蛋白(Transcription activator like effector,简称TALE)是Xoo中一类重要的毒性因子,其通过III型分泌系统进入水稻细胞后结合到特定感病基因(Susceptible gene,简称S基因)启动子区的EBE(Effector binding element)序列而激活S基因的表达。这类S基因已知共分为两类:第一类是SWEET家族基因,包括OsSWEET11、OsSWEET13和OsSWEET14。第二类是转录因子类,如bZIP转录因子(OsTFX1)及TFIIA转录复合体的小亚基(OsTFIIAγ1)等。水稻的OsSWEET家族基因编码糖转运蛋白,通过向水稻细胞外转运糖类物质为细菌提供营养从而利于病害的发生、发展。感病基因OsSWEET11和OsSWEET13可分别被主效毒性TALE蛋白PthXo1和PthXo2激活,另一个感病基因OsSWEET14则可被4个TALE蛋白PthXo3、AvrXa7、TalC和TalF识别。因此,突变这些感病基因启动子的EBE序列可导致TALE蛋白无法与启动子结合,降低细菌侵染时感病基因的表达水平,从而提高水稻抗病性。
CRISPR/Cas9(成簇、规律间隔短回文重复序列及相关蛋白)系统是来自原核生物的获得性免疫系统。近年来被发展为对基因组进行定点编辑的新技术,在多种领域都有广泛的研究和应用。CRISPR/Cas9系统通过指导RNA(guide RNA,gRNA)锚定基因组特定序列,Cas9蛋白对被靶向的特征序列进行切割产生双链断裂,细胞启动DNA损伤修复机制,借助非同源末端连接或同源重组方式引入突变。目前,仍无运用该技术同时突变水稻OsSWEET11、OsSWEET13和OsSWEET14感病基因的报道。
发明内容
本发明的目的是,克服现有水稻抗性资源的不足,提供一种运用CRISPR/Cas9系统同时定点修饰水稻OsSWEET11、OsSWEET13和OsSWEET14基因启动子的方法,以获得OsSWEET11、OsSWEET13和OsSWEET14感病基因EBE功能同时丧失的广谱抗白叶枯病水稻新种质。
本发明通过CRISPR/Cas9技术定点突变华占水稻感病基因OsSWEET11、OsSWEET13和OsSWEET14基因启动子,创制的广谱抗病水稻株系MS134HZ具有重要应用价值。
本发明的目的可以通过以下技术方案来实现:
一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,将核苷酸序列TACTGTACACCACCAAAAGT、ATATAAAAGCACCACAACTC和CCTCCAACCAGGTGCTAAGC同时构建于CRISPR/Cas9系统中,借助农杆菌介导的转基因体系,在水稻中定点突变OsSWEET11、OsSWEET13和OsSWEET14基因,获得了OsSWEET11、OsSWEET13和OsSWEET14基因启动子同时突变的水稻材料MS134HZ,广谱抗水稻白叶枯病。
进一步地,所述CRISPR/Cas9载体系统为:pENTR:gRNA5和pBY02-OsCas9-ccdB载体系统。
进一步地,所述水稻品种为籼稻华占。
一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,包括以下步骤:
(1)sgRNA靶位点的选择:
根据CRISPR/Cas9技术靶位点设计的原则,分别在OsSWEET11、OsSWEET13和OsSWEET14基因启动子区域选取靶位点序列SW11、SW13和SW14,选择的靶点位于OsSWEET11、OsSWEET13和OsSWEET14基因启动子反义链上含有NGG序列特征的序列,即靶位点序列SW11、SW13和SW14,其中,SW11位于OsSWEET11基因转录起始位点上游第239位至第220位,其序列如SEQ ID NO.1所示,SW13位于OsSWEET13基因转录起始位点上游第226位至第207位,其序列如SEQ ID NO.2所示,SW14位于OsSWEET14基因转录起始位点上游第250位至第231位,其序列如SEQ ID NO.3所示;
(2)构建同时含有SW11、SW13和SW14序列的表达载体Cas9-gRNA5-SW134:
根据选定的gRNA靶点序列,合成引物SW11-gRNA-F/SW11-gRNA-R、SW13-gRNA-F/SW13-gRNA-R和SW14-gRNA-F/SW14-gRNA-R,将这些引物通过两两退火方法合成双链DNAgRNA-SW11、gRNA-SW13和gRNA-SW14;将gRNA-SW11和gRNA-SW14依次经BtgZI和BsaI酶切连接后插入pENTR:gRNA4载体的U6p启动子下游,获得中间载体pgRNA4-SW1114;同时,将gRNA-SW13经BtgZI酶切后连接至pENTR:gRNA5载体的U6p启动子下游,获得中间载体pgRNA5-SW13;从pgRNA4-SW1114载体上经HindIII酶切得到含有gRNA-SW11和gRNA-SW14的DNA片段,将其连接至pgRNA5-SW13载体的HindIII酶切位点,获得中间载体pgRNA5-SW134;再通过gateway方法将pgRNA5-SW134载体上含U6p启动子、gRNA-SW11、gRNA-SW14和gRNA-SW13的片段克隆到pBY02-OsCas9-ccdB载体上,获得重组载体Cas9-gRNA5-SW134;
(3)表达载体Cas9-gRNA5-SW134转化进入根癌农杆菌EHA105:
将(2)中的重组载体Cas9-gRNA5-SW134通过热激方法转化进入农杆菌EHA105菌株中,获得含有重组表达载体Cas9-gRNA5-SW134的重组农杆菌,命名为EHA105/Cas9-gRNA5-SW134;
(4)农杆菌介导的水稻转化:
利用重组根癌农杆菌EHA105/Cas9-gRNA5-SW134侵染水稻成熟胚诱导的愈伤组织,在含潮霉素抗生素培养基上成功再生及生根的植株为具有广谱抗白叶枯病水稻,即转基因阳性植株MS134HZ。
所述SW11-gRNA-F序列如SEQ ID NO.4所示,SW11-gRNA-R序列如SEQ ID NO.5所示,SW13-gRNA-F序列如SEQ ID NO.6所示,SW13-gRNA-R序列如SEQ ID NO.7所示,SW14-gRNA-F序列如SEQ ID NO.8所示,SW14-gRNA-R序列如SEQ ID NO.9所示。
还包括水稻突变体筛选步骤,具体方法如下:T0代苗期水稻叶片基因组提取,利用Cas9基因检测引物Cas9-F和Cas9-R扩增Cas9部分序列;再以Cas9基因阳性植株基因组为模板,SW11p-F/SW11p-R、SW13p-F/SW13p-R和SW14p-F/SW14p-R为引物分别扩增OsSWEET11、OsSWEET13和OsSWEET14基因启动子部分片段;通过对PCR产物测序验证突变水稻株系。
引物Cas9-F序列如SEQ ID NO.10所示,引物Cas9-R序列如SEQ ID NO.11所示,引物SW11p-F序列如SEQ ID NO.12所示,引物SW11p-R序列如SEQ ID NO.13所示,引物SW13p-F序列如SEQ ID NO.14所示,引物SW13p-R序列如SEQ ID NO.15所示,引物SW14p-F序列如SEQID NO.16所示,引物SW14p-R序列如SEQ ID NO.17所示。
所得水稻材料MS134HZ,其中一种水稻材料OsSWEET11基因启动子缺失CT两个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基。另一种水稻材料OsSWEET11基因启动子缺失TGTAC五个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基。
一种检测突变体水稻抗性的方法,对8周龄的水稻剪叶接种两个Xoo菌株PXO99A和PXO61,其中,PXO99A为菲律宾菌株,含有激活OsSWEET11基因的PthXo1毒性因子;PXO16为菲律宾菌株,含有激活OsSWEET14基因的PthXo3毒性因子;设定时间后调查病斑长度,最后取多个叶片的平均值,做t-test差异分析(P<0.05),病斑越短,表明水稻对PXO99A和PXO61菌株的抗性越好。
与现有技术相比,本发明具有如下的有益效果:
本发明利用CRISPR/Cas9基因组定点编辑系统突变了水稻的OsSWEET11、OsSWEET13和OsSWEET14基因启动子,获得水稻株系MS134HZ-4和MS134HZ-5。该株系的感病基因OsSWEET11、OsSWEET13和OsSWEET14启动子EBE同时被修饰,抗白叶枯病能力提高且更广谱。在实际应用中可通过突变的MS134HZ植株与其它水稻品种杂交,培育抗病品系。
附图说明
图1为OsSWEET11、OsSWEET13和OsSWEET14基因结构及guide RNA靶标序列;
图2为PCR筛选含有Cas9基因的转基因植株;
图3为纯合突变体植株的OsSWEET11、OsSWEET13和OsSWEET14基因靶序列突变,-表示缺失;
图4为突变体水稻MS134HZ-4和MS134HZ-5接种PXO99A和PXO61后病斑统计结果,同时以野生型水稻华占为对照。具体地,A图为叶片病斑照片;B图为病斑长度统计结果,不同字母表示在P<0.05时,病斑长度有显著差异。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
这些实施例仅用于说明本发明而不用于限制本发明的范围。
下列实施例中如无特殊说明的实验方法,均为常规方法。
实施例1
基于CRISPR/Cas9系统的水稻OsSWEET11、OsSWEET13和OsSWEET14基因启动子定点突变:
(1)gRNA靶位点的选择
登陆NCBI网站(https://www.ncbi.nlm.nih.gov/),查询籼稻OsSWEET11、OsSWEET13和OsSWEET14基因的序列。根据CRISPR/Cas9技术靶位点设计的原则,分别在OsSWEET11、OsSWEET13和OsSWEET14基因启动子区域选取靶位点序列SW11、SW13和SW14(图1)。
(2)表达载体Cas9-gRNA5-SW134的构建
根据选定的gRNA靶点序列,合成引物SW11-gRNA-F(见SEQ ID NO.4)、SW11-gRNA-R(见SEQ ID NO.5)、SW13-gRNA-F(见SEQ ID NO.6)、SW13-gRNA-R(见SEQ ID NO.7)、SW14-gRNA-F(见SEQ ID NO.8)和SW14-gRNA-R(见SEQ ID NO.9)。将这些引物通过两两退火方法合成双链DNA gRNA-SW11、gRNA-SW13和gRNA-SW14。将gRNA-SW11和gRNA-SW14依次经BtgZI和BsaI酶切连接后插入pENTR:gRNA4载体的U6p启动子下游,获得中间载体pgRNA4-SW1114;同时,将gRNA-SW13经BtgZI酶切后连接至pENTR:gRNA5载体的U6p启动子下游,获得中间载体pgRNA5-SW13。从pgRNA4-SW1114载体上经HindIII酶切得到含有gRNA-SW11和gRNA-SW14的DNA片段,将其连接至pgRNA5-SW13载体的HindIII酶切位点,获得中间载体pgRNA5-SW134。再通过gateway方法将pgRNA5-SW134载体上含U6p启动子、gRNA-SW11、gRNA-SW14和gRNA-SW13的片段克隆到pBY02-OsCas9-ccdB载体上,获得重组载体Cas9-gRNA5-SW134。
所述载体pENTR:gRNA4,pENTR:gRNA5和pBY02-OsCas9-ccdB来源于中国农业科学院植物保护研究所周焕斌实验室,已在文献《Huanbin Zhou,Bo Liu,Donald P.Weeks,Martin H.Spalding and Bing Yang.2014,Large chromosomal deletions andheritable small genetic changes induced by CRISPR/Cas9in rice.Nucleic AcidsResearch,42(17):10934-10914》中公开。
(3)重组根癌农杆菌的获得
将(2)中的重组载体Cas9-gRNA5-SW134通过热激方法转化进入农杆菌EHA105菌株中,获得含有重组表达载体Cas9-gRNA5-SW134的重组农杆菌,命名为EHA105/Cas9-gRNA5-SW134。
(4)农杆菌介导的水稻转化
利用重组根癌农杆菌EHA105/Cas9-gRNA5-SW134侵染水稻品种华占成熟胚诱导的愈伤组织,在含潮霉素抗生素培养基上成功再生及生根的植株为转基因阳性植株,将其命名为MS134HZ。
(5)转基因水稻及突变位点检测
提取再生植株叶片总DNA,分别以Cas9基因检测引物Cas9-F(SEQ ID NO.10)和Cas9-R(SEQ ID NO.11)PCR扩增Cas9部分序列。再以Cas9基因阳性植株基因组为模板,用引物SW11p-F(SEQ ID NO.12)/SW11p-R(SEQ ID NO.13)、SW13p-F(SEQ ID NO.14)/SW13p-R(SEQ ID NO.15)和SW14p-F(SEQ ID NO.16)/SW14p-R(SEQ ID NO.17)为引物分别扩增OsSWEET11、OsSWEET13和OsSWEET14基因启动子319bp、407bp和485bp的片段,对PCR产物进行测序,通过测序序列及其峰图判断靶位点是否发生突变。
扩增结果见图2,第一泳道表示DNA分子Marker,条带大小由上向下依次为1000bp、750bp、500bp、250bp、100bp;第二泳道表示以无菌水做模板的空白对照;第三泳道华占表示受体水稻华占;第四、五泳道表示转基因植株中第4号和第5号,分别将其命名为MS134HZ-4和MS134HZ-5。将上述OsSWEET11、OsSWEET13和OsSWEET14基因启动子的PCR片段测序,测序引物分别为SW11p-F(SEQ ID NO.12)、SW13p-F(SEQ ID NO.14)和SW14p-F(SEQ ID NO.16)。测序结果见图3,A图为sgRNA靶序列测序结果,B图为A图中对应序列的峰图。结果显示,两个转基因植株的OsSWEET11、OsSWEET13和OsSWEET14基因启动子均在EBE区域出现缺失突变,且两条染色体同时发生突变。MS134HZ-4植株的OsSWEET11基因启动子缺失CT两个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基;MS134HZ-5植株的OsSWEET11基因启动子缺失TGTAC五个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基。
实施例2
MS134HZ水稻对含PthXo1和PthXo3致病因子菌株的抗性检测及其应用:
选取两株代表性Xoo菌株用于接种MS134HZ水稻,具体包括PXO99A和PXO61。其中,PXO99A为菲律宾菌株,含有激活OsSWEET11基因的PthXo1毒性因子;PXO16为菲律宾菌株,含有激活OsSWEET14基因的PthXo3毒性因子。
采用剪叶接种方法,对MS134HZ-4、MS134HZ-5和华占水稻接种菌液浓度为OD600值等于0.8的2个Xoo菌株。具体方法为:菌液润湿灭菌的剪刀后剪去叶尖约2cm。每株水稻接种3-5片叶,十四天后调查病斑长度,最后取多个叶片的平均值,做t-test差异分析(P<0.05)。结果如图4所示,与华占相比,MS134HZ-4和MS134HZ-5显著增加了对PXO99A和PXO61菌株的抗性,表明MS134HZ水稻的抗性比华占水稻更高、更广谱。
由此,利用本发明提供的含gRNA序列SEQ ID NO.1、NO.2和NO.3的CRISPR/Cas9系统可转入栽培稻中,通过介导OsSWEET11、OsSWEET13和OsSWEET14基因启动子发生突变以增加水稻的抗性及抗谱。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
序列表
<110> 上海交通大学
<120> 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> 水稻(Oryza sativa Indica)
<400> 1
tactgtacac caccaaaagt 20
<210> 2
<211> 20
<212> DNA
<213> 水稻(Oryza sativa Indica)
<400> 2
atataaaagc accacaactc 20
<210> 3
<211> 20
<212> DNA
<213> 水稻(Oryza sativa Indica)
<400> 3
cctccaacca ggtgctaagc 20
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
tgttgacttt tggtggtgta cagta 25
<210> 5
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
aaactactgt acaccaccaa aagtc 25
<210> 6
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
tgttgagttg tggtgctttt atat 24
<210> 7
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
aaacatataa aagcaccaca actc 24
<210> 8
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
gtgtgcttag cacctggttg gagg 24
<210> 9
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
aaaccctcca accaggtgct aagc 24
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 10
gggtaatgaa ctcgctctgc 20
<210> 11
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 11
tggcgtcaag aacttccttt g 21
<210> 12
<211> 23
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 12
gagagggaca gatctagagg tag 23
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 13
ggtgttaatc agtgagaagg 20
<210> 14
<211> 18
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 14
atggctagtg agaggtgc 18
<210> 15
<211> 19
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 15
aggaattgag cttgttgtt 19
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 16
agcttgccca actctagatc 20
<210> 17
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 17
acactactgt tcttgcttgc 20
Claims (10)
1.一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,将核苷酸序列TACTGTACACCACCAAAAGT、ATATAAAAGCACCACAACTC和CCTCCAACCAGGTGCTAAGC同时构建于CRISPR/Cas9系统中,借助农杆菌介导的转基因体系,在水稻中定点突变OsSWEET11、OsSWEET13和OsSWEET14基因,获得了OsSWEET11、OsSWEET13和OsSWEET14基因启动子同时突变的水稻材料,广谱抗水稻白叶枯病。
2.根据权利要求1所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,所述CRISPR/Cas9载体系统为:pENTR:gRNA5和pBY02-OsCas9-ccdB载体系统。
3.根据权利要求1所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,所述水稻品种为籼稻华占。
4.根据权利要求1所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,包括以下步骤:
(1)sgRNA靶位点的选择:
选择的靶点位于OsSWEET11、OsSWEET13和OsSWEET14基因启动子反义链上含有NGG序列特征的序列,即靶位点序列SW11、SW13和SW14,其中,SW11序列如SEQ ID NO.1所示,SW13序列如SEQ ID NO.2所示,SW14序列如SEQ ID NO.3所示;
(2)构建同时含有SW11、SW13和SW14序列的表达载体Cas9-gRNA5-SW134:
根据选定的gRNA靶点序列,合成引物SW11-gRNA-F/SW11-gRNA-R、SW13-gRNA-F/SW13-gRNA-R和SW14-gRNA-F/SW14-gRNA-R,将这些引物通过两两退火方法合成双链DNA gRNA-SW11、gRNA-SW13和gRNA-SW14;将gRNA-SW11和gRNA-SW14依次经BtgZI和BsaI酶切连接后插入pENTR:gRNA4载体的U6p启动子下游,获得中间载体pgRNA4-SW1114;同时,将gRNA-SW13经BtgZI酶切后连接至pENTR:gRNA5载体的U6p启动子下游,获得中间载体pgRNA5-SW13;从pgRNA4-SW1114载体上经HindIII酶切得到含有gRNA-SW11和gRNA-SW14的DNA片段,将其连接至pgRNA5-SW13载体的HindIII酶切位点,获得中间载体pgRNA5-SW134;再通过gateway方法将pgRNA5-SW134载体上含U6p启动子、gRNA-SW11、gRNA-SW14和gRNA-SW13的片段克隆到pBY02-OsCas9-ccdB载体上,获得重组载体Cas9-gRNA5-SW134;
(3)表达载体Cas9-gRNA5-SW134转化进入根癌农杆菌EHA105:
将(2)中的重组载体Cas9-gRNA5-SW134通过热激方法转化进入农杆菌EHA105菌株中,获得含有重组表达载体Cas9-gRNA5-SW134的重组农杆菌,命名为EHA105/Cas9-gRNA5-SW134;
(4)农杆菌介导的水稻转化:
利用重组根癌农杆菌EHA105/Cas9-gRNA5-SW134侵染水稻成熟胚诱导的愈伤组织,在含潮霉素抗生素培养基上成功再生及生根的植株为具有广谱抗白叶枯病水稻。
5.根据权利要求4所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,所述SW11-gRNA-F序列如SEQ ID NO.4所示,SW11-gRNA-R序列如SEQID NO.5所示,SW13-gRNA-F序列如SEQ ID NO.6所示,SW13-gRNA-R序列如SEQ ID NO.7所示,SW14-gRNA-F序列如SEQ ID NO.8所示,SW14-gRNA-R序列如SEQ ID NO.9所示。
6.根据权利要求4所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,还包括水稻突变体筛选步骤,具体方法如下:T0代苗期水稻叶片基因组提取,利用Cas9基因检测引物Cas9-F和Cas9-R扩增Cas9部分序列;再以Cas9基因阳性植株基因组为模板,SW11p-F/SW11p-R、SW13p-F/SW13p-R和SW14p-F/SW14p-R为引物分别扩增OsSWEET11、OsSWEET13和OsSWEET14基因启动子部分片段;通过对PCR产物测序验证突变水稻株系。
7.根据权利要求6所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,引物Cas9-F序列如SEQ ID NO.10所示,引物Cas9-R序列如SEQ IDNO.11所示,引物SW11p-F序列如SEQ ID NO.12所示,引物SW11p-R序列如SEQ ID NO.13所示,引物SW13p-F序列如SEQ ID NO.14所示,引物SW13p-R序列如SEQ ID NO.15所示,引物SW14p-F序列如SEQ ID NO.16所示,引物SW14p-R序列如SEQ ID NO.17所示。
8.根据权利要求1-7中任一项所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,所得水稻材料MS134HZ,其中一种水稻材料OsSWEET11基因启动子缺失CT两个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基。
9.根据权利要求1-7中任一项所述的一种修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法,其特征在于,所得水稻材料MS134HZ,其中一种水稻材料OsSWEET11基因启动子缺失TGTAC五个碱基,OsSWEET13基因启动子缺失TAAA四个碱基,OsSWEET14基因启动子缺失十一个碱基。
10.一种检测突变体水稻抗性的方法,其特征在于,对8周龄的水稻剪叶接种两个Xoo菌株PXO99A和PXO61,其中,PXO99A为菲律宾菌株,含有激活OsSWEET11基因的PthXo1毒性因子;PXO16为菲律宾菌株,含有激活OsSWEET14基因的PthXo3毒性因子;设定时间后调查病斑长度,最后取多个叶片的平均值,做t-test差异分析(P<0.05),病斑越短,表明水稻对PXO99A和PXO61菌株的抗性越好。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910698527.9A CN110317828B (zh) | 2019-07-31 | 2019-07-31 | 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910698527.9A CN110317828B (zh) | 2019-07-31 | 2019-07-31 | 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110317828A true CN110317828A (zh) | 2019-10-11 |
CN110317828B CN110317828B (zh) | 2021-03-23 |
Family
ID=68125074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910698527.9A Active CN110317828B (zh) | 2019-07-31 | 2019-07-31 | 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110317828B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110791524A (zh) * | 2019-12-09 | 2020-02-14 | 中国科学院华南植物园 | 一种通过编辑OsSWEE14基因外显子培育广谱抗白叶枯病水稻的方法 |
CN111206047A (zh) * | 2020-02-14 | 2020-05-29 | 中国科学院华南植物园 | OsSWEET13基因突变体及其在提高水稻产量中的应用 |
CN111411123A (zh) * | 2020-04-08 | 2020-07-14 | 上海市农业生物基因中心 | 一种利用CRISPR/Cas9系统同时改良水稻香味和白叶枯病抗性的方法及表达载体 |
WO2020208017A1 (en) * | 2019-04-11 | 2020-10-15 | Wolf Frommer | Diagnostic kit and method for sweet-based rice blight resistance and resistant breeding lines |
CN111849970A (zh) * | 2020-01-21 | 2020-10-30 | 扬州大学 | 一种基于直链淀粉含量的稻米培育筛选方法 |
CN113201548A (zh) * | 2021-04-30 | 2021-08-03 | 上海交通大学 | 水稻OsTFIIAγ1基因启动子中的EBE位点及应用 |
CN116478260A (zh) * | 2023-03-21 | 2023-07-25 | 西北农林科技大学 | 一种小麦糖转运蛋白、基因及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108374021A (zh) * | 2018-05-10 | 2018-08-07 | 上海交通大学 | 一种修饰水稻OsTFIIAγ1基因培育广谱抗白叶枯病水稻的方法 |
-
2019
- 2019-07-31 CN CN201910698527.9A patent/CN110317828B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108374021A (zh) * | 2018-05-10 | 2018-08-07 | 上海交通大学 | 一种修饰水稻OsTFIIAγ1基因培育广谱抗白叶枯病水稻的方法 |
Non-Patent Citations (7)
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020208017A1 (en) * | 2019-04-11 | 2020-10-15 | Wolf Frommer | Diagnostic kit and method for sweet-based rice blight resistance and resistant breeding lines |
CN110791524A (zh) * | 2019-12-09 | 2020-02-14 | 中国科学院华南植物园 | 一种通过编辑OsSWEE14基因外显子培育广谱抗白叶枯病水稻的方法 |
CN111849970A (zh) * | 2020-01-21 | 2020-10-30 | 扬州大学 | 一种基于直链淀粉含量的稻米培育筛选方法 |
CN111206047A (zh) * | 2020-02-14 | 2020-05-29 | 中国科学院华南植物园 | OsSWEET13基因突变体及其在提高水稻产量中的应用 |
CN111206047B (zh) * | 2020-02-14 | 2020-12-08 | 中国科学院华南植物园 | OsSWEET13基因突变体及其在提高水稻产量中的应用 |
CN111411123A (zh) * | 2020-04-08 | 2020-07-14 | 上海市农业生物基因中心 | 一种利用CRISPR/Cas9系统同时改良水稻香味和白叶枯病抗性的方法及表达载体 |
CN111411123B (zh) * | 2020-04-08 | 2023-04-11 | 上海市农业生物基因中心 | 一种利用CRISPR/Cas9系统同时改良水稻香味和白叶枯病抗性的方法及表达载体 |
CN113201548A (zh) * | 2021-04-30 | 2021-08-03 | 上海交通大学 | 水稻OsTFIIAγ1基因启动子中的EBE位点及应用 |
CN116478260A (zh) * | 2023-03-21 | 2023-07-25 | 西北农林科技大学 | 一种小麦糖转运蛋白、基因及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110317828B (zh) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110317828A (zh) | 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法 | |
CN105543270A (zh) | 双抗性CRISPR/Cas9载体及应用 | |
CN103382468B (zh) | 一种水稻基因组定点改造方法 | |
CN107012164A (zh) | CRISPR/Cpf1植物基因组定向修饰功能单元、包含该功能单元的载体及其应用 | |
CN107893080A (zh) | 一种靶向大鼠Inhba基因的sgRNA及其应用 | |
CN107164401A (zh) | 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用 | |
CN110093349A (zh) | 利用CRISPR/Cas9系统特异性剪切水稻xal3基因启动子的sgRNA及应用 | |
CN103602654B (zh) | 人工改造的高活性Mariner-Like转座酶 | |
CN112501346B (zh) | 一种与水稻白叶枯病抗性相关的snp分子标记、检测引物对及应用 | |
CN105063026A (zh) | 一种水稻千粒重基因tgw6引导rna靶点序列及应用 | |
WO2020156367A1 (zh) | 提高水稻产量和/或稻瘟病抗性的方法及其所用蛋白质 | |
CN104558128B (zh) | 与抗禾谷镰刀菌茎腐病相关的蛋白及其编码基因与应用 | |
CN112522300A (zh) | 一种培育广谱抗细菌性条斑病水稻的方法及引物和表达盒 | |
CN106434701B (zh) | 鸭疫里默氏杆菌的rpsL突变基因及其应用 | |
CN104593380B (zh) | 用于提高植物耐盐性的编码玉米HKT转运蛋白的基因ZmHKT1;1a及其应用 | |
CN110607388B (zh) | 小麦成株期抗条锈病基因相关snp分子标记及其引物和应用 | |
CN103088046A (zh) | ZFNs介导的牛MSTN基因敲除和定点整合外源基因的方法 | |
CN108374021A (zh) | 一种修饰水稻OsTFIIAγ1基因培育广谱抗白叶枯病水稻的方法 | |
CN107384946B (zh) | 水稻淀粉分支酶sbe3基因的人工定点突变体及其应用 | |
CN101962657B (zh) | 一种植物表达载体 | |
CN116240209B (zh) | 中国春小麦中受白粉菌强诱导的增强子及其应用 | |
CN105969768A (zh) | 一种klf7基因启动子及其活性和应用 | |
CN105112423B (zh) | 一种增强桑树抗病能力的miRNA的克隆及其应用 | |
CN116083430A (zh) | 一种改善杨树性状的方法 | |
CN116536327A (zh) | 一种小麦黄花叶病感病基因TaEIF4E及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 200030 Dongchuan Road, Minhang District, Minhang District, Shanghai Applicant after: Shanghai Jiaotong University Address before: 200030 Huashan Road, Shanghai, No. 1954, No. Applicant before: Shanghai Jiaotong University |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |